(自组1)初中数学月考测试 (73)
- 格式:doc
- 大小:456.50 KB
- 文档页数:17
七年级数学试卷月考【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长是10cm,腰长是12cm,那么这个三角形的周长是多少?A. 22cmB. 32cmC. 34cmD. 44cm3. 有理数中,绝对值最小的数是?A. 1B. 0C. -1D. 无法确定4. 下列哪个选项是正确的?A. 0除以任何不为0的数都得0B. 任何数除以0都得0C. 0乘任何数都得0D. 任何数乘0都得任何数5. 如果a、b互为相反数,那么a+b的值为?A. aB. bC. 0D. -1二、判断题(每题1分,共5分)1. 相反数等于它本身的数是0。
()2. 等腰三角形的两腰相等,两底角相等。
()3. 任何数乘以1都等于它本身。
()4. 负数乘以负数等于正数。
()5. 两个负数相加,和一定为负数。
()三、填空题(每题1分,共5分)1. 相反数等于它本身的数是______。
2. 等腰三角形的两腰相等,两底角______。
3. 任何数乘以______都等于它本身。
4. 负数乘以负数等于______。
5. 两个负数相加,和一定为______。
四、简答题(每题2分,共10分)1. 请简述相反数的定义。
2. 请简述等腰三角形的性质。
3. 请简述有理数的乘法法则。
4. 请简述负数乘以负数的结果。
5. 请简述两个负数相加的和的性质。
五、应用题(每题2分,共10分)1. 如果一个数是5,那么它的相反数是多少?2. 一个等腰三角形的底边长是8cm,腰长是10cm,那么这个三角形的周长是多少?3. 如果有两个有理数分别是3和-3,那么它们的乘积是多少?4. 如果有两个负数分别是-2和-3,那么它们的乘积是多少?5. 如果有两个负数分别是-4和-5,那么它们的和是多少?六、分析题(每题5分,共10分)1. 请分析相反数在实际生活中的应用。
2. 请分析等腰三角形在实际生活中的应用。
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第二章(人教版2024)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.12024-的相反数是( )A .2024-B .12024C .12024-D .以上都不是2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .880.1610´B .98.01610´C .100.801610´D .1080.1610´3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤a -一定是负数,其中正确的个数是( )A .1B .2C .3D .44.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5mm 的零部件,其中()4.50.2mm ±范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A .4.4mmB .4.5mmC .4.6mmD .4.8mm5.下列各组数相等的有( )A .()22-与22-B .()31-与()21--C .0.3--与 0.3D .a 与a 6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm ”和“3cm ”分别对应数轴上的3和0,那么刻度尺上“5.6cm ”对应数轴上的数为( )A . 1.4-B . 1.6-C . 2.6-D .1.67.观察下图,它的计算过程可以解释( )这一运算规律A .加法交换律B .乘法结合律C .乘法交换律D .乘法分配律8.如图,A 、B 两点在数轴上表示的数分别为a ,b ,有下列结论:①0a b -<;②0a b +>;③()()110b a -+>;④101b a ->-.其中正确的有( )个.A .4个B .3个C .2个D .1个9. 定义运算:()1a b a b Ä=-.下面给出了关于这种运算的几种结论:①()226Ä-=,②a b b a Ä=Ä,③若0a b +=,则()()2a a b b ab Ä+Ä=,④若0a b Ä=,则0a =或1b =,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32´方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66´方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A .160B .128C .80D .48第II 卷二、填空题(本题共6小题,每小题3分,共18分.)11.甲地海拔高度为50-米,乙地海拔高度为65-米,那么甲地比乙地 .(填“高”或者“低”).12.绝对值大于1且不大于5的负整数有 .13.若2(21)a -与23b -互为相反数,则b a = .14.电影《哈利•波特》中,小哈利波特穿越墙进入“394站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于23-,83处,2AP PB =,则P 站台用类似电影的方法可称为“ 站台”.15.若2a b c d a b c d +++=,则abcd abcd 的值为 .16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示1-的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字 的点与数轴上表示2023的点重合.三、解答题(本题共8小题,共72分.第17-18题每题6分,第19-20题每题8分,第21-22题每题10分,第23-24题每题12分,解答应写出文字说明、证明过程或演算步骤.)17.计算.(1)()()()()59463473---+--+(2)3112(3)(2)(4)(5)14263---+----18.计算:(1)134 2.5624æö´--+--ç÷èø;(2)()()241110.5233éù---´---ëû.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是3-.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,4-,152,122-,| 1.5|-,( 1.6)-+.20.(1)已知5a =,3b =,且a b b a -=-,求a b -的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: ()a b x a b cd cd+-+++的值.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减5+2-4-13+6-6+3-(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.23.观察下列三列数:1-、3+、5-、7+、9-、11+、……①3-、1+、7-、5+、11-、9+、……②3+、9-、15+、-、……③+、21-、27(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;-,求k的值.(3)若在每行取第k个数,这三个数的和正好为10124.如图,数轴上有A ,B ,C 三个点,分别表示数208--,,16,有两条动线段PQ 和MN (点Q 与点A 重合,点N 与点B 重合,且点P 在点Q 的左边,点M 在点N 的左边),24PQ MN ==,,线段MN 以每秒1个单位的速度从点B 开始向右匀速运动,同时线段PQ 以每秒3个单位的速度从点A 开始向右匀速运动.当点Q 运动到点C 时,线段PQ 立即以相同的速度返回;当点Q 回到点A 时,线段PQ 、MN 同时停止运动.设运动时间为t 秒(整个运动过程中,线段PQ 和MN 保持长度不变).(1)当20t =时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ PM =时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.。
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:105 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图,在中,,点在上,,若,则的度数为( )A.B.C.D.2. 某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知,,,则的度数是( )A.B.C.D.3. 如图,点,分别在和上,,,,则的度数( )△ABC ∠C =90∘D AC DE //AB ∠CDE =165∘∠B 15∘55∘65∘75∘AB //CD ∠BAE=87∘∠DCE=121∘∠E 28∘34∘46∘56∘D E AB AC DE//BC ∠ADE =60∘∠EBC =25∘∠ABEA.B.C.D.4. 如图,是的平分线,交于点,若,则的度数为( )A.B.C. D.5. 如图,直线与相交于点,,若,则 A.B.C.D.25∘30∘45∘35∘AF ∠BAC EF//AC AB E ∠1=35∘∠BEF 35∘60∘70∘80∘l 1l 2O OM ⊥l 1α=44∘β=()56∘46∘45∘44∘△ABC α(<α<)0∘180∘△EBD A6. 如图,将绕点逆时针旋转,得到,若点恰好在的延长线上,则的度数为 A.B.C.D.7. 平移小菱形可以得到美丽的“中国结”图案,下面四个图案是小菱形平移后得到的类似“中国结”的图案,按图中规律,第个图案中,小菱形的个数是( )A.B.C.D. 8.如图是一架婴儿车的示意图,其中,, ,那么的度数为( )A.B.C.D.△ABC B α(<α<)0∘180∘△EBD A ED ∠CAD ()−α90∘α−α180∘2α2080090010001100AB//CD ∠1=110∘∠3=40∘∠280∘90∘100∘70∘卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )9. 把“等角的余角相等”改写成“如果那么”的形式是________,________,该命题是________命题(填“真”或“假”).10. 已知的两边与的两边分别平行,且比的倍少,那么________.11. 如图,直线相交于点,与互为余角,若,则________.12. 如图,将沿方向平移个单位得到,若的周长等于,则四边形的周长等于________.13. 两条平行直线被第三条直线所截,同旁内角的和为________度.14. 如图,在正方形中,,点是边的中点,点是边上一点,连接,若,则线段的长度为________.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )15. 如图,直线与直线相交于,根据下列语句画图、解答.⋯⋯⋯⋯∠A ∠B ∠A ∠B 340∘∠A =AB ,CD O ∠BOD ∠BOE ∠AOC =72∘∠BOE =∘△ABC BC 1△DEF △ABC 10cm ABFD ABCD AB =2E BC F CD AF ∠FAE =∠BAE CF CD AB C (1)PQ //CD AB Q过点作,交于点;过点作,垂足为;若,猜想是多少度?并说明理由. 16.如图,已知,.求证.请将下列证明过程填写完整.证明:∵(已知),∴________________,又∵已知,∴,________,∴________________,∴________.17. 如图,在中,是高,点、、分别在、、上且,试判断与的数量关系,并说明理由.18.如图所示,已知, .若 ,求的度数;判断,的位置关系,并说明理由;若平分,求证:平分 .19. 综合与探究已知,分别为直线,直线上的点,且,点在,之间.如图,求证:;如图,点是上一点,连接,作,若.试探究与的数量关系,并说明理由.在的条件下,作交于点,平分,平分,若(1)P PQ //CD AB Q (2)P PR ⊥CD R (3)∠DCB =120∘∠PQC EF //AD ∠1=∠2∠DGA +∠BAC =180∘EF //AD ∠2=()∠1=∠2()∠1=∠3()AB //()∠DGA +∠BAC =180∘()△ABC CD E F G BC AB AC EF ⊥AB,∠1=∠2∠AGD ∠ACB AE//CF ∠A =∠C (1)∠1=40∘∠2(2)AD BC (3)DA ∠BDF BC ∠EBD M N AB CD AB//CD E AB CD (1)1∠BME +∠DNE =∠MEN (2)2P CD PM MQ//EN ∠QMP =∠BME ∠E ∠AMP (3)(2)NG ⊥CD PM G MP ∠QME NF ∠ENG ∠MGN =170∘∠MFN =,则________.20. 问题:如图,是的平分线,,且.求证:也是的平分线.完成下列推理过程:证明:∵是的平分线,(已知)∴________∵(已知)∴________∴______=______(等量代换),又∵(已知)∴( )(________,∴________∵(等量代换)∴是的平分线(_______)21. 如图,在中,,分别为半径,弦的中点,连接并延长,交过点的切线于点.求证:;若,,求半径的长.∠MGN =170∘∠MFN =BD ∠ABC ED //BC ∠FED =∠BDE EF ∠AED BD ∠ABC ∠ABD =∠DBC ()ED //BC ∠BDE =∠BDC()∠FED =∠BDE //())∠AEF =∠ABD ()∠AEF =∠DEF EF ∠AED ⊙O C D OB AB CD A E (1)AE ⊥CE (2)AE =2–√sin ∠ADE =13⊙O参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】D【考点】平行线的性质三角形内角和定理【解析】利用平角的定义可得,再根据平行线的性质知,再由内角和定理可得答案.【解答】解:∵,∴.∵,∴,∴.故选.2.【答案】B【考点】平行线的性质【解析】延长交于,依据,=,可得=,再根据三角形外角性质,即可得到=.【解答】解:如图,延长交于,过点作交于,∠ADE =15∘∠A =∠ADE =15∘∠CDE =165∘∠ADE =15∘DE //AB ∠A =∠ADE =15∘∠B =−∠C −∠A =−−180∘180∘90∘15∘=75∘D DC AE F AB //CD ∠BAE 87∘∠CFE 87∘∠E ∠DCE −∠CFE DC AE F C GH//AE AB G∵,,∴,则,又∵,∴.故选.3.【答案】D【考点】平行线的性质【解析】利用平行线性质以及三角形外角性质即可求解.【解答】解:∵,∴,又∵,∴.故选.4.【答案】C【考点】角平分线的定义平行线的性质【解析】根据平行线的性质求出,根据角平分线的定义得出,根据平行线的性质得出,代入求出即可.【解答】AB //CD ∠BAE=87∘∠CFE=87∘∠DCH =∠EFC =87∘∠DCE=121∘∠E=∠HCE =∠DCE −∠DCH =−=121∘87∘34∘B DE//BC ∠DEB =∠EBC =25∘∠ADE =∠ABC =60∘∠ABE =∠ABC −∠EBC =−=60∘25∘35∘D ∠FAC =∠1=35∘∠BAC =2∠FAC =70∘∠BEF =∠BAC EF//AC ∠1=35∘解:∵,,∴.