线性系统 复习
- 格式:ppt
- 大小:568.50 KB
- 文档页数:38
一、填空1、线性规划的数学模型中,决策者对于实现目标的限制因素称为—约束条件O2、在可行解区中,通过各极点作与目标函数直线斜率相同的平行直线,这些平行直线称之为_等值线o3、线性规划数学模型中,实际系统或决策问题中有待确定的未知因素,称之为—变量一4、对于供求平衡的运输问题,表上作业法是在平衡表的基础上首先求出一个—初始调运方案5、图解法中,可行解区域内满意目标函数的解称之为—可行解—o6、通过一种数学的迭代过程,逐步求得线性规划多变量模型最优解的方法,称之为—单纯形法—O7、用单纯形法求解线性规划问题时,若约束条件是等于或小于某确定数值,则应在每个不等式中引入一个—松驰变量—o8、线性规划的图解法适用于—只含有2~3个变量的线性规划问题o9、若B是原规划的最优可行基,则最优单纯形乘子Y*=C B B-I是其对偶规划的一最优解—o10、在线性规划模型中,没有非负约束的变量称为自由变量o11、在图论中,表示对象之间的某种特定的关系,通常用边或弧表示o12、原问题的第i个约束方程是型,则对偶问题的变量y是自由变量o13、在线性规划中,凡满意约束条件的解均称之_可行解—o14、单纯形法求解线性规划问题时,若要求得基础解,应令非基变量全为0 o15、使用线性规划单纯形法时,为了将模型转换成标准形式,我们可以在每个不等式中引入一个新的变量,这个新变量称一松驰变量C16、在线性规划的图解法中,全部可行解所分布的区域称之为可行解区—o17、在线性规划中,设约束方程的个数为m,变量个数为n, m<n时,我们可以把变量分为基变量和非基变量两部分,基变量的个数为_m个—o18、使目标值达到最优的可行解叫做—最优解—o19、假如实际运输问题的产销不平衡,为了转化为平衡的运输问题,我们可以虚设一个—产地或销地—O20、在产销平衡运输问题中,设产地为m个,销地为n个,那么基可行解中非零变量的个数(不能大于(m+n-l)o21、在一个网络中,假如图形是连通且不含圈的,则这种图形称之为—树—o22、关于线性规划问题,叙述正确的为其最优解若存在,在可行解中必有最优解—o23、使用人工变量法求解极大化线性规划问题时,当全部的检验数丐工。
第三、四章自测题解答一、 填空题:1、(1))(1t f 的参数为VA s T s 1,1,5.0===μμτ,则谱线间隔为__1000__kHz, 带宽为___2000__kHz 。
(2))(2t f 的参数为V A s T s 3,3,5.1===μμτ,则谱线间隔为___333__kHz, 带宽为_666__kHz 。
(3))(1t f 与)(2t f 的基波幅度之比为___1:3____。
(4))(1t f 的基波幅度与)(2t f 的三次谐波幅度之比为__1:1___。
2、由于周期锯齿脉冲信号的傅里叶级数的系数具有收敛性,因此,当k →∞时,k a =0。
3、信号x (t)的频带宽度为B ,x(2t)的频带宽度为 ,x(t/2)的频带宽度为 .3、根据尺度变化性质,可得x(2t)的频带宽度为2B ,可得x(t/2)的带宽为B/2。
6、设f (t)的傅里叶变换为)(ωj F ,则)(jt F 的傅里叶变换为2f ()πω-。
7、单个矩形脉冲的频谱宽度一般与其脉宽τ有关,τ越大,则频谱宽度 越窄 。
8、矩形脉冲通过RC 低通网络时,波形的前沿和后沿都将产生失真,这种失真的一个主要的原因是RC 低通网络不是理想低通滤波器,脉冲中的高频成分被削弱 。
9、为满足信号无失真,传输系统应该具有的特性(1)H(j )ω=;(2)h(t)= 。
9、(1)0j t Ke ω-(K 为常数),(2)0K (t-t )δ(0t 为常数) 10、已知某个因果连续时间LTI 系统的频率响应为H(j )ω,则该系统对输入信号tj t j e a e a E t x 0011)(ωω--++=的响应为 . 10、系统对输入信号t j t j e a e a E t x 0011)(ωω--++=的响应为)()()0()(010100ωωωωj H e a j H e a j EH t y t j t j -++=--。
完全能观V对连续时间线性时变系统和指定初始时刻九匚£如果存在一个时刻輕几f"*使系统以A W F为初始状态的输HVW恒为零,即HCmtreivj.则称非零状态「切在时刻如为不能观测;如果状态空闻中所有非塞状态在时刻f松都不为不能观测,则称系统在时刻如为完全能观瀝,不完全能观一致完全能观r如果系统对任意时刻均为完全能观測,即能观测性与初始时刻如的选取无关・则称系统为救S全能观测.