第5讲 分式
- 格式:ppt
- 大小:2.03 MB
- 文档页数:35
2013年中考数学专题复习第五讲:分式【基础知识回顾】一、分式的概念若A,B表示两个整式,且B中含有那么式子就叫做公式【名师提醒:①:若则分式AB无意义②:若分式AB=0,则应且】二、分式的基本性质分式的分子分母都乘以(或除以)同一个的整式,分式的值不变。
1、a ma m⋅⋅=a mb m÷÷= (m≠0)2、分式的变号法则ba-=b3、约分:根据把一个分式分子和分母的约去叫做分式的约分。
约分的关键是确保分式的分子和分母中的约分的结果必须是分式4、通分:根据把几个异分母的分式化为分母分式的过程叫做分式的通分通分的关键是确定各分母的【名师提醒:①最简分式是指②约分时确定公因式的方法:当分子、分母是多项式时,公因式应取系数的应用字母的当分母、分母是多项式时应先再进行约分③通分时确定最简公分母的方法,取各分母系数的相同字母分母中有多项式时仍然要先通分中有整式的应将整式看成是分母为的式子④约分通分时一定注意“都”和“同时”避免漏乘和漏除项】三、分式的运算:1、分式的乘除①分式的乘法:ba.dc=②分式的除法:ba÷dc= =2、分式的加减①用分母分式相加减:ba±ca=②异分母分式相加减:ba±dc= =【名师提醒:①分式乘除运算时一般都化为法来做,其实质是的过程②异分母分式加减过程的关键是】3、分式的乘方:应把分子分母各自乘方:即(ba)m =1、分式的混合运算:应先算再算最后算有括号的先算括号里面的。
2、分式求值:①先化简,再求值。
②由值的形式直接化成所求整式的值③式中字母表示的数隐含在方程的题目条件中【名师提醒:①实数的各种运算律也符合公式②分式运算的结果,一定要化成③分式求值不管哪种情况必须先 此类题目解决过程中要注意整体代入 】【重点考点例析】考点一:分式有意义的条件例1 (2012•宜昌)若分式21a +有意义,则a 的取值范围是( ) A .a=0 B .a=1 C .a≠-1 D .a≠0点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.对应训练1.(2012•湖州)要使分式1x有意义,x 的取值范围满足( ) A .x=0 B .x≠0 C .x >0 D .x <0考点二:分式的基本性质运用例2 (2012•杭州)化简216312m m --得 ;当m=-1时,原式的值为 . 对应训练2.(2011•遂宁)下列分式是最简分式的( )A .223a a bB .23a a a -C .22 a b a b ++D .222a ab a b -- 考点三:分式的化简与求值例3 (2012•南昌)化简:2211a a a a a --÷+.点评:本题考查的是分式的乘除法,即分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.例4 (2012•安徽)化简211x x x x+-- 的结果是( ) A .x+1 B .x-1 C .-x D .x点评:本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.例5 (2012•天门)化简221(1)11x x -÷+- 的结果是( ) A .21(1)x + B .21(1)x - C .2(1)x + D .2(1)x - 点评:此题考查了分式的化简混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,同时注意最后结果必须为最简分式.例6 (2012•遵义)化简分式222()1121x x x x x x x x --÷---+,并从-1≤x≤3中选一个你认为合适的整数x 代入求值.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.对应训练3.(2012•河北)化简22111x x ÷--的结果是( ) A .21x - B .321x - C .21x - D .2(x+1) 4.(2012•绍兴)化简111x x --可得( ) A .21x x - B .21x x -- C .221x x x +- D .221x x x-- 5.(2012•泰安)化简22()2-24m m m m m m -÷+-= . 6.(2012•资阳)先化简,再求值:2221(1)11a a a a a --÷---+,其中a 是方程x 2-x=6的根.考点四:分式创新型题目例7 (2012•凉山州)对于正数x ,规定1()1f x x =+,例如:11(4)145f ==+,114()14514f ==+,则 111(2012)(2011)(2)(1)()()()220112012f f f f f f f ++⋅⋅⋅++++⋅⋅⋅++= .对应训练7.(2012•临沂)读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,通过对以上材料的阅读,计算201211(1)n n n ==+∑ .【聚焦山东中考】一、选择题1.(2012•潍坊)计算:2-2=( )A .14B .2C .14- D .4 2.(2012•德州)下列运算正确的是( ) A .42= B .(-3)2=-9C .2-3=8D .20=0 3.(2012•临沂)化简4(1)22a a a +÷--的结果是( ) A .2a a + B .2a a + C .2a a - D .2a a - 4.(2012•威海)化简的结果是( )A .B .C .D .二、填空题 5.(2012•聊城)计算:24(1)42a a a +÷=-- . 6.(2011•泰安)化简:22()224x x x x x x -÷+--的结果为 . 三、解答题7.(2012·济南)化简:2121224a a a a a --+÷--.8.(2012•烟台)化简:222844(1)442a a a a a a+--÷+++.9.(2012•青岛)化简:2211(1)12a a a a -+++。