∵是的平分线,∴.∵,∴.故选.5.【答案】B【考点】垂线余角和补角【解析】由题意可得,把代入求解即可.【解答】解:∵,∴.把代入,得.故选.6.【答案】C【考点】多边形的内角和【解析】根据旋转的性质和四边形的内角和是,可以求得的度数,本题得以解决.【解答】解:由题意可得,,,∵,∴,∵,,∴.故选.7.EF//AC ∠1=35∘∠FAC =∠1=35∘AF ∠BAC ∠BAC =2∠FAC =70∘EF//AC ∠BEF =∠BAC =70∘C α+β=90∘α=44∘OM ⊥l 1β++α=90∘180∘α=44∘β=46∘B 360∘∠CAD ∠CBD =α∠ACB =∠EDB ∠EDB +∠ADB =180∘∠ADB +∠ACB =180∘∠ADB +∠DBC +∠BCA +∠CAD =360∘∠CBD =α∠CAD =−α180∘C【答案】A【考点】规律型:图形的变化类【解析】仔细观察图形发现第一个图形有个小菱形;第二个图形有个小菱形;第三个图形有个小菱形;由此规律得到通项公式,然后代入即可求得答案.【解答】解:∵第一个图形有个小菱形;第二个图形有个小菱形;第三个图形有个小菱形;以此类推,第个图形有个小菱形,∴第个图形有个小菱形.故选.8.【答案】D【考点】平行线的性质三角形的外角性质【解析】根据平行线性质求出,根据三角形外角性质得出,代入求出即可.【解答】解:∵,∴,∵,∴.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )9.【答案】如果两个角是等角的余角,那么这两个角相等,真2×=2122×=8222×=1832n =202×=2122×=8222×=1832⋯n 2n 2202×=800202A ∠A ∠2=∠1−∠A AB//CD ∠A =∠3=40∘∠1=110∘∠2=∠1−∠A =70∘D命题的组成真命题,假命题【解析】此题暂无解析【解答】解:命题“等角的余角相等”改写成“如果那么”的形式为:如果两个角是等角的余角,那么这两个角相等.这个命题正确,是真命题.故答案为:如果两个角是等角的余角,那么这两个角相等;真.10.【答案】或【考点】平行线的性质【解析】设的度数为,则的度数为,根据两边分别平行的两个角相等或互补得到=或=,再分别解方程,然后计算的值即可.【解答】解:设的度数为,则的度数为,当时,即,解得,所以;当时,即,解得,所以;所以的度数为或.故答案为:或.11.【答案】【考点】对顶角⋯⋯⋯⋯20∘125∘∠B x ∠A 3x −40∘x 3x −40∘x +3x −40∘180∘3x −40∘∠B x ∠A 3x −40∘∠A =∠B x =3x −40∘x =20∘3x −=40∘20∘∠A +∠B =180∘x +3x −=40∘180∘x =55∘3x −=40∘125∘∠A 20∘125∘20∘125∘18角的计算【解析】此题暂无解析【解答】解:∵,∴.∵与互余,∴.故答案为:.12.【答案】【考点】平移的性质【解析】根据平移的性质可得,,然后根据四边形的周长的定义列式计算即可得解.【解答】解:∵沿方向平移个单位得到,∴,,∴四边形的周长∵的周长,∴,∴四边形的周长.故答案为:.13.【答案】【考点】平行线的性质【解析】∠AOC =72∘∠BOD =72∘∠BOD ∠BOE ∠BOE =−=90∘72∘18∘1812cmAD =CF =1AC =DF △ABC BC 1△DEF AD =CF =1AC =DF ABFD =AB +(BC +CF)+DF +AD=AB +BC +AC +AD +CF.△ABC =10cm AB +BC +AC =10cm ABFD =10+1+1=12cm 12cm 180根两条直线被第三条直线所截,同旁内角互即可得解.【解答】解:两条直线被第三条直线所截,同旁内角互补,所以同旁内角的和为.故答案为:.14.【答案】【考点】勾股定理平行线的性质三角形中位线定理【解析】由平行线性质,梯形中位线定理得到,设,则,,在直角三角形中,利用勾股定理即可求解.【解答】解:过作交于,则,∴,又,∴,设,则,,在直角三角形中,,解得,∴.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )180∘18012AF =AB +CF CF =x AF =2+x DF =2−x ADF E EM//AB AF M ∠FAE =∠BAE=∠MEA AM =ME =AF 12ME =(AB +CF)12AF =AB +CF CF =x AF =2+x DF =2−x ADF (2+x =+(2−x )222)2x =12CF =121215.【答案】解:如图所示,直线即为所求.如图所示,直线即为所求.猜想.理由如下:∵(已作),∴(两直线平行,同位角相等).∴(邻补角的定义).【考点】平行线的画法经过一点作已知直线的垂线平行线的性质邻补角【解析】(1)过点作,交于点;(2)过点作,垂足为;(3)利用两直线平行,同旁内角互补即可解决问题.【解答】解:如图所示,直线即为所求.如图所示,直线即为所求.猜想.理由如下:∵(已作),∴(两直线平行,同位角相等).∴(邻补角的定义).16.【答案】,两直线平行,同位角相等,等量代换,,内错角相等,两直线平行,两直线平行,同旁内角互补【考点】平行线的判定与性质(1)PQ (2)PR (3)∠PQC =60∘PQ //CD ∠PQB =∠DCB =120∘∠PQC =−∠PQB =−=180∘180∘120∘60∘P PQ //CD AB Q P PR ⊥CD R (1)PQ (2)PR (3)∠PQC =60∘PQ //CD ∠PQB =∠DCB =120∘∠PQC =−∠PQB =−=180∘180∘120∘60∘∠3DG【解析】分别根据平行线的性质及平行线的判定定理解答即可.【解答】解:∵,(已知)∴.(两直线平行,同位角相等)又∵,(已知)∴,(等量代换)∴,(内错角相等,两直线平行)∴(两直线平行,同旁内角互补).故答案为:;两直线平行,同位角相等;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补.17.【答案】解: .理由:∵,,∴,∴,∵,∴,∴,∴ .【考点】平行线的判定与性质【解析】此题暂无解析【解答】解: .理由:∵,,∴,∴,∵,∴,∴,∴ .18.【答案】解:,,∵,∴ .解:∵,EF //AD ∠2=∠3∠1=∠2∠1=∠3AB //DG ∠DGA +∠BAC =180∘∠3DG ∠AGD =∠ACB CD ⊥AB EF ⊥AB EF//CD ∠2=∠BCD ∠1=∠2∠1=∠BCD DG//BC ∠AGD =∠ACB ∠AGD =∠ACB CD ⊥AB EF ⊥AB EF//CD ∠2=∠BCD ∠1=∠2∠1=∠BCD DG//BC ∠AGD =∠ACB (1)∵AE//CF ∴∠CDB =∠1=40∘∠CDB +∠2=∠180∘∠2=−∠CDB =−180∘180∘40∘=140∘(2)AE//CF ∴∠A =∠ADF,又∵,,∴ .证明:由得 ,,,,∵平分,,∴,∴平分 .【考点】平行线的性质邻补角平行线的判定与性质角平分线的定义【解析】此题暂无解析【解答】解:,,∵,∴ .解:∵,,又∵,,∴ .证明:由得 ,,,,∵平分,,∴,∴平分 . 19.【答案】证明:如图,过作.∴∠A =∠ADF ∠A =∠C ∴∠ADF =∠C AD//BC (3)(2)AD//BC ∴∠ADB =∠DBC ∵AE//CF ∴∠BDF =∠EBD DA ∠BDF ∴∠ADF =∠ADB =∠BDF 12∠DBC =∠EBD 12BC ∠EBD (1)∵AE//CF ∴∠CDB =∠1=40∘∠CDB +∠2=∠180∘∠2=−∠CDB =−180∘180∘40∘=140∘(2)AE//CF ∴∠A =∠ADF ∠A =∠C ∴∠ADF =∠C AD//BC (3)(2)AD//BC ∴∠ADB =∠DBC ∵AE//CF ∴∠BDF =∠EBD DA ∠BDF ∴∠ADF =∠ADB =∠BDF 12∠DBC =∠EBD 12BC ∠EBD (1)E EG//AB∵,∴,∴.∵,∴.解:.理由:∵,∴.∵,∴.∵,∴,∴,∴.【考点】平行线的性质【解析】此题暂无解析【解答】证明:如图,过作.∵,∴,∴.∵,∴.解:.理由:∵,∴.∵,∴.∵,∴,∴,∴.提示:在的条件下,.AB//CD EG//CD ∠BME =∠MEG,∠DNE =∠GEN ∠MEN =∠MEG +∠GEN ∠BME +∠DNE =∠MEN (2)∠E =∠AMP AB//CD ∠BMP +∠MPD =,∠MPD =∠AMP180∘MQ//EN ∠QME +∠E =180∘∠QMP =∠BME ∠QME =∠BMP ∠E =∠MPD ∠E =∠AMP 110∘(1)E EG//AB AB//CD EG//CD ∠BME =∠MEG,∠DNE =∠GEN ∠MEN =∠MEG +∠GEN ∠BME +∠DNE =∠MEN (2)∠E =∠AMP AB//CD ∠BMP +∠MPD =,∠MPD =∠AMP180∘MQ//EN ∠QME +∠E =180∘∠QMP =∠BME ∠QME =∠BMP ∠E =∠MPD ∠E =∠AMP (3)(2)∠AMP =∠E ∠QMP =∠BME∵,∴.∵平分,∴.∵,∴.∵,∴,∴.∵,平分,∴,∴.故答案为:.20.【答案】角平分线的定义两直线平行,内错角相等EF //BD,内错角相等,两直线平行两直线平行,同位角相等角平分线定义【考点】平行线的判定与性质【解析】先利用角平分线定义得到,再根据平行线的性质由得,则,接着由可判断,则利用平行线的性质得,,所以,从而得到结论.【解答】证明:∵是的平分线(已知),∴(角平分线定义);∵(已知),∴(两直线平行,内错角相等),∴(等量代换);又∵(已知),∴(内错角相等,两直线平行),∴(两直线平行,同位角相等),∴(等量代换),∴是的平分线(角平分线定义).21.【答案】证明:连接,如图,∠QMP =∠BME ∠AMQ =∠DNE MP ∠QME ∠PMQ =∠PME =∠BME ∠MGN =∠AMP +=90∘170∘∠AMP =∠AMQ +∠QMP =80∘∠AMQ +3∠QMP =180∘∠QMP =∠BME =50∘∠AMQ =∠DNE =30∘NG ⊥CD NF ∠ENG ∠FNG =∠ENF =∠DNE =30∘∠MFN =∠BME +∠FND =+=50∘60∘110∘110∘∠ABD =∠BDE∠ABD =∠CBD ED //BC ∠EDB =∠CBD ∠ABD =∠EDB ∠FED =∠BDE EF //BD ∠EDB =∠DEF ∠ABD =∠AEF ∠AEF =∠DEF BD ∠ABC ∠ABD =∠DBC ED //BC ∠BDE =∠DBC ∠ABD =∠BDE ∠FED =∠BDE EF //BD ∠AEF =∠ABD ∠AEF =∠DEF EF ∠AED (1)OA∵是的切线,∴,∴,∵,分别为半径,弦的中点,∴为的中位线.∴.∴.∴.解:连接,如图,∵,,∴,∴,在中,,∴,∵,∴.在中,,设,则,∴,即,解得,∴,即的半径长为.【考点】解直角三角形切线的性质三角形中位线定理勾股定理平行线的性质AE ⊙O AE ⊥OA ∠OAE=90∘C D OB AB CD △AOB CD //OA ∠E=90∘AE ⊥CE (2)OD AD=BD OA =OB OD ⊥AB ∠ODA=90∘Rt △AED sin ∠ADE ==AE AD 13AD=32–√CD //OA ∠OAD=∠ADE Rt △OAD sin ∠OAD =13OD=x OA=3x AD ==2x (3x −)2x 2−−−−−−−−√2–√2x 2–√=32–√x=32OA=3x =92⊙O 92【解析】(1)连接,如图,利用切线的性质得=,再证明为的中位线得到.则可判断;(2)连接,如图,利用垂径定理得到,再在中利用正弦定义计算出=,接着证明=.从而在中有,设=,则=,利用勾股定理可计算出=,从而得到=,然后解方程求出即可得到的半径长.【解答】证明:连接,如图,∵是的切线,∴,∴,∵,分别为半径,弦的中点,∴为的中位线.∴.∴.∴.解:连接,如图,∵,,∴,∴,在中,,OA ∠OAE 90∘CD △AOB CD //OA AE ⊥CE OD OD ⊥AB Rt △AED AD 32–√∠OAD ∠ADE Rt △OAD sin ∠OAD =13OD x OA 3x AD 2x 2–√2x 2–√32–√x ⊙O (1)OA AE ⊙O AE ⊥OA ∠OAE=90∘C D OB AB CD △AOB CD //OA ∠E=90∘AE ⊥CE (2)OD AD=BD OA =OB OD ⊥AB ∠ODA=90∘Rt △AED sin ∠ADE ==AE AD 13=3–√∴,∵,∴.在中,,设,则,∴,即,解得,∴,即的半径长为.AD=32–√CD //OA ∠OAD=∠ADE Rt △OAD sin ∠OAD =13OD=x OA=3x AD ==2x (3x −)2x 2−−−−−−−−√2–√2x 2–√=32–√x=32OA=3x =92⊙O 92。
七年级数学月考试题卷一、 精心选一选(10小题,每小题2分,共20分) 1.在下列数-56,+1,6.7,-14,0,722, -5 中,属于整数的有( ) A 2个 B 3个 C 4个 D 5个 2.有理数- 13的倒数是( )A 1 3B - 1 3C 3D -33.国家游泳中心――“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积均为260000平方米,将260000用科学记数法表示应为( ) A 、0.26×106 B 、26×104 C 、2.6×105 D 、2.6×1064.在-1,-2,1,2四个数中,最小的一个数是 ( )A -1B -2C 1D 25.下列判断错误的是( ) A 任何数的绝对值一定是正数; B 一个负数的绝对值一定是正数; C 一个正数的绝对值一定是正数; D 任何数的绝对值都不是负数;6.有理数357,,468---的大小顺序是…………………………………………( ) A 357468-<-<- B 735846-<-<-C 573684-<-<-D 753864-<-<-7.室内温度10℃,室外温度是-3℃,那么室内温度比室外温度高( )A -13℃B -7℃C 7℃D 13℃8. 下列各组数中,相等的一组是 ( ) A -1和-4+(-3) B |-3|和 —2)3(- C |-3|和-(-3) D 2)3(- 与–9 9.已知a 、b 表示两个非零的有理数,则ba a b的值不可能是………………( ) A 2 B –2 C 1 D 010.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则翻转2006次后,点B 所对应的数是………………………………………………( )A 2005B 2006C 2007D 2008 \二、专心填一填(10小题,每小题3分,共30分)11.规定向东为正,那么向西走5千米记作________千米.12.绝对值小于3.14的整数有_______________.13.A 是数轴上一点,一只蚂蚁从A 出发爬了4个单位长度到了原点,则点A 所表示的数是________的值是互为倒数,则和互为相反数,和若cd b a d c b a 20102009++__________15.把(+4)-(-6)-(+8)写成省略加号的和的形式为________________.16.某商店营业员每月的基本工资为400元,奖金制度是:每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,则他九月份工资收入为 ________ 元.17.用四舍五入法把0.36495精确到0.01后得到的近似数为_____ ___,有_____个有效数字.18.已知︱a ︱>︱b ︱,且a <0,b >0,试利用数轴比较a ,b ,-a ,-b 的大小________19.已知计算规则bc ad d b c a -=,则=--1231__________.20.观察下列各数,按照某种规律在横线上填上一个适当的数。