完全能控判据对H维连续时间线性时不变系统,系统完全能控的充分必要条件为能控性判别矩阵S松=[5 AE,才鱼…才T R满秩,即ranliQ=ftn维连续时间线性时不变系统完全能控的充分必要条件为:rank{Sf-A / Vs€ C或TOM耳人r-坨月]="&为系统特征值能控性指数令Q& =2炯…屮5对完全能控连续时间线性时不变系统,定义能控性指数为:"=使/71戚0=丹成立的最小正整数h完全能观判据对科维连续时间线性时不变系统,系统完全能观测的充分必要条件为能观测性判别矩阵CCA满秩,即fank Qf,=rt歼维连续时间线性时不变系统完全能观测的充分必要条件;Sf-ACrank=/?V5E C或rank 人/一川C ZMy…4,为系统特征值= A(t)X + 5® Y 二 c(t)XI 屮r = —/厂⑴屮卩+ C 丁⑴/b =£「(f)屮 rP = \b Ab A^b …才比]能观性指数 宦义:令西=cCA完全能观测胖堆连续時间线性时不变系统的能观测性指数 定义为訂使"皿必0=/|"成立的最小正整数4离散系统能控 结论4 H 维离散时间线性时不变系统X 茁十1} = GVW 十切 系统完全能达的充分必要条件为矩阵久“乩他…”切馬秩 离散系统能观 结论8 «维离散时间线性时不变系统完全能观测的充分必要 条件为Q"* =c ' CG cc*-'对偶系统满秩能控标准型 比—|W6=严%©=eP兀=PrcinkQ^=r<n^尸1=尸=[如,血…4「丨Oz …,qJ于是可得能控子系统动态方程V = 4 rV 十岀沙厂十和 ”=百*不能控子系统动态方程丘点-兀2丫己Xl — C 2七zrank 0。
信号与线性系统知识点总复习1.信号的基本概念信号是电子信息工程中的重要概念,简单来说就是随时间(或空间)变化的物理现象。
信号可以分为连续信号和离散信号两种。
连续信号可以用函数表示,离散信号可以用数列表示。
2.常见信号的分类常见的信号类型包括连续时间信号、离散时间信号、周期信号、非周期信号、奇函数信号、偶函数信号等。
不同类型的信号在数学表示和性质上有所差异。
3.连续时间信号的基本性质连续时间信号可以通过振幅、频率、相位等参数来描述。
它们具有线性性质、时移性、尺度变换性质和时间反转性质。
这些性质对于信号的分析和处理都是重要的基础。
4.离散时间信号的基本性质离散时间信号是在离散时间点上取值的信号,通常用数列表示。
离散时间信号具有线性性质、时移性、尺度变换性质和时间反转性质。
此外,离散时间信号还有抽样定理、离散时间傅立叶变换等重要概念。
5.线性系统的基本概念线性系统是输入和输出之间存在线性关系的系统,可以用线性常微分方程或差分方程表示。
线性系统具有叠加原理、时不变性、因果性等基本特性。
线性系统的频率响应是分析系统特性的重要工具。
6.线性时不变系统的冲激响应冲激响应是线性时不变系统的重要性质,它描述了系统对单位冲激输入的响应。
从冲激响应可以得到系统的频率响应、相位响应等信息。
7.线性时不变系统的频率响应频率响应描述了线性时不变系统对不同频率的输入信号的响应特性。
它可以通过线性时不变系统的冲激响应来计算,常用的方法有离散时间傅立叶变换、连续时间傅立叶变换、z变换等。
8.线性系统的稳定性分析稳定性是线性系统分析中的重要性质。
对于连续时间系统,稳定性可以通过系统的传递函数的极点位置来判断。
对于离散时间系统,稳定性可以通过系统的差分方程的极点位置来判断。
9.线性系统的频域分析频域分析是信号与系统分析中的重要方法,可以通过傅立叶变换、拉普拉斯变换和z变换等来将信号从时域转换到频域。
频域分析可以得到信号的频谱特性、频率响应等信息。
目 录第1章 信号与系统1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 连续系统的时域分析2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 离散系统的时域分析3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 傅里叶变换和系统的频域分析4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 连续系统的s域分析5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 离散系统的z域分析6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 系统函数7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 系统的状态变量分析8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第1章 信号与系统1.1 复习笔记一、信号的基本概念与分类信号是载有信息的随时间变化的物理量或物理现象,其图像为信号的波形。
根据信号的不同特性,可对信号进行不同的分类:确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;实信号与复信号;能量信号与功率信号等。
二、信号的基本运算1加法和乘法f1(t)±f2(t)或f1(t)×f2(t)两信号f1(·)和f2(·)的相加、减、乘指同一时刻两信号之值对应相加、减、乘。
2.反转和平移(1)反转f(-t)f(-t)波形为f(t)波形以t=0为轴反转。
图1-1(2)平移f(t+t0)t0>0,f(t+t0)为f(t)波形在t轴上左移t0;t0<0,f(t+t0)为f(t)波形在t轴上右移t0。
图1-2平移的应用:在雷达系统中,雷达接收到的目标回波信号比发射信号延迟了时间t0,利用该延迟时间t0可以计算出目标与雷达之间的距离。
这里雷达接收到的目标回波信号就是延时信号。
