哈尔滨初中数学知识点
- 格式:doc
- 大小:16.50 KB
- 文档页数:3
第二章、整式加减1、整式:⑴单项式:只含有数或字母的积的式子叫单项式。
(单独一个字母或数字也是单项式);系数:单项式中的数字因数;次数:单项式中,所有字母的指数和。
⑵多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
①项:每一个单项式(注意带符号)。
②次数:多项式里次数最高的项的次数。
2、同类项:所含字母相同,并且相同字母的指数也相同的项。
几个常数项也是同类项。
3、合并同类项:系数相加,字母和字母的指数不变。
4、去括号时符号变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号不变;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
第三章、一元一次方程含有未知数的等式叫做方程,使方程左右两边相等的未知数的值叫做方程的解。
只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程。
1、等式的性质一:等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质二:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2、一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化为1。
注意:①去分母:两边同乘分母的最小公倍时,每一项都不能漏乘。
②去括号:“去正不变,去负全变”。
③移项:是从等号一端移到另一端,移项要变号。
④合并同类项:系数相加减做系数,字母和字母的指数不变。
⑤系数化为一列方程解应用题:(1)设未知数。
(2)找出相等的数量关系,(3)根据相等关系列几何图形:我们把从实物中抽象出的各种图形统称为几何图形。
立体图形:各部分不都在同一平面内,这种图形叫做立体图形。
平面图形:各部分都在同一平面内,这种图形叫做平面图形。
平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。
这样的平面图形称为相应立体图形的展开图。
三视图:指主视图、左视图、俯视图。
初中数学知识点初中数学知识点总结归纳(完整版)初中数学知识点1一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时,易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。
注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。
易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
三、函数易错点1:各个待定系数表示的意义。
《等腰三角形》重点解析1等腰三角形两边长分别为4和8,则这个等腰三角形的周长为A.16B.18C.20D.16或20【解析】先利用等腰三角形的性质:两腰相等;再由三角形的任意两边和大于第三边,确定三角形的第三边长,最后求得其周长.【答案】C【点评】本题将两个简易的知识点:等腰三角形的两腰相等和三角形的三边关系组合在一起.难度较小.2等腰三角形的两边长是3和5,它的周长是.【解析】解:题中给出了等腰三角形的两边长,因没给出具体谁是底长,故需分类讨论:①当3是底边长时,周长为5+5+3=13;②当5是底边长时,周长为3+3+5=11.【答案】11或13.【点评】本题考查了等腰三角形中的常见分类讨论思想,已知两边求第三边长或周长面积等,解决本题的关键是注意要分类讨论,但注意有时其中一种情况不能构造出三角形,考生稍不留神也会写出这种不合题意的答案.难度中等.3△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E式垂足,连接CD,若BD=1,则AC的长是()3 B.2 3 D.4解析:求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.解答:解:∵∠A=30°,∠B=90°,∴∠ACB=180°-30°-90°=60°,∵DE 垂直平分斜边AC ,∴AD=CD ,∴∠A=∠ACD=30°,∴∠DCB=60°-30°=30°, ∵BD=1,∴CD=2=AD ,∴AB=1+2=3,在△BCD 中,由勾股定理得:CB=3,在△ABC 中,由勾股定理得:AC=22BC AB +=32,故选A .