2022-2023学年初中七年级上数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 10 小题,每题 5 分,共计50分)1. ${2\dfrac{1}{3}}$中有________个${\dfrac{1}{3}}$.2. 下列方程中,不是一元一次方程的是()A.${\dfrac{7}{y}+ 12= 0}$B.${2x+ 8= 0}$C.${3z= 0}$D.${3x= - 2- x}$3. 下列几何图形中,有${3}$个面的是( )A.B.C.D.4. 今年“五一”小长假期间,我市共接待游客${99.6}$万人次,旅游收入${516000000}$元.数据${516000000}$科学记数法表示为( )A.${5.16 \times 10^{8}}$B.${0.516 \times 10^{9}}$C.${51.6 \times 10^{7}}$D.${5.16 \times 10^{9}}$5. 小明要把${1}$张${50}$元的压岁钱兑换成面额为${5}$元和${10}$元的人民币(假设两种面额的人民币都需要),兑换方式有${(}$ ${)}$A.${1}$种B.${2}$种C.${3}$种D.${4}$种6. 单项式${-2\pi x^{2}y^{3}}$的系数是( )A.${-2}$B.${-2\pi }$C.${5}$D.${6}$7. 若代数式${4x- 5}$的值比${3x}$的值小${7}$,则${x}$的值是${(}$ ${)}$A.${- \dfrac{12}{7}}$B.${-12}$C.${2}$D.${-2}$8. 已知方程组的解是,则的解是( )A.C.D.9. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出${8}$钱,则多${3}$钱;每人出${7}$钱,则差${4}$钱,求物品的价格和共同购买该物品的人数.设该物品的价格是${x}$钱,共同购买该物品的有${y}$人,则根据题意,列出的方程组是( )A.${\left\{ \begin{matrix} 8y - x = 3 \\ 7y - x = - 4 \\ \end{matrix} \right.\ }$B.${\left\{ \begin{matrix} 8y - x = 3 \\ 7y - x = 4 \\ \end{matrix} \right.\ }$C.${\left\{ \begin{matrix} y - 8x = - 3 \\ 7y - x = - 4 \\ \end{matrix} \right.\ }$D.${\left\{ \begin{matrix} 8x - y = 3 \\ 7x - y = 4 \\ \end{matrix} \right.\ }$10. 如图,每个图案均由边长相等的黑白两色正方形按规律拼接而成,照此规律,第${n}$个图案中白色正方形比黑色正方形多${(}$ ${)}$个.A.${n}$B.${(5n+3)}$C.${(5n+2)}$D.${(4n+3)}$卷II(非选择题)二、填空题(本题共计 4 小题,每题 5 分,共计20分)12. ${2019}$年国内航空公司规定:旅客乘机时,免费携带行李箱的重量不超过${20\rm kg}$. 若超过${20\rm kg}$,则超出的重量每千克要按飞机票原价的${1.5\%}$购买行李票. 小明的爸爸从长春飞到北京,机票原价是${m}$元,他带了${40\rm kg}$行李,小明的爸爸应付的行李票是________元(用含${m}$的代数式表示).13. 长方形${ABCD}$中放置了${6}$个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是________${cm^{2}}$.14. 已知点${A}$,${B}$,${C}$都在直线${l}$上, ${AB=3BC}$,点${D}$,${E}$分别为${AC}$,${BC}$的中点,${DE=6}$,则${AC=}$________.三、解答题(本题共计 9 小题,每题 5 分,共计45分)15. 计算:${| 2-3 | +2\times \left(-4\right)-}$${\left(-3\right)^{2}\div 9}$.16. 解方程:${{\dfrac{0.03+0.02x}{0.03}}+{\dfrac{2x-5}5}={\dfrac{x-1}2}}$.17. 按要求作图如图,在同一平面内有四个点${A}$,${B}$,${C}$,${D}$ .①画射线${CD}$ ;②画直线${AD}$ ;③连结${AB}$ ;④直线${BD}$与直线${AC}$相交于点${O}$.18. 已知${y_{1}=}$${6-x}$,${y_{2}=}$${2+ 7x}$,解答下列问题:${(1)}$当${y_{1}=}$${2y_{2}}$时,求${x}$的值;${(2)}$当${x}$取何值时,${y_{2}}$比${y_{1}}$小${3}$.19. 已知${A=x^{2}+3xy-12}$,${B=2x^{2}-xy+y}$.${(1)}$当${x=y=-2}$时,求${2A-B}$的值;${(2)}$若${2A-B}$的值与${y}$的取值无关,求${x}$的值.【运用】${(1)}$①${ -2x= 4 }$,②${ 3x= -4.5 }$,③${ \dfrac{1}{2}x= -1 }$三个方程中,为“友好方程”的是________(填写序号);${(2)}$若关于${ x }$的一元一次方程${ 3x= b }$是“友好方程”,求${ b }$的值;${(3)}$若关于${ x }$的一元一次方程${ -2x= mn+ n(n\ne 0) }$是“友好方程”,且它的解为${ x= n}$,求${ m }$与${ n }$的值.21. 解方程组:.22. 观察下列各式:${\begin{matrix} - 1 \times \dfrac{1}{2} = - 1 + \dfrac{1}{2}; \\ - \dfrac{1}{2} \times \dfrac{1}{3} = - \dfrac{1}{2} + \dfrac{1}{3} ; \\ - \dfrac{1}{3} \times \dfrac{1}{4} = - \dfrac{1}{3} + \dfrac{1}{4} ;\\ \end{matrix}}$${\cdots}$${(1)}$你能探索出什么规律?(用含${n}$的式子表达);${(2)}$试运用你发现的规律计算:${( - 1 \times \dfrac{1}{2}) + ( - \dfrac{1}{2} \times \dfrac{1}{3}) + ( - \dfrac{1}{3} \times \dfrac{1} {4}) + \cdots + ( - \dfrac{1}{2018} \times \dfrac{1}{2019}) + ( - \dfrac{1}{2019} \times \dfrac{1} {2020})}$.23. 某汽车制造厂开发了一款新式电动汽车,计划一年生产安装${240}$辆.工厂决定招聘一些新工人.生产开始后,调研部门发现:${1}$名熟练工和${2}$名新工人每月可安装${8}$辆电动汽车;${2}$名熟练工和${3}$名新工人每月可安装${14}$辆电动汽车.${(1)}$每名熟练工和新工人每月分别可以安装多少辆电动汽车?${(2)}$如果工厂招聘${n(0\lt n\lt 10)}$名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有几种招聘新工人的方案?${(3)}$在${(2)}$的条件下,工厂给安装电动汽车的每名熟练工每月发${4000}$元的工资,给每名新工人每月发${2400}$元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额${W}$(元)尽可能的少?参考答案与试题解析2022-2023学年初中七年级上数学月考试卷一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】${7}$【考点】有理数的除法【解析】用 ${2\dfrac{1}{3}}$除以${\dfrac{1}{3}}$即可得到答案.【解答】解:${2\dfrac13\div\dfrac13=\dfrac73\div\dfrac13=7}$.故答案为:${7}$.2.【答案】A【考点】一元一次方程的定义【解析】此题暂无解析【解答】解:一元一次方程是指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,${\rm A}$中${y}$的最高次幂是${-1}$,不符合一元一次方程的定义,故选${\rm A}$.3.【答案】D认识立体图形【解析】根据立体图形的概念逐一判断可得.【解答】${A}$、球只有${1}$个面;${B}$、三棱锥有${4}$个面;${C}$、正方体有${6}$个面;${D}$、圆柱体有${3}$个面;4.【答案】A【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:${516000000}$用科学计数法表示为${5.16 \times 10^{8}}$,故选${\rm A}$.5.【答案】D【考点】二元一次方程的解【解析】先设面值${5}$元的有${x}$张,面值${10}$元的${y}$张,根据${1}$张${50}$元的人民币兑换成面额为${5}$元和${10}$元的人民币列出方程求解即可.【解答】解:设面值${5}$元的有${x}$张,面值${10}$元的${y}$张,根据题意得:${5x+10y=50}$,由于两种面额的人民币都需要,当${x=6}$时,${y=2}$;当${x=8}$时,${y=1}$.有${4}$种方案.故选${\rm D}$.6.【答案】B【考点】单项式【解析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:单项式${-2\pi x^{2}y^{3}}$的系数是${-2\pi }$,故选:${B}$.7.【答案】D【考点】解一元一次方程【解析】此题暂无解析【解答】解:因为代数式${4x- 5}$的值比${3x}$的值小${7}$,所以${4x-5=3x-7}$,解得:${x=-2}$.故选${\rm D}$.8.【答案】D【考点】加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】此题暂无解析【解答】此题暂无解答9.【答案】A【考点】由实际问题抽象出二元一次方程组【解析】设该物品的价格是${x}$钱,共同购买该物品的有${y}$人,由“每人出${8}$钱,则多${3}$钱;每人出${7}$钱,则差${4}$钱”,即可得出关于${x}$,${y}$的二元一次方程组,此题得解.【解答】解:设该物品的价格是${x}$钱,共同购买该物品的有${y}$人,依题意,得:${\left\{ \begin{matrix} 8y - x = 3 \\ 7y - x = - 4 \\ \end{matrix} \right.\ }$.故选${\rm A}$.10.【答案】D【考点】规律型:图形的变化类【解析】根据题意,第一个图形白色正方形为${8}$个,第二个图形白色正方形为${13}$个,第三个图形白色正方形为${18}$个,后一个图形比前一个图形多${5}$个白色正方形,则第${n}$个图形白色正方形的个数为${5n+ 3}$,即可推出第${5}$个图形白色正方形的个数.【解答】解:∵${n= 1}$时,白色正方形的个数为${8}$,白色正方形的个数为${13}$,黑色正方形个数为${2}$;${n= 3}$时,白色正方形的个数为${18}$,黑色正方形个数为${3}$;∴第${n}$个图形白色正方形的个数为${5n+ 3}$,黑色正方形个数为${n}$;∴第${n}$个图案中白色正方形比黑色正方形多${4n+3}$个.故选${\rm D}$.二、填空题(本题共计 4 小题,每题 5 分,共计20分)11.【答案】${-1}$【考点】二元一次方程的定义【解析】本题主要考查二元一次方程的定义,根据定义即可解得 .【解答】解:由题知${\begin{cases} |k|=1, \\k-1≠0, \end{cases}}$解得${k=-1}$.故答案为:${-1}$.12.【答案】${0.3m}$【考点】列代数式【解析】此题暂无解析【解答】解:由题意可得,小明的爸爸应付的行李票是: ${\left(40-20\right)m\times 1.5\% =0.3m}$(元).故答案为:${0.3m}$.13.${67}$.【考点】二元一次方程组的应用——几何问题【解析】设小长方形的长为${x\rm cm}$,宽为${y \rm cm}$,根据图中给定的数据可得出关于${x}$,${y}$的二元一次方程组,解之即可得出${x}$,${y}$的值,再利用阴影部分的面积${= }$大长方形的面积${-6\times }$小长方形的面积,即可求出结论.【解答】解:设小长方形的长为${x\rm cm}$,宽为${ym}$依题意,得:${\left\{ \begin{array} {l}{x+ 3y= 19} \\ {x+ y-2y= 7}\end{array} \right.}$解得:${\left\{ \begin{array} {l}{x= 10} \\ {y= 3}\end{array} \right.}$…图中阴影部分的面积${= 19\times \left(7+ 2\times 3\right)-6\times 10\times 3= 67\left( \rm cm ^{2}\right)}$故答案为:${67}$.14.【答案】${8}$或${16}$【考点】线段的和差线段的中点【解析】利用线段的比例关系,列式,注意对${B}$点的位置分类讨论.【解答】解:设${BC=x}$,当${C}$在线段${AB}$外面时,${AC=4x}$,由条件可得${\dfrac32x=6}$,解得${x=4}$,则${AC=4x=16}$,当${C}$在线段${AB}$中间时,${AC=2x}$,由条件可得${\dfrac32x=6}$,解得${x=4}$,则${AC=2x=8}$.故答案为:${8}$或${16}$.三、解答题(本题共计 9 小题,每题 5 分,共计45分)15.【答案】解:原式${=1+(-8)-1}$${=-8}$.【考点】有理数的混合运算有理数的乘方绝对值【解析】【解答】解:原式${=1+(-8)-1}$${=-8}$.16.【答案】解:${\dfrac{0.03+0.02x}{0.03}+\dfrac{2x-5}5=\dfrac{x-1}2}$去分母,得${10\left(3+2x\right)+6\left(2x-5\right)=15\left(x-1\right)}$,去括号,得${30+20x+12x-30=15x-15}$,移项、合并同类项,得${17x=-15}$,系数化为${1}$,得${x=-\dfrac{15}{17}}$.