《材料性能学》第一章2
- 格式:ppt
- 大小:1.83 MB
- 文档页数:57
《材料性能学》课后答案《⼯程材料⼒学性能》(第⼆版)课后答案第⼀章材料单向静拉伸载荷下的⼒学性能⼀、解释下列名词滞弹性:在外加载荷作⽤下,应变落后于应⼒现象。
静⼒韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。
弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最⾼应⼒。
⽐例极限:应⼒—应变曲线上符合线性关系的最⾼应⼒。
包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。
解理断裂:沿⼀定的晶体学平⾯产⽣的快速穿晶断裂。
晶体学平⾯--解理⾯,⼀般是低指数,表⾯能低的晶⾯。
解理⾯:在解理断裂中具有低指数,表⾯能低的晶体学平⾯。
韧脆转变:材料⼒学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断⼝特征由纤维状转变为结晶状)。
静⼒韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静⼒韧度。
是⼀个强度与塑性的综合指标,是表⽰静载下材料强度与塑性的最佳配合。
⼆、⾦属的弹性模量主要取决于什么?为什么说它是⼀个对结构不敏感的⼒学姓能?答案:⾦属的弹性模量主要取决于⾦属键的本性和原⼦间的结合⼒,⽽材料的成分和组织对它的影响不⼤,所以说它是⼀个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。
改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不⼤。
三、什么是包⾟格效应,如何解释,它有什么实际意义?答案:包⾟格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时⼏乎下降到零,这说明在反向加载时塑性变形⽴即开始了。
包⾟格效应可以⽤位错理论解释。
第⼀,在原先加载变形时,位错源在滑移⾯上产⽣的位错遇到障碍,塞积后便产⽣了背应⼒,这背应⼒反作⽤于位错源,当背应⼒(取决于塞积时产⽣的应⼒集中)⾜够⼤时,可使位错源停⽌开动。
《材料性能学》课程教学大纲课程名称(英文):材料性能学(Properties of Materials)课程类型:学科基础课总学时: 72 理论学时: 60 实验(或上机)学时: 12学分:4.5适用对象:金属材料工程一、课程的性质、目的和任务本课程为金属材料工程专业的一门专业基础课,内容包括材料的力学性能和物理性能两大部分。
力学性能以金属材料为主,系统介绍材料的静载拉伸力学性能;其它载荷下的力学性能,包括扭转、弯曲、压缩、缺口、冲击及硬度等;断裂韧性;变动载荷下、环境条件下、高温条件下的力学性能;摩擦、磨损性能以及其它先进材料的力学性能等。
物理性能概括介绍常用物理性能如热学、电学、磁学等的基本参数及物理本质,各种影响因素,测试方法及应用。
通过本课程的学习,使学生掌握材料各种主要性能指标的宏观规律、物理本质及工程意义,了解影响材料性能的主要因素,了解材料性能测试的原理、方法和相关仪器设备,基本掌握改善或提高材料性能指标、充分发挥材料潜能的主要途径,初步具备合理的选材和设计,开发新型材料所必备的基础知识和基本技能。
在学习本课程之前,学生应学完物理化学、材料力学、材料科学基础、钢的热处理等课程。
二、课程基本要求根据课程的性质与任务,对本课程提出下列基本要求:1.要求学生在学习过程中打通与前期材料力学、材料科学基础等课程的联系,并注重建立与同期和后续其它专业课程之间联系以及在生产实际中的应用。
2.能够从各种机器零件最常见的服役条件和失效现象出发,了解不同失效现象的微观机理,掌握工程材料(金属材料为主)各种力学性能指标的宏观规律、物理本质、工程意义和测试方法,明确它们之间的相互关系,并能大致分析出各种内外因素对性能指标的影响。
3.掌握工程材料常用物理性能的基本概念及影响各种物性的因素,熟悉其测试方法及其分析方法,初步具备有合理选择物性分析方法,设计其实验方案的能力。