分式的概念和性质(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算. 【要点梳理】要点一、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如a π是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x yx是分式,与xy有区别,xy是整式,即只看形式,不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).要点诠释:(1)基本性质中的A、B、M表示的是整式.其中B≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有b ba a-=-,b ba a-=-.根据有理数除法的符号法则有b b ba a a-==--.分式ab与ab-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分.【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则.2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.【要点梳理】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd ⋅=,其中a b c d 、、、是整式,0bd ≠.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分. (4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭.【学习目标】1.能利用分式的基本性质通分.2.会进行同分母分式的加减法.3.会进行异分母分式的加减法.【要点梳理】要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减;上述法则可用式子表为:a b a b c c c±±=. 要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式.要点二、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.要点三、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减.上述法则可用式子表为:a c ad bc ad bcb d bd bd bd±±=±=. 要点诠释:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式. 要点四、分式的混合运算与分数的加、减乘、除混合运算一样,分式的加、减乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序计算. 分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式.要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是正确进行分式运算的基础,要牢牢掌握..(2)运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的.(3)运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度.分式方程的解法及应用(基础)【学习目标】1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.2. 会列出分式方程解简单的应用问题.【要点梳理】要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.分式全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算a b a b c c c±±= ;同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.。
第5讲 分 式一、选择题1.(2、3)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、选择题、分式、整体代换)已知a 2−3a +1=0,则4 a 2−9a −2+91+a 的值为( ) A . 3 B.5 C. 3 5 D. 6 5分析:显然a ≠0,由题设得a +1a =3,所求式子=4 a 2−3a +3a −2+93a =−4+3×3−2=3. 答案:A .技巧:通过对题设中等式的整体变形,能整体求值的就整体求值代换,这样能简化运算,达到快捷解题的目的.易错点:代换过程中容易变形失误而致错.2. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、选择题、分式)若4x −3y −6z =0,x +2y −7z =0(xyz ≠0),则代数式5x 2+2y 2−z 22x −3y −10z 的值为( )A. −12B. −192 C.-15 D.-13分析:由题意得 4x −3y =6z x +2y =7z,解得x =3zy =2z,代人5x 2+2y 2−z 22x 2−3y 2−10z 2得5×9z 2+2×4z 2−z 22×9z 2−3×4z 2−10z 2=−13.答案:D.技巧:将三元化为一元,然后合并同类项再约分是解这类题的常用技巧. 易错点:这类题型在换元的时候容易计算错误.3. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、选择题、分式)已知x ,y ,,z 满足2x=3y −z=5z+x,则5x −y y+2z的值为( )A.1B. 13C.−12D. 12分析:由2x=3y −z=5z+x得2(z +x )=5x ,2(y −z )=3x ,解之得y =3x ,z =32x . 所以5x−yy+2z=5x−3x3x+3x=13⋅答案:B.技巧:将三元化为一元,然后合并同类项再约分是解这类题的常用技巧.易错点:这类题型在换元的时候容易计算错误.二、填空题4.(3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、填空题、分式)方程16+1x=1y有组正整数解.分析:由原方程可得y=6xx+6=6−36x+6⋅又因为y是正整数,所以x+6=9,12,18,36,得x=3,6,12,30,都是正整数. 故原方程共有4组解.答案:4.技巧:将一个未知数用另一个未知数表示出来,再根据题设的限制条件(正整数解)来分析可能的正确解.