【考点】解一元一次方程【解析】根据去分母、去括号、移项、合并同类项、系数化为${1}$等几个步骤进行解答即可.【解答】解:${\dfrac{0.03+0.02x}{0.03}+\dfrac{2x-5}5=\dfrac{x-1}2}$去分母,得${10\left(3+2x\right)+6\left(2x-5\right)=15\left(x-1\right)}$,去括号,得${30+20x+12x-30=15x-15}$,移项、合并同类项,得${17x=-15}$,系数化为${1}$,得${x=-\dfrac{15}{17}}$.17.【答案】解:如图所示,【考点】直线、射线、线段作图—几何作图【解析】根据直线、射线、线段的定义作图即可得.【解答】解:如图所示,18.【答案】解:${(1)}$由题意,得${6-x=2(2+7x)}$,解得${x=\dfrac{2}{15}}$.${(2)}$由题意,得${\left(6-x\right)-(2+7x)=3}$,解得${x=\dfrac{1}{8}}$.【考点】解一元一次方程列代数式由实际问题抽象出一元一次方程【解析】无无【解答】解:${(1)}$由题意,得${6-x=2(2+7x)}$,解得${x=\dfrac{2}{15}}$.${(2)}$由题意,得${\left(6-x\right)-(2+7x)=3}$,解得${x=\dfrac{1}{8}}$.19.【答案】解:${(1)}$${2A-B=2(x^2+3xy-12)-(2x^2-xy+y)}$${=2x^2+6xy-24-2x^2+xy-y}$${=7xy-y-24}$,当${x=y=-2}$时,原式${=28+2-24=6}$.${(2)}$由${(1)}$知,${2A-B=(7x-1)y-24}$,若${2A-B}$的值与${y}$的取值无关,则${7x-1=0}$,${x=\dfrac{1}{7}}$.【考点】整式的加减——化简求值整式的加减【解析】先化简多项式,再代入求值;合并含${y}$的项,因为${2A-B}$的值与${y}$的取值无关,所以${y}$的系数为${0}$.【解答】解:${(1)}$${2A-B=2(x^2+3xy-12)-(2x^2-xy+y)}$${=2x^2+6xy-24-2x^2+xy-y}$${=7xy-y-24}$,当${x=y=-2}$时,原式${=28+2-24=6}$.${(2)}$由${(1)}$知,${2A-B=(7x-1)y-24}$,若${2A-B}$的值与${y}$的取值无关,则${7x-1=0}$,${x=\dfrac{1}{7}}$.20.【答案】②${(2)}$方程${ 3x= b }$的解为${ x= \dfrac{b}{3} }$,∵关于${x}$的一元一次方程${ 3x= b }$是“友好方程”,∴${ \dfrac{b}{3}= b+ 3 }$,解得${ b= -\dfrac{9}{2}}$.${(3)}$∵方程${ -2x= mn+ n(n\ne 0) }$是“友好方程”,且它的解为${ x= n }$,∴${ n= mn+ n-2 }$,${ mn= 2 }$,解方程${ -2x= mn+ n(n\ne 0) }$,解得${ x= -\dfrac{mn+ n}{2} }$,即${ n= -\dfrac{mn+ n}{2} }$,整理得${ -2n= mn+ n }$,解得${ m= -3}$.由${ mn= 2 }$得${ n= -\dfrac{2}{3} }$,∴${ m= -3 }$,${ n= -\dfrac{2}{3}}$.【考点】一元一次方程的解解一元一次方程【解析】(${1}$)求出方程的解,依次进行判断即可;(${2}$)求出方程的解${x=\dfrac{b}{3}}$,根据“友好方程”的定义,得到${\dfrac{b}{3}=b+3}$即可求出占的值;(${3}$)根据“友好方程”的定义以及解为${x=n}$,得到${n= \rm mm +n-2}$,解方程${-2x=mn+n\left(n\ne 0\right)}$,得到${x=-\dfrac{m+n}{2}}$,即${n=-\dfrac{mn+}{2}}$,通过上面两个式子整理化简即可求出${m}$和${n}$的值.【解答】解:${(1)}$①方程${-2x=4}$的解为${x=-2}$,而${-2\ne 4-2}$,因此方程${-2x=4}$不是“友好方程”;②方程${3x=-4.5}$的解为${x=-1.5}$,而${-1.5=-4.5+3}$,因此方程${3x=-4.5}$是“友好方程”;③方程${\dfrac{1}{2}x=-1}$的解为${x=-2}$,而${-2\ne -1+\dfrac{1}{2}}$,因此方程${\dfrac{1} {2}x=-1}$不是“友好方程”.故答案为:②.${(2)}$方程${ 3x= b }$的解为${ x= \dfrac{b}{3} }$,∵关于${x}$的一元一次方程${ 3x= b }$是“友好方程”,∴${ \dfrac{b}{3}= b+ 3 }$,解得${ b= -\dfrac{9}{2}}$.${(3)}$∵方程${ -2x= mn+ n(n\ne 0) }$是“友好方程”,且它的解为${ x= n }$,∴${ n= mn+ n-2 }$,${ mn= 2 }$,解方程${ -2x= mn+ n(n\ne 0) }$,解得${ x= -\dfrac{mn+ n}{2} }$,即${ n= -\dfrac{mn+ n}{2} }$,整理得${ -2n= mn+ n }$,解得${ m= -3}$.由${ mn= 2 }$得${ n= -\dfrac{2}{3} }$,∴${ m= -3 }$,${ n= -\dfrac{2}{3}}$.21.【答案】②${\times 2}$得:${2x+ 3y}$=${26}$③,③-①得:${5y}$=${10}$,解得:${y}$=${2}$,把${y}$=${4}$代入②得:${x+ 8}$=${13}$,解得:${x}$=${5}$,方程组的解为.【考点】二元一次方程组的解加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:${(1)}$观察已知算式可知:${ - \dfrac{1}{n} \times \dfrac{1}{n + 1} = - \dfrac{1}{n} + \dfrac{1}{n + 1}}$.${(2)}$根据发现的规律可得:原式${=-1 + \dfrac{1}{2} - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{3} + \dfrac{1}{4} + \cdots }$ ${+ ( - \dfrac{1}{2018}) + \dfrac{1}{2019} - \dfrac{1}{2019} + \dfrac{1}{2020}}$${=-1 + \dfrac{1}{2020}}$${ = - \dfrac{2019}{2020}}$.【考点】规律型:数字的变化类有理数的混合运算【解析】(1)根据已知三个等式的规律即可得一般表达式;(2)根据(1)中得到的一般式进行有理数的混合运算即可求解.【解答】解:${(1)}$观察已知算式可知:${ - \dfrac{1}{n} \times \dfrac{1}{n + 1} = - \dfrac{1}{n} + \dfrac{1}{n + 1}}$.${(2)}$根据发现的规律可得:原式${=-1 + \dfrac{1}{2} - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{3} + \dfrac{1}{4} + \cdots }$ ${+ ( - \dfrac{1}{2018}) + \dfrac{1}{2019} - \dfrac{1}{2019} + \dfrac{1}{2020}}$${=-1 + \dfrac{1}{2020}}$${ = - \dfrac{2019}{2020}}$.23.【答案】解:${(1)}$设每名熟练工和新工人每月分别可以安装${x}$、${y}$辆电动汽车.根据题意,得${\left\{ {\begin{matrix} {x+ 2y= 8}, \\ {2x+ 3y= 14}, \end{matrix}} \right.}$解得${\left\{ {\begin{matrix} {x= 4} ,\\ {y= 2} .\end{matrix}} \right.}$答:每名熟练工和新工人每月分别可以安装${4}$辆,${2}$辆电动汽车.${(2)}$设工厂有${a}$名熟练工.根据题意,得${12(4a+ 2n)= 240}$,则${2a+ n= 10}$,移项得${n= 10-2a}$,又∵${a}$,${n}$都是正整数,${0\lt n\lt 10}$,∴${n= 8}$,${6}$,${4}$,${2}$.即工厂有${4}$种新工人的招聘方案.①${n= 8}$,${a= 1}$,即新工人${8}$人,熟练工${1}$人;②${n= 6}$,${a= 2}$,即新工人${6}$人,熟练工${2}$人;③${n= 4}$,${a= 3}$,即新工人${4}$人,熟练工${3}$人;④${n= 2}$,${a= 4}$,即新工人${2}$人,熟练工${4}$人.${(3)}$结合${(2)}$知:要使新工人的数量多于熟练工,则${n= 8}$,${a= 1}$;或${n= 6}$,${a= 2}$;或${n= 4}$,${a= 3}$.根据题意,得:${W=4000a+2400(10-2a)=24000-800a}$要使工厂每月支出的工资总额${W}$(元)尽可能地少,则${a}$应最大.显然当${n= 4}$,${a= 3}$时,工厂每月支出的工资总额${W}$(元)尽可能地少,故应招聘${4}$名新员工.【考点】二元一次方程组的应用——产品配套问题由实际问题抽象出二元一次方程【解析】(1)设每名熟练工和新工人每月分别可以安装${x}$、${y}$辆电动汽车.根据“${1}$名熟练工和${2}$名新工人每月可安装${8}$辆电动汽车”和“${2}$名熟练工和${3}$名新工人每月可安装${14}$辆电动汽车”列方程组求解.${(2)}$设工厂有${a}$名熟练工.根据新工人和抽调的熟练工刚好能完成一年的安装任务,根据${a}$,${n}$都是正整数和${0\lt n\lt 10}$,进行分析${n}$的值的情况;(3)建立函数关系式,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额${W}$(元)尽可能地少,两个条件进行分析.【解答】解:${(1)}$设每名熟练工和新工人每月分别可以安装${x}$、${y}$辆电动汽车.根据题意,得${\left\{ {\begin{matrix} {x+ 2y= 8}, \\ {2x+ 3y= 14}, \end{matrix}} \right.}$解得${\left\{ {\begin{matrix} {x= 4} ,\\ {y= 2} .\end{matrix}} \right.}$答:每名熟练工和新工人每月分别可以安装${4}$辆,${2}$辆电动汽车.${(2)}$设工厂有${a}$名熟练工.根据题意,得${12(4a+ 2n)= 240}$,则${2a+ n= 10}$,移项得${n= 10-2a}$,又∵${a}$,${n}$都是正整数,${0\lt n\lt 10}$,∴${n= 8}$,${6}$,${4}$,${2}$.即工厂有${4}$种新工人的招聘方案.①${n= 8}$,${a= 1}$,即新工人${8}$人,熟练工${1}$人;②${n= 6}$,${a= 2}$,即新工人${6}$人,熟练工${2}$人;③${n= 4}$,${a= 3}$,即新工人${4}$人,熟练工${3}$人;④${n= 2}$,${a= 4}$,即新工人${2}$人,熟练工${4}$人.${(3)}$结合${(2)}$知:要使新工人的数量多于熟练工,则${n= 8}$,${a= 1}$;或${n= 6}$,${a= 2}$;或${n= 4}$,${a= 3}$.根据题意,得:${W=4000a+2400(10-2a)=24000-800a}$要使工厂每月支出的工资总额${W}$(元)尽可能地少,则${a}$应最大.显然当${n= 4}$,${a= 3}$时,工厂每月支出的工资总额${W}$(元)尽可能地少,故应招聘${4}$名新员工.。
七年级数学下册月考试卷及答案七年级数学月考考试就快到了,祝你数学月考考试顺利。
绽在心头芬芳绕,合家共同甜蜜笑。
以下是小编给你推荐的七年级数学下册月考试卷及参考答案,希望对你有帮助!七年级数学下册月考试卷一、选择(本题共10小题,每题3分,共30分)1.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣112.下列计算正确的是( )A.a3+a2=a5B.a3•a2=a5C.(a3)2=a9D.a3﹣a2=a3.化简(a2)3的结果为( )A.a5B.a6C.a8D.a94.x﹣(2x﹣y)的运算结果是( )A.﹣x+yB.﹣x﹣yC.x﹣yD.3x﹣y5.下列各式中不能用平方差公式计算的是( )A.(﹣x+y)(﹣x﹣y)B.(a﹣2b)(2b﹣a)C.(a﹣b)(a+b)(a2+b2)D.(a ﹣b+c)(a+b﹣c)7.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°二、填空:(本题共8小题,每题3分,共24分)11.一个角和它的补角相等,这个角是角.13.计算:(a+b)2+ =(a﹣b)2.14.一个多项式除以3xy商为9x2y﹣ xy,则这个多项式是.15.边长为a厘米的正方形的边长减少3厘米,其面积减少.16.若a+b=5,ab=5,则a2+b2 .17.已知a+ = ,则a2+ = .三、计算题(19-22每题3分、23题6分,共18分)19.计算:(3x+9)(6x﹣8).20.计算:(a3b5﹣3a2b2+2a4b3)÷(﹣ ab)2.21.(x+2)2﹣(x+1)(x﹣1)22.计算:1652﹣164×166(用公式计算).23.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣ .七年级数学下册月考试卷答案一、选择(本题共10小题,每题3分,共30分)1.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣11【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列计算正确的是( )A.a3+a2=a5B.a3•a2=a5C.(a3)2=a9D.a3﹣a2=a【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】根据同底数幂乘法、幂的乘方的运算法则进行计算,然后利用排除法求解.【解答】解:A、a3与a2不是同类项,不能合并,故本选项错误;B、a3•a2=a3+2=a5,正确;C、应为(a3)2=a6,故本选项错误;D、应为a3﹣a2=a2(a﹣1),故本选项错误;故选B.【点评】本题考查了合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算法则是解题的关键,不是同类项的一定不能合并.3.化简(a2)3的结果为( )A.a5B.a6C.a8D.a9【考点】幂的乘方与积的乘方.【分析】利用幂的乘方法则:底数不变,指数相乘.(am)n=amn(m,n是正整数),求出即可.【解答】解:(a2)3=a6.