三、课程内容及学时分配总学时72,课堂教学60学时,实验12学时。
第一篇材料的力学性能第一章材料的弹性变形一、名词解释1、弹性变形:外力去除后,变形消失而恢复原状的变形。
P42弹性模量:表示材料对弹性变形的抗力,即材料在弹性变形范围内,产生单位弹性应变的需应力。
P103、比例极限:是保证材料的弹性变形按正比例关系变化的最大应力。
P154、弹性极限:是材料只发生弹性变形所能承受的最大应力。
P155、弹性比功:是材料在弹性变形过程中吸收变形功的能力。
P156、包格申效应:是指金属材料经预先加载产生少量塑性变形(残余应变小于4%),而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。
P207、内耗:在加载变形过程中,被材料吸收的功称为内耗。
P21二、填空题1、金属材料的力学性能是指在载荷作用下其抵抗(变形)和(断裂)的能力。
P22、低碳钢拉伸试验的过程可以分为(弹性变形)、(塑性变形)和(断裂)三个阶段。
P2三、选择题1、表示金属材料刚度的性能指标是( B )。
P10A 比例极限B 弹性模量C 弹性比功2、弹簧作为广泛应用的减振或储能元件,应具有较高的(C)。
P16A 塑性B弹性模量C弹性比功D硬度3、下列材料中( C )最适宜制作弹簧。
Mn C T12 钢A 08钢B 45钢C 60Si24、下列因素中,对金属材料弹性模量影响最小的因素是(D)。
A 化学成分B 键合方式C 晶体结构D 晶粒大小四、问答题影响金属材料弹性模量的因素有哪些?为什么说它是组织不敏感参数?答:影响金属材料弹性模量的因素有:键合方式和原子结构、晶体结构、化学成分、温度及加载方式和速度。
弹性模量是组织不敏感参数,材料的晶粒大小和热处理对弹性模量的影响很小。
因为它是原子间结合力的反映和度量。
P11第二章材料的塑性变形一、名词解释1、塑性变形:材料在外力的作用于下,产生的不能恢复的永久变形。
P242、塑性:材料在外力作用下,能产生永久变形而不断裂的能力。
P523、屈服强度:表征材料抵抗起始塑性变形或产生微量塑性变形的能力。
一、名词解释第一章力学1.真实应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε= ,为真实应变。
2.名义应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε=L –L /L =△L/L ,ε为名义应变。
3.弹性模量材料在弹性变形阶段,其应力和应变成线性关系(即符合胡克定律),其比例系数称为弹性模量。
对各向同性体为一常数。
是原子间结合强度的一个标志。
4.弹性柔顺系数弹性体在单位应力下所发生的应变,是弹性体柔性的千种量度。
S =-μ/E ,其下标十位数为应变方向,个位数为所受应力的方向。
5.材料的蠕变对粘弹性体施加恒定应力σ时,其应变随时间而增加。
6.材料的弛豫对粘弹性体施加恒定应变ε时,则应力将随时间而减小。
7.位错增殖系数n个位错通过试样边界时引起位错增殖,使通过边界的位错数增加到nc个,c即为位错增殖系数。
8.滞弹性一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性。
9.粘弹性无机固体和金属的与时间有关的弹性,即弹性形变的产生与消除需要有限时间。
10.粘性系数(粘度) 单位接触面积、单位速度梯度下两层液体间的内摩擦力。
单位Pa·S. 是流体抵抗流动的量度。
11.脆性断裂构件未经明显的变形而发生的断裂。
断裂时材料几乎没有发生过塑性变形。
在外力作用下,任意一个结构单元上主应力面的拉应力足够大超过材料的临界拉应力值时,会产生裂纹或缺陷的扩展,导致脆性断裂。
与此同时,外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。
12.裂纹亚临界生长裂纹在使用应力下,随时间的推移而缓慢扩展。
其结果是裂纹尺寸逐渐加大,一旦达到临界尺寸就会失稳扩展而破坏。
13.材料的理论结合强度根据Orowan提出的原子间约束力随原子间的距离x的变化曲线(正弦曲线),得到σ=σ×sin2πx/λ,σ为理论结合强度。