点评:本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.4已知等腰△ABC 中,AD⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为( ) A .45o B .75o C .45o 或15o D .60o 答案:C思路导引:结合题意画出图形,有助于解题,注意分类讨论解析:分类讨论,①当BC 为底边时,AB=AC,AD⊥BC,AD=12BC,而BD=DC=12BC,所以AD=BD=DC ,又 ∠ADB=90°,所以△ABC 底角∠ABC=45°,②当BC 为腰长时,如图所示,BC=AB, AD⊥BC,AD=12BC, AD=12AB,所以 ∠BAC=30°,因此△ABC 底角∠ACB=75°,点评:等腰三角形的边、角的计算问题,如果题目无图形,注意画图,运用数形结合解答问题,再等腰三角形问题往往有两种情况,应当分类讨论.5如图,在菱形ABCD 中,∠A =60°,E ,F 分别是AB ,AD 的中点,DE ,BF 相交于点G ,连接BD ,CG ,有下列结论:①∠BGD =120° ;②BG +DG =CG ;③△BDF ≌△CGB ;④23ABD S △.其中正确的结论有()A.1个 B.2个 C.3个 D.4个【解析】根据题意,△ABD是等边三角形,由此可推得BG=DG=∠EBG,∠GCB=30° ,∠GBC=90° ;因为直角三角形中30°角所对的边等于斜边的一半,所以BG=12GC;显然CG>BD,△BDF和△CGB不可能全等;故①,②,④正确.【答案】C【点评】考查菱形的性质和轴对称及等边三角形等知识的综合应用.根据∠A=60°得到等边三角形△ABD是解本题的关键.6如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2,则AD的长是()A.512-B.512+C.51-D.51+【解析】根据三角形特点,先求出角的度数,从而得到三角形相似,再根据相似三角形对应边成比例即可求得.在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD平∠ABC,∴∠ABD=∠CBD=36°,∴BD=AD=BC,∠BDC=72°∴△ABC∽△BCD故:AB︰BC=BC︰CD设AD=x,则BC=x,CD=2-x,∴2︰x = x ︰(2-x )解得x =51-或x =51+>AC (舍去)错误!未找到引用源。
初中数学知识点归纳汇总初中数学是我们基础教育中的一门重要学科,是培养学生逻辑思维能力,培养学生数学思维和方法的重要环节。
下面将对初中数学的知识点进行归纳汇总。
一、整数运算1.整数的加减乘除运算2.整数的绝对值和相反数二、有理数1.有理数的基本概念2.有理数的大小比较3.有理数的加减乘除运算4.有理数的乘方运算三、代数式与简单方程1.代数式的概念及其性质2.代数式的四则运算3.简单方程的基本概念及其解法4.一元一次方程的概念及其解法四、分式1.分式的基本概念及其性质2.分式的四则运算3.分式方程的概念及其解法五、多项式1.多项式的基本概念及其性质2.多项式的加减乘除运算3.多项式的因式分解及其应用六、一次函数1.函数的概念及其性质2.一次函数的基本特征3.一次函数的图像与性质4.一次函数的应用七、平面图形1.平面图形的基本概念及其性质2.三角形的基本概念及其性质3.三角形的内角和定理和外角和定理4.三角形的面积计算公式5.四边形的基本概念及其性质6.正方形、长方形、菱形、平行四边形的性质与应用八、圆1.圆的基本概念及其性质2.圆周角的性质与应用3.圆的面积与周长计算公式4.弧与弦的性质九、空间几何1.空间图形的基本概念及其性质2.空间图形的三视图与投影3.空间直角坐标系4.空间几何体的表面积与体积计算公式十、概率与统计1.概率的基本概念及其性质2.事件的概念及其性质3.事件的计算方法4.统计的基本概念及其性质5.统计图表的制作与分析以上是初中数学的主要知识点的概述,每个知识点都包含了更具体的内容和应用。
学生在学习初中数学时,需要掌握这些知识点,理解其基本概念和性质,掌握运算方法和解题技巧,并能灵活运用这些知识解决问题。
初中数学的学习不仅仅是为了应付考试,更重要的是培养学生的数学思维和逻辑思维能力。
在学习中,要善于思考,善于分析问题,多与同学们探讨归纳,积极参与课堂讨论和问题解答,提高自己的学习能力。
初中数学知识点大全初中数学知识点总结1、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是0;绝对值是本身的数是非负数。
4、任何数的绝对值是非负数。
最小的正整数是1,最大的负整数是-1。
5、利用绝对值比较大小两个正数比较:绝对值大的那个数大;两个负数比较:先算出它们的绝对值,绝对值大的反而小。
6、有理数加法(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.(3)一个数同零相加,仍得这个数.加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)7、有理数减法:减去一个数,等于加上这个数的相反数。
8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”9、有理数的乘法两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。