故选:B.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.4.x﹣(2x﹣y)的运算结果是( )A.﹣x+yB.﹣x﹣yC.x﹣yD.3x﹣y【考点】整式的加减.【分析】此题考查了去括号法则,括号前面是负号时,去括号后括号里的各项都变号,再合并同类项.【解答】解:x﹣(2x﹣y)=x﹣2x+y=﹣x+y.故选A.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.5.下列各式中不能用平方差公式计算的是( )A.(﹣x+y)(﹣x﹣y)B.(a﹣2b)(2b﹣a)C.(a﹣b)(a+b)(a2+b2)D.(a﹣b+c)(a+b﹣c)【考点】平方差公式.【专题】计算题;整式.【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中不能用平方差公式计算的是(a﹣2b)(2b ﹣a),故选B【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°【考点】平行线的性质.【专题】应用题.【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同位角,故选:B.【点评】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.二、填空:(本题共8小题,每题3分,共24分)11.一个角和它的补角相等,这个角是直角.【考点】余角和补角.【分析】根据补角的定义进行计算即可.【解答】解:设这个角为x,则x+x=180°,所以x=90°,故答案为:直.【点评】本题考查了余角和补角,掌握它们的性质是解题的关键.13.计算:(a+b)2+ (﹣4ab) =(a﹣b)2.【考点】完全平方公式.【专题】计算题.【分析】利用完全平方公式的特征判断即可得到结果.【解答】解:∵(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,∴(a+b)2+(﹣4ab)=(a﹣b)2.故答案为:(﹣4ab)【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.14.一个多项式除以3xy商为9x2y﹣xy,则这个多项式是27x3y2﹣x2y2 .【考点】整式的除法.【专题】计算题.【分析】根据被除数等于除数乘以商,即可求出结果.【解答】解:根据题意得:3xy(9x2y﹣ xy)=27x3y2﹣x2y2.故答案为:27x3y2﹣x2y2.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.15.边长为a厘米的正方形的边长减少3厘米,其面积减少4a .【考点】平方差公式.【分析】分别计算出两种边长下正方形的面积,继而可得出答案.【解答】解:边长为a厘米的正方形的面积为:a2;边长为(a﹣2)厘米的正方形的面积为:(a﹣2)2,则面积减小=a2﹣(a﹣2)2=(a+a﹣2)(a﹣a+2)=4a.故答案为:4a.【点评】本题考查了平方差公式的知识,掌握平方差公式的形式是关键.16.若a+b=5,ab=5,则a2+b2 15 .【考点】完全平方公式.【分析】根据a2+b2=(a+b)2﹣2ab来计算即可.【解答】解:∵a+b=5,ab=5,∴a2+b2=(a2+b2+2ab)﹣2ab,=(a+b)2﹣2ab,=52﹣2×5,=15.故答案为:15.【点评】本题考查对完全平方公式的理解掌握情况,对式子的合理变形会使运算更加简便,解题时,常用到a2+b2=(a+b)2﹣2ab=(a ﹣b)2+2ab的变化,结合已知去计算.17.已知a+ = ,则a2+ = 1 .【考点】完全平方公式.【专题】计算题.【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+ = ,∴a2+ =(a+ )2﹣2=3﹣2=1,故答案为:1【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.三、计算题(19-22每题3分、23题6分,共18分)19.计算:(3x+9)(6x﹣8).【考点】多项式乘多项式.【分析】根据多项式乘以多项式法则即可求出答案.【解答】解:原式=18x2﹣24x+54x﹣72=18x2+30x﹣72;【点评】本题考查多项式乘以多项式法则,属于基础题型.20.计算:(a3b5﹣3a2b2+2a4b3)÷(﹣ ab)2.【考点】整式的除法;幂的乘方与积的乘方.【专题】常规题型.【分析】先算乘方,再算乘除.【解答】解:原式=:(a3b5﹣3a2b2+2a4b3)÷ a2b2=4ab3﹣12+8a2b.【点评】本题考查了积的乘方和多项式除以单项式,掌握运算顺序,理解多项式除以单项式法则,是解决本题的关键.多项式除以单项式,一般多项式几项,相除后的结果是几项.21.(x+2)2﹣(x+1)(x﹣1)【考点】完全平方公式;平方差公式.【专题】计算题.【分析】利用完全平方公式与平方差公式展开,然后再合并同类项即可.【解答】解:(x+2)2﹣(x+1)(x﹣1)=x2+4x+4﹣x2+1=4x+5.故答案为:4x+5.【点评】本题考查了完全平方公式与平方差公式,熟记公式结构是解题的关键.22.计算:1652﹣164×166(用公式计算).【考点】平方差公式.【分析】先把原式变形为1652﹣(165﹣1)(165+1),再用平方差公式进行计算即可.【解答】解:原式=1652﹣(165﹣1)(165+1)=1652﹣1652+1=1.【点评】本题考查了平方差公式,掌握平方差公式是解题的关键.23.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣ .【考点】整式的混合运算—化简求值.【专题】计算题;压轴题.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式= =﹣3﹣5=﹣8.【点评】此题主要考查了整式的化简求值,解题的关键是利用整式的乘法法则及平方差公式、完全平方公式化简代数式.。
2022-2023学年初中七年级下数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列各数中,是无理数的是( )A.B.C.D.2. 下列各式中,是关于,的二元一次方程的是 A.B.C.D.3. 如图,已知“车”的坐标为,“马”的坐标为,则“炮”的坐标为( )A.B.−23–√227x y ()3x +yx −5y =122xy +y −3=0−y =15x (−2,3)(1,3)(3,2)(3,1)(2,2)C. D.4. 若,则下列各式正确的是( )A.B.C.D.5. 如图,下列各点在阴影区域内的是( )A.B.C.D.6. 如图,把一块含的直角三角板的两个顶点放在直尺的对边上,如果,则的度数是( )A.B.C.D.(2,2)(−2,2)m >n 2m −2n <0m −3>n −3−3m >−3n<m 2n 2(3,2)(−3,2)(3,−2)(−3,−2)45∘∠1=20∘∠215∘20∘25∘30∘b a//b b//c7. 数学小组的同学探究同一平面内三条直线,,的位置关系.甲同学说:若,,则;乙同学说:若,,则.则甲、乙两同学的说法是( )A.甲、乙的说法都正确B.甲、乙的说法都不正确C.甲的说法正确,乙的说法错误D.甲的说法错误,乙的说法正确8. 为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户只;若每户发放母羊只,则多出只母羊,若每户发放母羊只,则有一户可分得母羊但不足只.这批种羊共( )只.A.B.C.D.9. 《九章算术》是我国古代第一部数学专著,其中有这样一道名题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几步及之?”意思是说:走路快的人走步的时候,走路慢的才走了步,走路慢的人先走步,然后走路快的人去追赶,问走路快的人要走多少部才能追上?若设走路快的人要走步才能追上走路慢的人,此时走路慢的人又走了步,根据题意可列方程组为( )A.B.C.D.10. 两个数和在数轴上从左到右排列,那么关于的不等式的解集是( )A.B.C.a b c a//b b//c a//c a ⊥b b ⊥c a ⊥c 1517735572838910060100x y {=x 100y 60x −y =100{=x 60y 100x −y =100{=x 100y 60x +y =100{=x 60y 100x +y =1002−m −1x (2−m)x +2>m x >−1x <−1x >1D.卷II (非选择题)二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 比较大小:________(填“”或“”).12. 如图,已知,,则________.13. 若关于的不等式的解集是,则________.14. 在平面直角坐标系中,已知点,轴,且,则满足条件的点的坐标为________.15. 当________,________时,方程组和有相同的解.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.解方程组: 解不等式,并把不等式的解集在数轴上表示出来. 17. 阅读材料:基本不等式,当且仅当时,等号成立.其中我们把叫做正数、的算术平均数, 叫做正数、的几何平均数,它是解决最大(小)值问题的有力工具.例如:在的条件下,当为何值时, 有最小值,最小值是多少?解:∵,∴,∴ ,即是,∴.当且仅当即时, 有最小值,最小值为.请根据阅读材料解答下列问题:x <1−33–√−27–√<>∠1=∠2=40∘∠3=80∘∠ACB =x 3−x >a x <4a =A(3,0)PA //y PA =4P m =n ={x +2y =n ,4x −y =8{5x +3y =2,3x −4y =m(1){x +y =1,3x −y =3;(2)≤x −227−x 3≤(a >0,b >0)ab −−√a +b 2a =b a +b 2a b ab −−√a b x >0αx +1x x >0>01x x +≥12x ⋅1x −−−−√x +≥21x x ⋅1x −−−−√x +≥21x x =1x x =1x +1x 2=2x +1若,函数,当为何值时,函数有最值,并求出其最值.当时,式子成立吗?请说明理由.18. 关于,的二元一次方程的两个解为和,求,的值. 19. 三角形与三角形在平面直角坐标系中的位置如图所示,三角形是由三角形经过平移得到的.分别写出点的坐标;说明三角形是由三角形经过怎样的平移得到的?若点是三角形内的一点,则平移后三角形内的对应点为写出点的坐标.20. 将下列各数填入相应的集合内.,,,,,,,,①正有理数集合: ;②无理数集合: ;③实数集合: .21. 小红和小凤两人在解关于的方程组时,小红只因看错了系数,得到方程组的解为小凤只因看错了系数,得到方程组的解为 求,的值和原方程组的解. 22. 为落实“实物扶贫”的决策,某地政府为贫困户购置一批生产资料和生活资料.已知购置吨生产资料和吨生活资料共需万元,购置吨生产资料和吨生活资料共需万元,求购置吨生产资料和吨生活资料各需多少万元?23. 一个四边形的纸片,其中,把纸片按如图所示折叠,点落在边上的点,是折痕.(1)x >0y =2x +1xx (2)x >0+1+≥2x 21+1x 2x y y =kx +b {x =3y =7{x =2y =5k b ABC A ′B ′C ′A ′B ′C ′ABC (1),,A ′B ′C ′(2)A ′B ′C ′ABC (3)P(a ,b)ABC A ′B ′C ′P ′P ′−70.321208–√12−−√−64−−√3π0.303003...{}{}{}x ,y {ax +3y =5,bx +2y =8a {x =−1,y =2,b {x =1,y =4,a b 23 2.141 1.711ABCD ∠B =∠D =90∘B AD E AF (1)EF //DC求证:;如果,求的度数.(1)EF //DC (2)∠AFB =70∘∠C参考答案与试题解析2022-2023学年初中七年级下数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】B【考点】无理数的判定【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数常见的三种类型:开不尽的方根,如等;特定结构的无限不循环小数,如(两个之间依次多一个);含有的绝大部分数,如.,,是有理数,是无理数.故选.2.【答案】B【考点】二元一次方程的定义【解析】根据二元一次方程的定义求解即可.【解答】解:、是多项式,故不符合题意;、是二元一次方程,故符合题意;、是二元二次方程,故不符合题意;、是分式方程,故不符合题意;(1)7–√(2) 2.010010001…10(3)π1π−222703–√B A A B B C C D D故选.3.【答案】A【考点】位置的确定【解析】根据“车”的位置,向右个单位,向下个单位确定出坐标原点,建立平面直角坐标系,然后写出“炮”的坐标即可.【解答】解:∵“车”的坐标为,“马”的坐标为,∴建立平面直角坐标系如图,∴“炮”的坐标为.故选.4.【答案】B【考点】不等式的性质【解析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】、两边都乘以,不等号的方向不变,故不符合题意;、两边都减,不等号的方向不变,故符合题意;、两边都乘以,不等号的方向改变,故不符合题意;、两边都除以,不等号的方向不变,故不符合题意;故选:.5.B 23(−2,3)(1,3)(3,2)A A 2A B 3BC −3CD 2D BA【考点】点的坐标【解析】先判断出阴影区域在第一象限,且长宽为的矩形,进而判断在阴影区域内的点.【解答】解:观察图形可知:阴影区域在第一象限,是长宽为的正方形,、在第一象限,且,,所以点在阴影区域内,故正确;、在第二象限,故错误;、在第四象限,故错误;、在第三象限,故错误.故选.6.【答案】C【考点】平行线的性质【解析】【解答】解:根据题意可知,两直线平行,内错角相等,∴,∵,∴.∵,∴.故选.7.【答案】C44A (3,2)3<42<4(3,2)B (−3,2)C (3,−2)D (−3,−2)A ∠1=∠3∠3+∠2=45∘∠1+∠2=45∘∠1=20∘∠2=25∘C平行线的判定与性质【解析】根据平行线的判定定理,逐一判定,即可.【解答】解:,,∴,则甲是说法正确;∵,,∴,则乙的说法错误.综上所述,甲的说法正确,乙的说法错误故选.8.【答案】C【考点】一元一次不等式组的应用【解析】设该村共有户,则母羊共有只,根据“每户发放母羊只时有一户可分得母羊但不足只”列出关于的不等式组,解之求得整数的值,再进一步计算可得.【解答】解:设该村共有户,则公羊共有只,母羊共有只,由题意知,解得:,∵为整数,∴,则这批种羊共有(只).故选.9.【答案】A【考点】由实际问题抽象出二元一次方程组【解析】∵a//b b//c a//c a ⊥b b ⊥c a//c C x (5x +17)73x x x x (5x +17){5x +17−7(x −1)>05x +17−7(x −1)<3<x <12212x x =1111+5×11+17=83C设设走路快的人要走步才能追上走路慢的人,此时走路慢的人又走了步,根据走路快的人走步的时候,走路慢的才走了步可得走路快的人与走路慢的人速度比为,利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程组,然后根据等式的性质变形即可求解.