易错点:这类题型在分析可能解的时候,容易漏解.5.(2、3)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、填空题、分式)已知a−1a=1,则a8+1a8=.分析:三次求平方可得:a2+1a =3,a4+1a=7,a8+1a=47.答案:47.技巧:a±1a2=a2+1a±2,由这一等式,可以根据一个数与其倒数的和很快捷地求出这个数与其倒数的平方和.易错点:运用等式a±1a2=a2+1a±2的时候,容易掉了等式后面的±2而致错.6.(3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、填空题、整体代换、分式)已知α是方程x2+x−14=0的根,则α3−1α5+α4−α3−α2=.分析:由已知α是方程x2+x−14=0的根,可得α2+α=14⋅所以α3−1α+α−α−α=(α−1)(α2+α+1)α(α+α)−α(α+α)=(α−1)(α2+α+1)(α−α)(α+α)=(α−1)(α2+α+1)(α−1)(α+α)(α+α)=14+11×1=20.答案:20.技巧:整体代换需要找出联系题设与所求式子中的相同的整体,适当的变形或分解因式约分之后进行代换,可以使得运算快捷简便.易错点:在分解因式和约分时容易分解或约分不当而致错.三、解答题7、(3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、解答题、分式)计算:199319922 199319912+199319932−2分析:分子分母中的数字都比较大,这时观察式子特点,可以发现19931992与19931991和19931993之间都是相差1,由此入手,可以用更加快捷的方法计算出结果.详解:设a=19931992,则原式=a2(a−1)2+(a+1)2−2=a2a2−2a+1+a2+2a+1−2=12⋅技巧:当数式中出现的数字比较大时,可以考虑用一个简单的字母将其代换再进行运算,往往可以化繁为简.易错点:代换时易出错.8、(3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、解答题、分式)若1x−1−x−1x2+x+1−9x2x3−1=23,求x的值.分析:题设所给的等式左边可以化简,故可先把左边化为最简形式再来求x值. 详解:将繁分式的分子、分母分别乘以x3−1,得原式左边=(x2+x+1)−(x−1)2−9x=x2+x+1−x2+2x−1−9x=3x−9x=−13x⋅所以−13x =23,所以x=−12⋅经检验,x=−12符合题意.答:x值为−12.技巧:先化简,再求值,是这类题的一般思路.易错点:由于分式的分母不能等于0,故分式在约分得出结果之后,一般要对分母是否等于0作出检验,以免出现增根或错解.9、(3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、解答题、分式)已知a2+a3+a4a1=a1+a3+a4a2=a1+a2+a4a3=a1+a2+a3a4= k,求k的值.分析:将题设所给的等式化为四个等式之后,再观察式子特点,就会发现求和可以打开思路. 详解:由条件可得,a2+a3+a4=ka1,a1+a3+a4=ka2,a1+a2+a4=ka3,a1+a2+a3=ka4.四式相加得3a1+a2+a3+a4=k a1+a2+a3+a4,所以(k−3)(a1+a2+a3+a4)=0.所以k=3或a1+a2+a3+a4=0.当a1+a2+a3+a4=0时,a2+a3+a4=−a1⋅则k=a2+a3+a4a1=−1.综上可知k=3或k=-1.答:k的值为3或-1.技巧:对于这种连等的比例型问题,一般可以设出比例系数,把比例式转化为几个等式再来求解.易错点:在等式的转化和求解过程中容易忽视分母不能为0的这一潜在规定而致错.。
初高中数学衔接课程第五讲 方程与不等式5.1 二元二次方程组解法方程 22260x xy y x y +++++=是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程。
其中2x ,2xy ,2y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项。
我们看下面的两个方程组:224310,210;x y x y x y ⎧-++-=⎨--=⎩ 222220,560.x y x xy y ⎧+=⎪⎨-+=⎪⎩ 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组。
下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法。
一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解。
例1 解方程组22440,220.x y x y ⎧+-=⎨--=⎩解:由②,得x =2y +2, ③把③代入①,整理,得8y 2+8y =0,即y (y +1)=0。
解得y 1=0,y 2=-1。
把y 1=0代入③,得x 1=2;把y 2=-1代入③,得x 2=0。
所以原方程组的解是112,0x y =⎧⎨=⎩,;220,1.x y =⎧⎨=-⎩说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解。
例2解方程组7,12.x y xy +=⎧⎨=⎩解:由①,得7.x y =- ③把③代入②,整理,得27120y y -+= 解这个方程,得123,4y y ==。
把13y =代入③,得14x =;把24y =代入③,得23x =。
所以原方程的解是114,3x y =⎧⎨=⎩,;223,4.x y =⎧⎨=⎩【例3】解方程组11 (1)28 (2)x y xy +=⎧⎨=⎩分析:本题可以用代入消元法解方程组,但注意到方程组的特点,可以把x 、y 看成是方程211280z z -+=的两根,则更容易求解。
分式方程的概念,解法知识要点梳理要点一:分式方程的定义分母里含有未知数的方程叫分式方程。
要点诠释:1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。
2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程。