第一步:确定积的符号第二步:绝对值相乘10、乘积的符号的确定几个有理数相乘,因数都不为0时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
哈尔滨中考指南:数学明确考点吃透教材根据哈尔滨中考《考试说明》,数学试题中容易题、中等题、较难题的分值比约为5:3:2,总共127个知识点,数与代数约占43%,空间与图形约占41%,统计与概率约占11%,课题学习约占5%。
中考试题的基础题多源于教材中例题、习题的变式,因此,考生一定要吃透教材,熟记书中的概念、定理、公理、公式、图形等。
逐一分析《考试说明》中的考点考生应认真阅读《考试说明》中的考点,并逐一进行分析。
考点将知识点分成了解、理解、掌握、灵活应用四个层次,考生应明确每个知识点考查的能力层次,做到心中有数,抓住重点内容进行强化训练。
对于《考试说明》中的题型示例要仔细揣摩,对于一些偏题、怪题要坚决舍弃。
中考试题的基础题多源于教材中例题、习题的变式,因此,大家一定要吃透教材,熟记书中的概念、定理、公理、公式、图形等,并将典型的例题、习题再认真地做一遍。
及时反思出错原因考生对于自己在学习过程中遇到的问题要及时反思,对于做错的题要追究错因,不要以马虎为借口一带而过或把正确的答案写上就完事大吉了。
考生在做题过程中容易出现以下错误:概念不清;漏读条件;计算不准;单位没统一;图形画错;分类讨论不全面;写答案时抄写错误;过程不全等。
考生可以参照这些查找错因,并及时反思。
通过对试卷中错题的分析,考生能够及时发现自己在哪种题型上存在问题,并在短时间内通过补习达到提分效果。
对于做对的题,考生也要总结方法,积累成功经验。
另外,在此提醒考生,由于复习时间有限,强项科目很难有大的提升空间,而弱项科目相对来讲提升空间较大,但前提条件是保证强项科目的分数不下滑。
做题时最好画图做题时有时需要画图,一道难题,有时候图画出来了,思路也就来了。
考生应合理应用手中的工具画图,铅笔、碳素笔、格尺、三角板搭配使用。
画图要有顺序性,因此,要正确理解条件。
图形的摆放要合理,要画出最适合自己思考角度的图形。
图形中线段、角度大小、位置要恰当,只有这样才能给猜测结论提供一定的思考方向。
中考数学必考知识点归纳一、数与代数。
1. 有理数。
- 有理数的概念:整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
数轴上的点与有理数一一对应。
- 相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0。
若a与b互为相反数,则a + b=0。
- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即| a|=a(a≥0) -a(a<0)。
- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n 中,a叫做底数,n叫做指数。
2. 实数。
- 无理数:无限不循环小数叫做无理数,如√(2)、π等。
- 实数的概念:有理数和无理数统称为实数。
实数与数轴上的点一一对应。
- 实数的运算:实数的运算顺序为先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里面的。
3. 代数式。
- 代数式的概念:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或者一个字母也是代数式。
- 整式:单项式和多项式统称为整式。
单项式是数与字母的乘积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
2021哈尔滨中考数学知识点2021哈尔滨中考数学知识一二次函数概念二次函数的概念:一般地,形如ax^2+bx+c = 0的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数。
二次函数图像与性质口诀二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象限;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
2021哈尔滨中考数学知识二一次函数的定义一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
一次函数的性质一般地,形如y=kx+bk,b是常数,且k≠0,那么y叫做x的一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数注:一次函数一般形式y=kx+bk不为0a.k不为0b.x的指数是1c.b取任意实数一次函数y=kx+b的图像是经过0,b和-b/k,0两点的一条直线,我们称它为直线y=kx+b,它可以看做直线y=kx平移|b|个单位长度得到。