【解答】设走路快的人要走步才能追上走路慢的人,此时走路慢的人又走了步,根据题意,得.10.【答案】B【考点】解一元一次不等式数轴【解析】先根据题意判断出 ,即 ,再根据不等式的基本性质求解即可.【解答】解:由题意知.,,不等式两边同时除以,得,不等式的解集为.故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】实数大小比较【解析】求出,再根据实数的大小比较法则比较即可.【解答】x y 10060100:60x y { =x 100y 60x −y =1002−m <−12−m <02−m <−1∵(2−m)x +2>m ∴(2−m)x >m −22−m x <−1∴(2−m)x +2>m x <−1B >3=9–√−3=−3–√27−−√−2=−7–√28−−√解:∵,,∴,即.故答案为:.12.【答案】【考点】平行线的判定与性质对顶角【解析】先根据平行线的判定得出,再根据平行线的性质解答即可.【解答】解:∵ ,,∴,∴,∴,即.故答案为:.13.【答案】【考点】不等式的解集解一元一次不等式【解析】此题暂无解析【解答】解:∵,∴,∴,故.故答案为:.14.【答案】−3=−3–√27−−√−2=−7–√28−−√−>−27−−√28−−√−3>−23–√7–√>80∘a//b ∠1=∠2=40∘∠1=∠ABC =40∘∠2=∠ABC =40∘a//b ∠4=∠3=80∘∠ACB =80∘80∘−13−x >a x <3−a 3−a =4a =−1−1(3,4)(3,−4)或【考点】坐标与图形性质点的坐标【解析】根据平行于轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案.【解答】解:∵点,轴,且,∴在点上方的点坐标为,在点下方的点坐标为,∴满足条件的点的坐标为或.故答案为:或.15.【答案】,【考点】同解方程组二元一次方程组的解【解析】首先联立两个方程组不含、的两个方程求得方程组的解,然后代入两个方程组含、的两个方程从而得到一个关于,的方程组求解即可.【解答】解:解方程组得则有解得故答案为:;.(3,4)(3,−4)y A(3,0)PA //y PA =4A P (3,4)A P (3,−4)P (3,4)(3,−4)(3,4)(3,−4)20617−3817m n m n m n {4x −y =8,5x +3y =2, x =,2617y =−,3217 −2×=n ,261732173×+4×=m ,26173217 m =,20617n =−.381720617−3817三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:①②得,所以.把代人①得 ,所以原方程组的解为分式两边同时乘以,去分母得:,去括号得: ,移项、合并同类项得: ,系数化为得: ,所以不等式的解集为.其解集在数轴上表示为:【考点】加减消元法解二元一次方程组解一元一次不等式在数轴上表示不等式的解集【解析】(1)利用加减消元求出解即可.本题主要考查一元一次不等式及其解法.根据去分母,去括号,移项,合并同类项,系数化为等步骤解不等式.【解答】解:①②得,所以.把代人①得 ,所以原方程组的解为分式两边同时乘以,去分母得:,去括号得: ,移项、合并同类项得: ,系数化为得: ,所以不等式的解集为.其解集在数轴上表示为:(1){x +y =1,①3x −y =3.②+4x =4x =1x =1y =0{x =1,y =0.(2)63(x −2)≤2(7−x)3x −6≤14−2x 5x ≤201x ≤4x ≤41(1){x +y =1,①3x −y =3.②+4x =4x =1x =1y =0{x =1,y =0.(2)63(x −2)≤2(7−x)3x −6≤14−2x 5x ≤201x ≤4x ≤417.【答案】解:()∴∴ .,当且仅当时,即时,有最小值,最小值为.(2)式子不成立,理由如下:∵.,,即当且仅当时则有∴,∴∵ .∴∴ 不成立.【考点】两点间的距离绝对值数轴【解析】此题暂无解析【解答】解:()∴∴ .1x >02x >0,>01x 2x +≥21x 2x ⋅1x −−−−−√2x +≥21x 2–√2x =1x x =2–√2(2x +)1x 22–√+1+≥2x 21+1x 2x >0+1>0,>0x 21+1x 2+1+≥2x 21+1x 2(+1)⋅x 21+1x 2−−−−−−−−−−−−−√+1+≥2x 21+1x 2+1=x 21+1x 2+1=1x 2=0x 2x =0x >0x ≠0+1+≥2x 21+1x 21x >02x >0,>01x 2x +≥21x 2x ⋅1x−−−−−√x +≥21,当且仅当时,即时,有最小值,最小值为.(2)式子不成立,理由如下:∵.,,即当且仅当时则有∴,∴∵ .∴∴ 不成立.18.【答案】解:将 和 分别代入 得由①②得 ,把 代入①得 ,,,.【考点】二元一次方程组的解【解析】此题暂无解析【解答】解:将 和 分别代入 得由①②得 ,把 代入①得 ,,,.19.【答案】2x +≥21x 2–√2x =1x x =2–√2(2x +)1x 22–√+1+≥2x 21+1x 2x >0+1>0,>0x 21+1x 2+1+≥2x 21+1x 2(+1)⋅x 21+1x 2−−−−−−−−−−−−−√+1+≥2x 21+1x 2+1=x 21+1x 2+1=1x 2=0x 2x =0x >0x ≠0+1+≥2x 21+1x 2{x =3y =7{x =2y =5y =kx +b {3k +b =7,①2k +b =5,②−k =2k =23×2+b =7b =1∴k =2b =1{x =3y =7{x =2y =5y =kx +b {3k +b =7,①2k +b =5,②−k =2k =23×2+b =7b =1∴k =2b =1(1)(−3,1)A ′(−2,−2)B ′(−1,−1)C ′解:由图可知,,,;由图可知,,由到:横坐标,纵坐标,故由到向左平移个单位,向下平移个单位.经验证到,到符合上述规律,故向左平移个单位,向下平移个单位得到;三角形内的点满足中的规律,故点的坐标为.【考点】网格中点的坐标作图-平移变换平移的性质【解析】此题暂无解析【解答】解:由图可知,,,;由图可知,,由到:横坐标,纵坐标,故由到向左平移个单位,向下平移个单位.经验证到,到符合上述规律,故向左平移个单位,向下平移个单位得到;三角形内的点满足中的规律,故点的坐标为.20.【答案】解:①正有理数集合:;②无理数集合:,,,;③实数集合:.【考点】无理数的识别有理数的概念及分类实数正数和负数的识别【解析】(1)(−3,1)A ′(−2,−2)B ′(−1,−1)C ′(2)A(1,3),(−3,1)A ′A A ′1−(−3)=43−1=2A A ′42B B ′C C ′△ABC 42△A ′B ′C ′(3)ABC (2)P ′(a −4,b −2)(1)(−3,1)A ′(−2,−2)B ′(−1,−1)C ′(2)A(1,3),(−3,1)A ′A A ′1−(−3)=43−1=2A A ′42B B ′C C ′△ABC 42△A ′B ′C ′(3)ABC (2)P ′(a −4,b −2){0.32,}12{8–√12−−√π0.303003...}{−7,0.32,,0,,,−,π,0.303003...}128–√12−−√64−−√3根据实数的分类:实数分为有理数、无理数.或者实数分为正实数、、负实数.进行填空.【解答】解:①正有理数集合:;②无理数集合:,,,;③实数集合:.21.【答案】解:根据题意,不满足方程,但满足方程,代入此方程,得,解得,同理,将代入方程,得,解得.所以原方程组应为由方程②得,把 代入①得,解得,所以,所以原方程组的解是【考点】二元一次方程组的解代入消元法解二元一次方程组【解析】此题暂无解析【解答】解:根据题意,不满足方程,但满足方程,代入此方程,得,解得,同理,将代入方程,得,解得.0{0.32,}12{8–√12−−√π0.303003...}{−7,0.32,,0,,,−,π,0.303003...}128–√12−−√64−−√3{x =−1,y =2ax +3y =5bx +2y =8−b +4=8b =−4{x =1,y =4ax +3y =5a +12=5a =−7{−7x +3y =5①,−4x +2y =8②,−2x +y =4y =4+2x −7x +3(4+2x)=5x =7y =4+14=18{x =7,y =18.{x =−1,y =2ax +3y =5bx +2y =8−b +4=8b =−4{x =1,y =4ax +3y =5a +12=5a =−7−7x +3y =5①,所以原方程组应为由方程②得,把 代入①得,解得,所以,所以原方程组的解是22.【答案】解:设购置吨生产资料需万元,购置吨生活资料需万元,根据题意得解得答:购置吨生产资料需万元,购置吨生活资料需万元.【考点】二元一次方程组的应用——销售问题【解析】【解答】解:设购置吨生产资料需万元,购置吨生活资料需万元,根据题意得解得答:购置吨生产资料需万元,购置吨生活资料需万元.23.【答案】证明:由折叠得的性质可得,∵,∴.解:由折叠的性质可得,∵,∴.∵,∴.【考点】平行线的判定平行线的性质{−7x +3y =5①,−4x +2y =8②,−2x +y =4y =4+2x −7x +3(4+2x)=5x =7y =4+14=18{x =7,y =18.1x 1y {2x +3y =2.1,4x +y =1.7,{x =0.3,y =0.5,10.310.51x 1y {2x +3y =2.1,4x +y =1.7,{x =0.3,y =0.5,10.310.5(1)∠AEF =∠B =90∘∠D =90∘EF //CD (2)∠AFB =∠AFE ∠AFB =70∘∠BFE =×2=70∘140∘EF //DC ∠C =∠BFE =140∘【解析】此题暂无解析【解答】证明:由折叠得的性质可得,∵,∴.解:由折叠的性质可得,∵,∴.∵,∴.(1)∠AEF =∠B =90∘∠D =90∘EF //CD (2)∠AFB =∠AFE ∠AFB =70∘∠BFE =×2=70∘140∘EF //DC ∠C =∠BFE =140∘。
2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版2024七上第一章~第二章。
5.难度系数:0.8。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列说法中不正确的是( ).A .-3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .-2 000既是负数,也是整数,但不是有理数D .0是正数和负数的分界2.中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出100元记作100−元,那么80+元表示( ) A .支出80元B .收入80元C .支出20元D .收入20元3.在数轴上表示2−与8的点的距离是( ) A .6B .10C .10−D .15−4.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109B .0.21×109C .2.1×108D .21×1075.将()()()3652−−+−−+−写成省略括号和加号的形式是( )A .1B .1−C .10D .10−8.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,例如将2(101),2(1011)换算成十进制数应为: 2102(101)1202124015=×+×+×=++=;32102(1011)12021212802111=×+×+×+×=+++=.按此方式,将二进制2(1001)换算成十进制数的结果为( ) A .17B .9C .10D .189.下列说法中正确的个数有( ).①最大的负整数是1−;②相反数是本身的数是正数;③有理数分为正有理数和负有理数:④数轴上表示a −的点一定在原点的左边:⑤几个有理数相乘,负因数的个数是奇数个时,积为负数. A .1个B .2个C .3个D .4个abc19.(9分)上午八时,张、王两同学分别从A、B两地同时骑摩托车出发,相向而行.已知张同学每小时比王多行2千米,到上午十时,两人仍相距36千米的路程.相遇后,两人停车闲谈了15分钟,再同时按各自的方向和原来的速度继续前进,到中午十二时十五分,两人又相距36千米的路程.A、B两地间的路程有多少千米?20.(10分)操作与探索:请你自己画出数轴并表示有理数:52−,3.①大于3−并且小于3的整数有哪几个?②在数轴上表示到1−的点的距离等于2个单位长度的点表示的数是什么?21.(10分)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,222÷÷,()()()()3333−÷−÷−÷−等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”, ()()()()3333−÷−÷−÷−记作()3−④,读作:“()3−的圈4次方”.一般地,把n 个a 相除记作a ⓝ,读作“a 的圈n 次方”.22.(12分)递等式计算,能简便计算的要简便计算:×,请在下面长方形内写出相应的算式.请你按照小布的方法计算2.4 2.1有理数x的点与表示6的点之间的距离.这种数形结合的方法,可以用来解决一些问题.如图,已知数之间的距离PA=________(用含2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+−B. 1)3+C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− .根据上述方法,计算:151176061512 −÷−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4−【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( )A. 11()23+−B. 1)3+C. 11()23−−D. 1123 −+ 【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+− 36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511711660461512 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