要点二:分式方程的解法1. 解分式方程的其本思想把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。
2.解分式方程的一般方法和步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。
(2)解这个整式方程。
(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。
注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。
3. 增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。
当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。
规律方法指导1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.经典例题透析:类型一:分式方程的定义1、下列各式中,是分式方程的是()A.B.C.D.举一反三:【变式】方程中,x为未知量,a,b为已知数,且,则这个方程是()A.分式方程B.一元一次方程C.二元一次方程D.三元一次方程类型二:分式方程解的概念2、请选择一组的值,写出一个关于的形如的分式方程,使它的解是x=0这样的分式方程可以是______________.举一反三:【变式】在中,哪个是分式方程的解,为什么?类型三:分式方程的解法3、解方程举一反三:【变式】解方程:(1)=; (2)+=2.类型四:增根的应用4、当m为何值时,方程会产生增根( )A. 2B. -1C. 3D.-3举一反三:【变式】.若方程=无解,则m=。
分式一、基本知识1、分式定义:形如BA的式子叫分式,其中A 、B 是整式,且B 中含有字母。
(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。
(2)分式的值为0:A=0,B ≠0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
(7)有理式:整式和分式统称有理式。
2、分式的基本性质: (1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
二、例题讲析 1、 (2011黑龙江黑河,18,3分)分式方程=--11x x)2)(1(+-x x m 有增根,则m 的值为 ( )A 0和3B 1C 1和-2D 3 【答案】D2、 (2011年铜仁地区,4,4分)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A.60512601015-=+x x B.60512601015+=-x x C.60512601015-=-x x D.5121015-=+x x .【答案】A3、(2011内蒙古包头,17,3分)化简122144112222-++÷++-⋅-+a a a a a a a ,其结果是 . 【答案】11-a 4. (2011广西梧州,24,10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?【答案】解:(1)设今年甲型号手机每台售价为x 元,由题意得, 80000x+500=60000x . 解得x =1500. 经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元. (2)设购进甲型号手机m 台,由题意得, 17600≤1000m +800(20-m )≤18400, 8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一: 设总获利W 元,则W =(1500-1000)m +(1400-800-a )(20-m ), W =(a -100)m +12000-20a .所以当a =100时,(2)中所有的方案获利相同. 方法二:由(2)知,当m =8时,有20-m =12.此时获利y 1=(1500-1000)×8+(1400-800-a )×12=4000+(600-a )×12 当m=9时,有20-m=11此时获利y 2=(1500-1000)×9+(1400-800-a )×11=4500+(600-a )×11 由于获利相同,则有y 1= y 2.即4000+(600-a )×12=4500+(600-a )×11,解之得a =100 .所以当a =100时,(2)中所有方案获利相同. 5. (2011贵州黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:单位 清淤费用(元/m 3) 清淤处理费(元)甲公司18 5000 乙公司20 0 (1)若剑江河首批需要清除的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由。
当堂训练评价单
必做题:
1.若关于x 的方程2x-a=x-2的解为x=3,则a 的值为 ( ) A.-5
B.5
C.-7
D.7
2.运用等式性质进行的变形,正确的是( ) A.如果a=b,那么a+c=b-c
B.如果 那么a=b
C.如果a=b,那么
D.如果a 2
=3a,那么a=3
3.(2013·孝感模拟)方程1+ =3的解是( )
A.x=2
B.x=-2
C.x=-1
D.x=3
4用换元法解方程x 2
-2x- =1时,如设y=x 2-2x ,则将原方程化为关于y
的整式方程是_____.
5.若分式方程 有增根,则m =_____.
选做题:
1.(2013·天津模拟)当x 为何值时,代数式 与 的值相等?
a b
,c c =a b c c
=4
x 1
-22
x 2x
-5m 11x 2x 2
++=--()
2x 1x 123
-++2x 3
6
+
2.对于非零的两个实数a,b ,规定a ⊕b= 若2⊕(2x-1)=1,则x 的值为?
选做题
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.
例如:解方程 时可以把_____看作一个整体,设为y ,则原方程变
形为_____. 求方程的解
11
b a -,2x x
()5()60x 1x 1++=++。