当b>0时,向上平移;b<0时,向下平移确定函数定义域的方法1关系式为整式时,函数定义域为全体实数;2关系式含有分式时,分式的分母不等于零;3关系式含有二次根式时,被开放方数大于等于零;4关系式中含有指数为零的式子时,底数不等于零;5实际问题中,函数定义域还要和实际情况相符合,使之有意义。
数学初中全部知识点总结1、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
(2)全部有理数都可以用数轴上的点来表示,但数轴上的点不肯定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
(2)相反数:符号不同、肯定值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
(3)肯定值最小的数是0;肯定值是本身的数是非负数。
4、任何数的肯定值是非负数。
最小的正整数是1,最大的负整数是-1。
5、利用肯定值比拟大小两个正数比拟:肯定值大的那个数大;两个负数比拟:先算出它们的肯定值,肯定值大的反而小。
6、有理数加法(1)符号一样的两数相加:和的符号与两个加数的符号全都,和的肯定值等于两个加数肯定值之和.(2)符号相反的两数相加:当两个加数肯定值不等时,和的符号与肯定值较大的加数的符号一样,和的肯定值等于加数中较大的肯定值减去较小的肯定值;当两个加数肯定值相等时,两个加数互为相反数,和为零.(3)一个数同零相加,仍得这个数.加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)7、有理数减法:减去一个数,等于加上这个数的相反数。
8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”9、有理数的乘法两个数相乘,同号得正,异号得负,再把肯定值相乘;任何数与0相乘都得0。
第一步:确定积的符号其次步:肯定值相乘10、乘积的符号确实定几个有理数相乘,因数都不为 0 时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
哈尔滨初中数学知识点总结一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。
- 有理数的分类:正有理数、负有理数和零。
- 有理数的运算:加法、减法、乘法、除法和乘方。
2. 整数- 整数的性质:奇数与偶数、质数与合数。
- 整数的运算:加法、减法、乘法和除法。
3. 分数与小数- 分数的基本性质:分数的通分与约分。
- 小数与分数的互化:小数转化为分数的方法。
- 四则运算:分数与小数的加、减、乘、除运算。
4. 代数表达式- 代数式的概念:用字母表示数的表达式。
- 单项式与多项式:单项式是字母和数的乘积,多项式是若干个单项式的和。
- 代数式的运算:合并同类项、分配律、结合律和交换律。
5. 一元一次方程- 方程的概念:含有未知数的等式。
- 解方程的方法:移项、合并同类项、系数化为1。
- 实际问题中的一元一次方程:列方程解应用题。
6. 二元一次方程组- 方程组的概念:含有两个未知数的一元一次方程组成的一组方程。
- 解方程组的方法:代入法、消元法。
- 二元一次方程组的应用:解实际问题中的方程组。
7. 不等式与不等式组- 不等式的概念:表示不等关系的式子。
- 不等式的解法:移项、合并同类项。
- 不等式组的解集:求解集的公共部分。
二、几何1. 平面图形- 点、线、面的基本性质。
- 角的概念:邻角、对顶角、同位角。
- 三角形的分类:按边分类(等边、等腰、不等边)和按角分类(锐角、直角、钝角)。
- 四边形的分类:梯形、平行四边形、矩形、菱形、正方形。
2. 图形的性质- 三角形的性质:内角和定理、三角形的中位线定理。
- 四边形的性质:平行四边形的对角线性质、矩形的角性质。
- 圆的性质:圆周角定理、垂径定理、圆的面积和周长公式。
3. 图形的变换- 平移:图形沿直线移动。
- 旋转:图形绕一点旋转一定角度。
- 轴对称:图形关于某条直线对称。
4. 相似与全等- 全等三角形的判定:SSS、SAS、ASA、AAS。
- 相似三角形的判定:SAS、SSS、AAA。
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理三角形两边的和大于第三边
16 推论三角形两边的差小于第三边
17 三角形内角和定理三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×180°
51推论任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的
一半L=(a+b)÷2 S=L×h
83 (1)比例的基本性质如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理三条平行线截两条直线,所得的对应
线段成比例
87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平。