2022-2023学年初中七年级上数学月考试卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:130 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列各数中属于负数的是( )A.B.C.D.2. 下列判断正确的是( )A.与是同类项B.和都是单项式C.单项式的次数是,系数是D.是三次三项式3. 如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是( )A.遇B.见C.未D.来4. 有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;|−3|−5−(−2)143b a 2ba 2a m +n2−y x 33−13x −2+2y 2③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④5. 若,则的值为( )A.B.C.D.6. 下列运用等式的性质进行的变形,不正确的是( )A.若,则B.若,则C.若,则D.若,则7. 李老师用长为的铁丝做了一个长方形教具,其中一边长为,则其邻边长为( )A.B.C.D.8. 如图,已知=,=,==.下列判断:①射线是的角平分线;②的补角是;③的余角只有;④的余角有和;⑤=.其中正确的有( )A B AB |m −3|+(n +1=0)2m +n −4−224x =t x −5=t −5a =b ac =bcx =y x +a =y +ax =y =x a y a6a b −a 7a −b2a −b4a −b8a −2b∠1∠2∠3∠4∠BOD ∠AOB 90∘OF ∠BOE ∠DOE ∠BOC ∠AOC ∠COD ∠DOE ∠BOE ∠COD ∠COD ∠BOEA.个B.个C.个D.个9.已知,,的位置如图,化简的结果为( )A.B.C.D.10. 小明和小亮两人在长为的直道(,为直道两端点)上进行匀速往返跑训练,两人同时从点起跑,到达点后,立即转身跑向点,到达点后,又立即转身跑向点……若小明跑步的速度为,小亮跑步的速度为,则起跑后内,两人相遇的次数为 A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )11. 回顾年,人民生活继续改善,我国城乡居民生活水平有新的提高,农村贫困人口减少万,其中数据万用科学记数法表示为________.12. 一个角的余角比它的补角的还少,则这个角是________.13. 已知方程是一元一次方程,则________,________.14. 某品牌乒乓球的标准质量为克,误差为克,若从符合要求的乒乓球中随机取出两个,则这两个乒乓球的质量最多相差________克.5432a b c |a|+|b|−|a +b|−|b −c|−2a +b −c3b −cb +c2a +b +c50m AB A B A B A A B 5m/s 4m/s 60s ()34562018136813682340∘(a −2)=1x |a|−1a =x =2.70±0.033−4x 23+4x +1215. 已知一个多项式与的和等于,则此多项式是________.16. 我市对城区某主干道的一侧进行绿化,要求路的两端各栽一棵树苗,并且两棵树的间隔相等,如果每隔米栽棵,则缺树苗棵;如果每隔米栽棵,则树苗多出棵.问有树苗________棵.17. 保护和管理好湿地,对于维护一个城市生态平衡具有十分重要的意义.年北京计划恢复湿地和计划新增湿地的面积共公顷,其中计划恢复湿地面积比计划新增湿地面积的倍多公顷,则计划恢复的湿地面积为________公顷.18. 如图,中,是上一点,且交于点,,若,则的长为________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )19. 计算:. 20. 解下列方程:(1)=(2)=(3)(4) 21. (1)化简:.(2)先化简再求值:,其中=. 22. 如图,点、、在同一条直线上,点为线段的中点,点为线段的中点.若线段,,求的长度;若,求的长度.23. 某粮储收购公司要把收购的吨小米运往、两所加工厂,已知该公司派出大、小两种货车共辆,载重量分别是吨辆和吨辆,恰好一次可以运完.如果运往加工厂的运费为大货车元辆,小货车元辆;运往加工厂的运费为大货车元辆,小货车元辆.求两种货车各有多少辆;3−4x x 23+4x +1x 241216114201822002400▱ABCD M BC AM BD N MA :MN =4:1CM =2BC (+(π−3.14+(−2)−(−112)−1)0)20195x +3−7x +94x −3(20−x)+40−1=3y −145y −763x +=3−x −122x −132−a 2(ab +)−8ab a 2−(y +3xy −4)+3(y −xy +2)x 2x 2|x −2|+(y +1)20A B C M AC N BC (1)AC =8BC =6MN (2)AB =a MN 240A B 2015/10/A 420/210/B 500/300/(1)(2)A A如果安排辆货车前往加工厂,剩下的货车前往加工厂,那么当前往加工厂的大货车有多少辆时,总运费为元.24. 如图,是直线上一点,为任一条射线,平分,平分.图中的邻补角为________,的邻补角为________;如果,那么________,如果,那么________;试猜想与具有怎样的数量关系,并说明理由.25. 某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成.图表示此人行道的地砖排列方式.其中正方形地砖为连续排列.【观察思考】当正方形地砖只有块时,等腰直角三角形地砖有块(如图);当正方形地砖有块时,等腰直角三角形地砖有块(如图);以此类推【规律总结】若人行道上每增加块正方形地砖、则等腰直角三角形地砖增加________块;若一条这样的人行道一共有(为正整数)块正方形地砖,则等腰直角三角形地砖的块数为________(用含的代数式表示)【问题解决】现有块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块? 26. 国庆节期间,甲、乙两商场以同样价格出售相同的商品,并且各自推出不同的优惠方案:在甲商场累计购物超过元后,超出部分打八折;在乙商场累计购物超过元后,超出部分打九折购买多少元商品时(大于元),两个商场的实际花费相同?小李要购买元的商品,选哪个商场购物实际花费会少些?(2)10A B A 6750O AB OC OD ∠AOC OE ∠BOC (1)∠BOD ∠AOE (2)∠COD =25∘∠BOE =∠COD =60∘∠BOE =(3)∠COD ∠BOE 1162283(1)1(2)n n n (3)2021200100.(1)200(2)350参考答案与试题解析2022-2023学年初中七年级上数学月考试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】B【考点】正数和负数的识别【解析】根据正负数的定义便可直接解答,即大于的数为正数,小于的数为负数,既不是正数也不是负数.【解答】解:.是正数,故错误;.是负数,故正确;.是正数,故错误;.是正数,故错误.故选.2.【答案】A【考点】多项式的项与次数单项式的系数与次数同类项的概念【解析】此题暂无解析【解答】解:,与是同类项,故正确;,是单项式,是多项式,故错误;000A |−3|=3A B −5B C −(−2)=2C D 14D B A 3b a 2ba 2A B a m +n 2B −y 3,单项式的系数是,次数是,故错误;,是二次三项式,故错误.故选.3.【答案】D【考点】几何体的展开图【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】正方体的表面展开图,相对的面之间一定相隔一个正方形,“遇”与“的”是相对面,“见”与“未”是相对面,“你”与“来”是相对面.4.【答案】C【考点】线段的性质:两点之间线段最短【解析】由题意,认真分析题干,用数学知识解释生活中的现象.【解答】解:①③现象可以用两点可以确定一条直线来解释;②④现象可以用两点之间,线段最短来解释.故选.5.【答案】C【考点】非负数的性质:偶次方非负数的性质:绝对值2C −y x 3−14CD 3x −2+2y 2D A C【解析】根据,可得:,,据此求出、的值是多少,即可求出的值为多少.【解答】解:因为,所以,,解得,,所以.故选.6.【答案】D【考点】等式的性质【解析】此题暂无解析【解答】解:当,时,,故选.7.【答案】C【考点】整式的加减【解析】求出邻边之和,即可解决问题;【解答】解:另一边长.故选.8.【答案】|m −3|+(n +2=0)2m −3=0n +2=0m n m +2n |m −3|+(n +1=0)2m −3=0n +1=0m =3n =−1m +n =3+(−1)=3−1=2C a ≠0x =y =x a y a D =3a −(b −a)=3a −b +a =4a −b C余角和补角角平分线的定义【解析】根据角平分线的定义和余角与补角的定义即可得到结论.【解答】因为=,所以射线是的角平分线,故①说法正确;因为=,的补角是,所以的补角是,故②说法正确;因为=,=,所以=,故⑤住房正确,所以的余角有和,故③说法错误;所以的余角有和,故④说法正确;所以正确的有个.9.【答案】A【考点】绝对值数轴【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:,则,则.故选.10.【答案】∠1∠2OF ∠BOE ∠2∠4∠4∠BOC ∠DOE ∠BOC ∠8∠4∠BOD ∠COD ∠BOE ∠AOC ∠COD ∠BOE ∠DOE ∠BOE ∠COD 4a <0<b <c ,|a|<|b|<|c|a +b >0,b −c <0|a|+|b|−|a +b|−|b −c|=−a +b −(a +b)−(c −b)=−a +b −a −b −c +b =−2a +b −c A一元一次方程的应用——路程问题【解析】可设两人相遇的次数为,根据每次相遇的时间,总共时间为,列出方程求解即可.【解答】解:设两人相遇的次数为,依题意有,解得,为整数,取,故选.二、 填空题 (本题共计 8 小题 ,每题5 分 ,共计40分 )11.【答案】【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:万,故答案为:.12.【答案】x −50×25+460s x x =6050×25+4x =5.4∵x ∴x 5C 1.368×1071368=13680000=1.368×1071.368×10730∘【考点】余角和补角【解析】设这个角为,根据互补的角的两个角的和等于表示出它的补角,互余的两个角的和等于表示出它的余角,然后列方程求解即可.【解答】解:设这个角为,则它的补角为,它的余角为,由题意得,,解得.故答案为:.13.【答案】,【考点】一元一次方程的定义绝对值【解析】先根据一元一次方程的定义列出关于的不等式组,求出的值,进而可得出的值.【解答】解:∵方程是一元一次方程,∴,解得,∴原方程可化为,解得.故答案为:;.14.【答案】【考点】正数和负数的识别【解析】x 180∘90∘x −x 180∘−x 90∘(−x)−(−x)=23180∘90∘40∘x =30∘30∘−2−14a a x (a −2)=1x |a|−1{a −2≠0|a |−1=1a =−2−4x =1x =−14−2−140.06根据题意可以求得两只乒乓球的质量最多相差多少,本题得以解决.【解答】解:∵某品牌乒乓球的标准质量为克,误差为克,∴若从符合要求的乒乓球中随意取出两个,则这两个乒乓球的质量最多相差:(克).故答案为:.15.【答案】【考点】合并同类项整式的加减去括号与添括号【解析】根据和减去一个加数等于另一个加数列出算式,化简即可得到结果.【解答】解:根据题意,得.故答案为:.16.【答案】【考点】一元一次方程的应用——工程进度问题【解析】此题暂无解析【解答】此题暂无解答17.【答案】2.70±0.03(2.70+0.03)−(2.70−0.03)=0.060.068x +1(3+4x +1)−(3−4x)x 2x 2=3+4x +1−3+4x x 2x 2=8x +18x +11600一元一次方程的应用——面积问题【解析】设计划新增湿地公顷,则计划恢复湿地公顷,根据年北京计划恢复湿地和计划新增湿地的面积共公顷,即可得出关于的一元一次方程,解之即可得出结论.【解答】解:设计划新增湿地公顷,则计划恢复湿地公顷.根据题意,得:,解得:,∴,故恢复湿地的面积为公顷.故答案为:.18.【答案】【考点】线段的中点线段的和差【解析】此题暂无解析【解答】此题暂无解答三、 解答题 (本题共计 8 小题 ,每题5 分 ,共计40分 )19.【答案】解:原式.【考点】有理数的混合运算【解析】此题暂无解析x (2x +400)20182200x x (2x +400)x +2x +400=2200x =6002x +400=1600160016003=2+1+(−2)−(−1)=2解:原式.20.【答案】移项合并得:=,解得:=;去括号得:=,移项合并得:=,解得:=;去分母得:=,移项合并得:=,解得:=;去分母得:=,移项合并得:=,解得:.【考点】解一元一次方程【解析】(1)方程移项合并,把系数化为,即可求出解;(2)方程去括号,移项合并,把系数化为,即可求出解;(3)方程去分母,去括号,移项合并,把系数化为,即可求出解;(4)方程去分母,去括号,移项合并,把系数化为,即可求出解.【解答】移项合并得:=,解得:=;去括号得:=,移项合并得:=,解得:=;去分母得:=,移项合并得:=,解得:=;去分母得:=,移项合并得:=,解得:.21.【答案】(1).(2)=2+1+(−2)−(−1)=212x 6x 0.54x −60+3x +407x 56x 89y −3−1210y −14−y 1y −118x +3x −318−4x +225x 23x =2325x 1x 1x 1x 112x 6x 0.54x −60+3x +407x 56x 89y −3−1210y −14−y 1y −118x +3x −318−4x +225x 23x =2325−ab 32a 21722y −6xy +10,14x 2整式的加减——化简求值【解析】(1)按照整式加减的法则进行计算即可;(2)先化简,求出、值,代入即可.【解答】(1).,——,—,(2)(↗),,,.,,把,,代入,原式.22.【答案】解:因为点、分别是、的中点 ,,,所以,.所以.因为点、分别是、的中点,所以,.所以.【考点】线段的中点线段的和差【解析】此题暂无解析x y 2a −)(at2−(ab +a2)−−8ab =2a2−ab−a2−8ab 217ab 2−(Ay +3xy −4)+3y −xy +2=−∼y −3xy +4+3Ry −Bxy +6=2×y −6xy +10.=lkx −2]+(y +1)2=0x =2y =−1x =2y =−1=2×22∼(−1)−6×2×(−1)+10=14(1)M N AC BC AC =8BC =6CM =AC =412CN =BC =312MN =CM +CN =4+3=7(2)M N AC BC CM =AC 12CN =BC 12MN =CM +CN =AC +BC 1212=(AC +BC)12=AB =a 1212解:因为点、分别是、的中点 ,,,所以,.所以.因为点、分别是、的中点,所以,.所以.23.【答案】解:设大货车有辆,则小货车有()辆.根据题意,得,解得,.答:大货车有辆,则小货车有辆.设前往加工厂的大货车有辆.根据题意,得 ,解得 .答:当前往加工厂的大货车有辆时,总运费为元.【考点】一元一次方程的应用——路程问题【解析】(2)设前往加工厂的大货车有辆.根据题意,得 ,解得 .答:当前往加工厂的大货车有辆时,总运费为元.【解答】解:设大货车有辆,则小货车有()辆.根据题意,得,解得,.答:大货车有辆,则小货车有辆.设前往加工厂的大货车有辆.根据题意,得 ,解得 .答:当前往加工厂的大货车有辆时,总运费为元.24.