单位面积的原子平面分开所作的功应等于产生两个单位面积的新表面所需的表面能,材料才能断裂,根据公式得出σ= Eγ/a 。
材料性能学课程复习材料材料性能学第⼀章材料单向静拉伸的⼒学性能1.应⼒-应变曲线σp:⽐例极限σe:弹性极限σs:屈服点σb:抗拉强度2.弹性变形的本质?材料产⽣弹性变形的本质,概括来说,都是构成材料的原⼦(离⼦)或分⼦⾃平衡位置产⽣可逆位移的反映。
⑴⾦属、陶瓷类晶体材料的弹性变形是处于晶格结点的离⼦在⼒的作⽤下在其平衡位置附近产⽣的微⼩位移。
⑵橡胶类材料则是呈卷曲状的分⼦链在⼒的作⽤下通过链段的运动沿受⼒⽅向产⽣的伸展。
3.影响弹性模数(E)的因素?⑴键合⽅式和原⼦结构:共价键、离⼦键和⾦属键都有较⾼的E值,⽽分⼦键E值较低。
对于⾦属元素,原⼦半径越⼤,E值越⼩,反之亦然。
⑵晶体结构:①单晶材料:E呈各向异性,沿密排⾯E值较⼤,反之较⼩;②多晶材料:E为各晶粒的统计平均值,表现为各向同性,但为伪各向同性;③⾮晶态材料:E是各项同性的。
⑶化学成分:材料化学成分的变化将引起原⼦间距或键合⽅式的变化,因此也将影响材料的弹性模数。
⑷微观组织:①对⾦属材料来说,E是⼀个组织不敏感的⼒学性能指标;②对⾼分⼦和陶瓷材料,E对结构和组织敏感;⑸温度:温度升⾼,原⼦结合⼒下降,E值降低。
⑹加载⽅式和负荷持续时间:①加载⽅式、加载速率和负荷持续时间对⾦属、陶瓷类材料的E⼏乎没有影响;②⾼分⼦聚合物的E随负载时间延长⽽降低,发⽣松弛。
4.⾮理想弹性⾏为可分为⼏种类型?⑴滞弹性(弹性后效):材料在快速加载或卸载后,随时间的延长⽽产⽣的附加弹性应变的性能。
⑵粘弹性:材料在外⼒作⽤下,弹性和粘性两种变形机理同时存在的⼒学⾏为。
⑶伪弹性:在⼀定的温度条件下,当应⼒达到⼀定⽔平后,⾦属或合⾦将产⽣应⼒诱发马⽒体相变,伴随应⼒诱发相变产⽣⼤幅度的弹性变形的现象。
⑷包申格效应:⾦属材料经预先加载产⽣少量塑性变形,⽽后再同向加载,规定残余伸长应⼒增加,反向加载,规定残余伸长应⼒降低的现象。
5.材料产⽣内耗的原因?材料产⽣内耗与材料中微观组织结构和物理性能的变化有关。
第一章材料单向静拉伸的力学性能1、名词解释:银纹:银纹是高分子材料在变形过程中产生的一种缺陷,由于它的密度低,对光线的反射能力很高,看起来呈银色,因而得名。
银纹产生于高分子材料的弱结构或缺陷部位。
超塑性:材料在一定条件下呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象,称为超塑性。
晶界滑动产生的应变εg在总应变εt中所占比例一般在50%~70%之间,这表明晶界滑动在超塑性变形中起了主要作用。
脆性断裂:材料断裂前基本上不产生明显的宏观塑性变形,没有明显的预兆,往往表现为突然发生的快速断裂过程,因而具有很大的危险性。
韧性断裂:材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。
韧性断裂时一般裂纹扩展过程较慢,而且消耗大量塑性变形能。
解理断裂:在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂称为解理断裂。
(解理台阶、河流花样和舌状花样是解理断口的基本微观特征。
) 剪切断裂:剪切断裂是材料在切应力作用下沿滑移面滑移分离而造成的断裂。
(微孔聚集型断裂是材料韧性断裂的普通方式。
其断口在宏观上常呈现暗灰色、纤维状,微观断口特征花样则是断口上分布大量“韧窝”。
)4、试述韧性断裂与脆性断裂的区别,为什么说脆性断裂最危险?应力类型,塑性变形程度、有无预兆、裂纹扩展快慢。
5、断裂强度σc与抗拉强度σb有何区别?若断裂前不发生塑性变形或塑性变形很小,没有缩颈产生,材料发生脆性断裂,则σc=σb。
若断裂前产生缩颈现象,则σc与σb不相等。
6、格里菲斯公式适用哪些范围及在什么情况下需要修正?格里菲斯公式只适用于含有微裂纹的脆性固体,如玻璃、无机晶体材料、超高强钢等。
对于许多工程结构材料,如结构钢、高分子材料等,裂纹尖端会产生较大塑性变形,要消耗大量塑性变形功。
因此,必须对格里菲斯公式进行修正。
第二章材料单向静拉伸的力学性能1、应力状态软性系数;τmax和σmax的比值称为,用α表示。
α越大,最大切应力分量越大,表示应力状态越软,材料越易于产生塑性变形。