(1)M N AC BC AC =8BC =6CM =AC =412CN =BC =312MN =CM +CN =4+3=7(2)M N AC BC CM =AC 12CN =BC 12MN =CM +CN =AC +BC1212=(AC +BC)12=AB =a 1212(1)x 20−x 15x +10×(20−x)=240x =820−x =20−8=12812(2)A a 420a +210(10−a)+500(8−a)+300[12−(10−a)]=6750a =5A 56750A a 420a +210(10−a)+500(8−a)+300[12−(10−−a)]=6750a =5A 56750(1)x 20−x 15x +10×(20−x)=240x =820−x =20−8=12812(2)A a 420a +210(10−a)+500(8−a)+300[12−(10−a)]=6750a =5A 56750,,,理由:由题意可得:.∴.【考点】邻补角角平分线的定义【解析】(1)直接利用邻补角的定义分析得出答案;(2)结合角平分线的定义利用已知分别得出各角度数即可;(3)利用角平分线的定义结合平角的定义分析得出答案.【解答】解:如图所示:的邻补角为:,的邻补角为:;故答案为:;.∵,∴,∴,∴,∵,∴,∴,∴,故答案为:;.,理由:由题意可得:∠AOD ∠BOE65∘30∘(3)∠COD +∠BOE =90∘∠COD +∠BOE =∠AOC +∠BOC 1212=(∠AOC +∠BOC)12=90∘∠COD +∠BOE =90∘(1)∠BOD ∠AOD ∠AOE ∠BOE ∠AOD ∠BOE (2)∠COD =25∘∠AOC =2×=25∘50∘∠BOC =130∘∠BOE =×=12130∘65∘∠COD =60∘∠AOC =120∘∠BOC =60∘∠BOE =∠BOC =1230∘65∘30∘(3)∠COD +∠BOE =90∘∠COD +∠BOE =∠AOC +∠BOC 1212(∠AOC +∠BOC)1.∴.25.【答案】令,则.当时,,此时,剩下一块等腰直角三角形地砖,所以需要正方形地砖块.【考点】规律型:图形的变化类【解析】此题暂无解析【解答】解:观察图可知,中间的每个正方形都对应了两个等腰直角三角形,所以每增加一块正方形地砖,等腰直角三角形地砖就增加块.故答案为:.由知,每增加块正方形地砖,就增加块等腰直角三角形地砖,所以正方形地砖为块时,等腰直角三角形地砖有块;正方形地砖为块时,等腰直角三角形地砖有块;正方形地砖为块时,等腰直角三角形地砖有块;正方形地砖为块时,等腰直角三角形地砖有块.故答案为:.令,则.当时,,此时,剩下一块等腰直角三角形地砖,所以需要正方形地砖块.26.【答案】解:设购买元商品时,两个商场的实际花费相同.由题意,得,解得.答:当购买元商品时,两个商场的实际花费相同.当小李购买元商品时,在甲商场实际花费为:(元),=(∠AOC +∠BOC)12=90∘∠COD +∠BOE =90∘22n +4(3)2n +4=2021n =1008.5n =10082n +4=20201008(1)122(2)(1)1211×2+4=622×2+4=833×2+4=10⋯n 2n +42n +4(3)2n +4=2021n =1008.5n =10082n +4=20201008(1)x 200+(x −200)×80%=100+(x −100)×90%x =300300(2)350200+(x −200)×80%=200+(350−200)×80%=320100+(x −100)×90%=100+(350−100)×90%=325在乙商场实际花费为:(元),,所以小李选甲商场购物实际花费会少些.【考点】一元一次方程的应用——其他问题一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设购买元商品时,两个商场的实际花费相同.由题意,得,解得.答:当购买元商品时,两个商场的实际花费相同.当小李购买元商品时,在甲商场实际花费为:(元),在乙商场实际花费为:(元),,所以小李选甲商场购物实际花费会少些.100+(x −100)×90%=100+(350−100)×90%=325320<325(1)x 200+(x −200)×80%=100+(x −100)×90%x =300300(2)350200+(x −200)×80%=200+(350−200)×80%=320100+(x −100)×90%=100+(350−100)×90%=325320<325。
xxxXXXXX 学校XXXX 年学年度第二学期第二次月考XXX 年级xx 班级姓名:_______________班级:_______________考号:_______________一、简答题(每空? 分,共?分)1、在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且(Ⅰ)求A 的大小;(Ⅱ)求的最大值.2、在中 ,角的对边分别为,且满足。
(Ⅰ)若求此三角形的面积;(Ⅱ)求的取值范围.3、已知锐角△ABC 的三个内角A ,B ,C的对边分别为a ,b ,c ,且(a 2+b2-c2)tan C =ab .(Ⅰ)求角C ;(Ⅱ)若c =,求2a -b 的取值范围.4、在中,内角对边的边长分别是,已知,.(1)若的面积等于,求;(2)若,求的面积.5、若数列的前项和满足.(1)求证:数列是等比数列;(2)设,求数列的前项和6、已知等差数列的公差为2,且,,成等比数列.(1)求数列的通项公式;(2)设数列的前项和为,求证:.7、在数列中,(1)设,求数列的通项公式(2)求数列的前项和8、已知数列{}满足=1,(1)证明是等比数列,并求{}的通项公式;(2)求数列{}的前n项和公式.9、已知正项数列满足: ,其中为数列的前项和.(1)求数列的通项公式;(2)设,求数列的前项和.10、在数列{a n}中,a1=2,a n+1=4a n-3n+1,n∈N*.(1)证明:数列{a n-n}是等比数列;(2)求数列{a n}的前n项和S n;(3)证明:不等式S n+1≤4S n对任意n∈N*皆成立.11、已知正项等比数列满足成等差数列,且(1)求数列的通项公式;(2)设,求数列的前n项和.12、为数列的前n项和. 已知(1)求的通项公式;(2)设,求数列的前n项和.13、已知数列满足.(1)判断数列是否为等差数列,并说明理由;(2)记为数列的前项和,求.14、已知公差不为的等差数列满足.若,,成等比数列.(1)求的通项公式;(2)设,求数列的前项和.15、已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.16、已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)≥2 019对于∀x∈[-2,2]恒成立,求a的取值范围.17、设函数f(x)=ln(2x+3)+x2.(1)讨论f(x)的单调性;(2)求f(x)在区间上的最大值和最小值.18、设函数,.(1)若曲线在点处的切线与直线垂直,求的单调递减区间和极值;(2)若对任意恒成立,求的取值范围.19、函数过点.(1)求函数的单调区间(2)求函数在区间上的最大值和最小值。
20、设函数.(Ⅰ)若曲线在点(1,)处的切线与轴平行,求;(Ⅱ)若在处取得极小值,求的取值范围.21、已知f(x)=lnx+a(1-x).(1)讨论f(x)的单调性.(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.22、已知函数f(x)=(x2+ax+a)e x(a≤2,x∈R)(1)当a=1时,求f(x)的单调区间.(2)是否存在实数a,使f(x)的极大值为3?若存在,求出a的值,若不存在,请说明理由.参考答案一、简答题1、解:故当B=30°时,sinB+sinC取得最大值1。
……12分2、解:由已知及正弦定理得,即,在中,由故,所以(Ⅰ)由,即得所以△的面积(Ⅱ)=又,∴,则.3、解:(Ⅰ)由余弦定理可得a2+b2-c2=2ab cos C,结合(a2+b2-c2)tan C=ab可得2cos C tan C=2sin C=,即sin C=.∵△ABC为锐角△,∴C=.……………………………6分(Ⅱ)由正弦定理可得2a-b=4sin A-2sin B.∵B=-A,∴2a-b=4sin A-2sin(-A)=3sin A-cos A=2sin(A-),∵△ABC为锐角△,∴A∈(,),∴A-∈(0,).故2a-b的取值范围为(0,3).……………………………12分4、解:(1)由余弦定理得,,(2分)又因为的面积等于,所以,得.( 4分)联立方程组解得, (6分)(2)由正弦定理,已知条件化为, (8分)联立方程组解得,. (10分)所以的面积. (12分)5、解:(1)当时,,计算得出,当时,根据题意得,,所以,即,即,数列是首项为-2,公比为2的等比数列(2)由(1)知,,,,则6、解:(1)数列为等差数列,所以:,,,因为,成等比数列,所以:,解得:,所以:.(2)已知,①②,①-②得:,所以:,由于,所以:,所以.7、解:13.(1)由已知有利用累差迭加即可求出数列的通项公式: ()(2)由(1)知,=而,又是一个典型的错位相减法模型,易得=8、(1)证明所以是一个以2为首项,以2为公比的等比数列(2)==9、解:(1)令,得,且,解得. …1分当时,,…………2分即,整理得,…………3分,,…………4分所以数列是首项为3,公差为2的等差数列,故. …………5分即…………6分(2)由(1)知:…………8分…………10分…………12分10、[解] (1)因为a n+1=4a n-3n+1,所以a n+1-(n+1)=4(a n-n),n∈N*.又a1-1=1,所以数列{a n-n}是首项为1,且公比为4的等比数列.(2)由(1)可知a n-n=4n-1,于是数列{a n}的通项公式为a n=4n-1+n.=-(3n2+n-4)≤0.所以不等式S n+1≤4S n对任意n∈N*皆成立.11、(1)设公比为q(q>0),因为,所以因为q>0,所以q=3;又因为成等差数列,所以解得所以数列的通项公式为(2)由题意(2)-(1)得,所以的前n项和为12、9.所以=;(Ⅱ)由(Ⅰ)知,=,所以数列{}前n项和为= =.13、【详解】(1)∵,∴,∴数列为公差为2的等差数列(2)∵,∴,由(1)可得:,∴,∴,.【点睛】本题主要考查由递推关系式证明数列为等差数列的方法,分组求和的方法等知识,意在考查学生的转化能力和计算求解能力.14、(1);(2).【解析】【分析】(1)根据对比中项的性质即可得出一个式子,再带入等差数列的通项公式即可求出公差。
(2)根据(1)的结果,利用分组求和即可解决。
【详解】(1)因为成等比数列,所以,所以,即,因为,所以,所以;(2)因为,所以,,.【点睛】本题主要考查了等差数列通项式,以及等差中项的性质。
数列的前的求法,求数列前项和常用的方法有错位相减、分组求和、裂项相消。
15、[解] (1)f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.令x变化时,f(x)与f′(x)的变化情况如下表:所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,函数f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,由(1)知f(x)在[0,k-1)上单调递减,在(k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1,即k≥2时,函数f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.16、[解] (1)f′(x)=-3x2+6x+9.由f′(x)<0,得x<-1或x>3,所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞).(2)由f′(x)=0,-2≤x≤2,得x=-1.因为f(-2)=2+a,f(2)=22+a,f(-1)=-5+a,故当-2≤x≤2时,f(x)min=-5+a.要使f(x)≥2 019对于∀x∈[-2,2]恒成立,只需f(x)min=-5+a≥2 019,解得a≥2 024.17、[解] 易知f(x)的定义域为.当-<x<-1时,f′(x)>0;当-1<x<-时,f′(x)<0;当x>-时,f′(x)>0,(2)由(1)知f(x)在区间上的最小值为f=ln 2+.又因为f-f=ln+-ln-=ln+=<0,所以f(x)在区间上的最大值为f=+ln.18、【详解】(1)由,可得且,因为曲线在点处的切线与直线垂直,所以,即,解得,所以,当时,,单调递减;当时,,单调递增;所以当时,取得极小值,极小值为,综上,的单调递减区间为,极小值为2,无极大值.(2)因为对任意,恒成立,所以对任意恒成立,令,则g(x)在(0,+∞)上单调递减,所以在上恒成立,所以在上恒成立,令,则,所以的取值范围是.19、(1)的增区间为,,减区间为.(2),【解析】【分析】(1)利用在函数图像得到,再利用导数求出函数的单调区间;(2)利用(1)中的单调性可求函数在的最值.【详解】(1)点在函数的图象上,∴,解得,∴,∴,当或时,,当时,.所以的增区间为,,减区间为.(2)由(1)可得:函数在区间上单调递减,在区间上单调递增.∴,又,,∴.【点睛】一般地,若在区间上可导,且,则在上为单调增(减)函数;反之,若在区间上可导且为单调增(减)函数,则.20、【解析】分析:(1)先求导数,再根据得a;(2)先求导数的零点:,2;再分类讨论,根据是否满足在x=2处取得极小值,进行取舍,最后可得a的取值范围.详解:解:(Ⅰ)因为=[],所以f ′(x)=[2ax–(4a+1)]e x+[ax2–(4a+1)x+4a+3]e x(x∈R)=[ax2–(2a+1)x+2]e x.f′(1)=(1–a)e.由题设知f′(1)=0,即(1–a)e=0,解得a=1.此时f (1)=3e≠0.所以a的值为1.(Ⅱ)由(Ⅰ)得f ′(x)=[ax2–(2a+1)x+2]e x=(ax–1)(x–2)e x.若a>,则当x∈(,2)时,f ′(x)<0;当x∈(2,+∞)时,f ′(x)>0.所以f (x)<0在x=2处取得极小值.若a≤,则当x∈(0,2)时,x–2<0,ax–1≤x–1<0,所以f ′(x)>0.所以2不是f (x)的极小值点.综上可知,a的取值范围是(,+∞).点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.21、【解析】(1)f(x)的定义域为(0,+∞),f′(x)=-a.若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上单调递增.若a>0,则当x∈时,f′(x)>0;x∈时,f′(x)<0,所以f(x)在上单调递增,在上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=处取得最大值,最大值为f=ln+a=-lna+a-1.因此f>2a-2等价于lna+a-1<0,令g(a)=lna+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a的取值范围是(0,1).22、【解析】(1)f(x)=(x2+x+1)e x,f′(x)=(2x+1)e x+(x2+x+1)e x=(x2+3x+2)e x,当f′(x)>0时,解得x<-2或x>-1,当f′(x)<0时,解得-2<x<-1,所以函数的单调增区间为(-∞,-2),(-1,+∞);单调减区间为(-2,-1).(2)f′(x)=(2x+a)e x+(x2+ax+a)e x=[x2+(2+a)x+2a]e x=(x+a)(x+2)e x=0, 所以x=-a,或x=-2,列表如下:因为a≤2,所以-a≥-2.由表可知f(x)极大=f(-2)=(4-2a+a)e-2=3,解得a=4-3e2≤2,所以存在实数a≤2,使f(x)的极大值为3.。