3.尺度变换f(at)若a>1,则f(at)波形为f(t)的波形在时间轴上压缩为原来的;若0<a<1,则f(at)波形为f(t)的波形在时间轴上扩展为原来的;若a<0,则f(at)波形为f(t)的波形反转并压缩或展宽至。
1、已知线性定常系统状态方程为:Ax x =.其中,⎥⎦⎤⎢⎣⎡-=2310A (1)采用线性变换化A 为对角型;32231det )det(2-+=⎥⎦⎤⎢⎣⎡+--=-s s s s A SI 特征值:1,321=-=λλ鉴于系统矩阵是能控规范型,且特征值互异,故取变化矩阵⎥⎦⎤⎢⎣⎡-=1311P ⎥⎦⎤⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=--13,41434141 11AP P A P 故有则(2)求出状态转移矩阵)(t Φ;⎥⎦⎤⎢⎣⎡+--=-231)(s sA SI⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++-++--++--++=⎥⎦⎤⎢⎣⎡+-+=--=--141343143343141341143341312)1)(3(1)()()(1s s s s s s s s s s s s A SI A SI adj A SI (主对换,负变号)()[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+-+=-=Φ∴------t t tt t t tt e e e e e e e e A SI L t 4143434341414341)(333311 (3)初始状态T x ]10[)0(=时,写出系统齐次状态方程)(t x 。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-=Φ==--t t t t Ate e e e X t X e t X 41434141)0()()0()(332、已知系统方程为:[]x y u x x 110,121201112201=⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⋅(1)写出对偶系统的状态空间描述;;(2)写出原系统的能控矩阵c Q 、能观矩阵o Q ;(3)写出对偶系统的能控矩阵c Q 、能观矩阵o Q ;(4)运用对偶原理,判断原系统及其对偶系统的状态能控、能观测性。
原系统 :能控性: 能观测性:rank( )=3=n即原系统属于完全能控和完全能观系统。
对偶系统 : 根据对偶原理完全能控 完全能观测 完全能观测 完全能控推出,对偶系统属于完全能控和完全能观系统。
◆给定系统{A,B,C,D},当A的特征值两两相异时,利用特征向量组成变换矩阵,可化为对角形;当A的特征值不是两两相异时,有时可以化为对角形,有时不能化成对角形,只能化为约当形。
◆对n维线性时不变系统,若A为对角阵,且其特征值两两相异,系统完全能控的充分必要条件是B中不包含零行向量。
◆线性时不变系统引入坐标变换,其传递函数矩阵在线性非奇异变换下保持不变。
定义:称具有相同输入和输出的两个同维线性时不变系统代数等价,当且仅当它们的系统矩阵之间满足状态空间描述坐标变换中给出的关系。
代数等价的系统的基本特征是具有相同的代数结构特性,如特征多项式、特征值、极点、稳定性、能控性、能观测性等。
◆对完全能控单输入连续时间线性时不变系统,状态维数为n,则系统能控性指数μ=n。
结论①时间离散化属性:时间离散化不改变系统的时变或时不变属性。
②离散化系统属性:不管系统矩阵A(t)或A是非奇异或奇异,其离散化系统的系统矩阵G(k)和G必为非奇异。
◆如果A的特征值互不相同,则系统(A、B、C)为能控且能观测的充分必要条件是:传递矩阵G(s)的分母|sI-A|与分子之间不发生因子相消。
◆单输入、单输出系统(A、b、c)是能控且能观测的充分必要条件是:传递函数G(s)的分母|sI-A|与分子之间不发生因子相消◆单输入、单输出系统(A、b、c),如果A的特征值互不相同,若传递函数存在零、极点对消,则系统或是状态不能控或是状态不能观测的;若传递函数不存在零、极点对消,则系统是状态完全能控且完全能观测的。
◆对零初始条件p维输入和q维输出连续时间线性时不变系统,令初始时刻t0=0,则系统BIBO 稳定的充分必要条件为:真或严真传递函数矩阵G(s)的所有极点均具有负实部。
◆定义:称连续时间线性时不变系统在t0为内部稳定,是指由时刻t0任意非零初始状态引起的零输入响应Xou(t)对t∈[t0,+∞)有界,并满足渐近属性。
◆李亚普诺夫意义下稳定只能保证系统受扰运动相对于平衡状态的有界性,不能保证系统受扰运动相对于平衡状态的渐进性。
第一部分复习大纲1.什么是线性系统?线性系统一般怎样分类?2.状态空间的描述和输入输出描述的基本概念及其关系。
3.系统状态空间描述建模。
主要是指电路、力学装置、机电装置的状态空间描述数学模型。
4.状态方程的约当标准型及其性质。
5.传递函数矩阵概念。
传递函数矩阵与状态空间描述之间的关系(已知状态空间描述求传递函数矩阵和已知传递函数矩阵进行状态空间描述实现)。
6.线性坐标变换。
7.组合系统的状态空间描述,输入输出描述建模。
8.矩阵指数函数及其性质。
9.线性系统的运动求解,系统矩阵特征值,特征向量对运动的影响。
10.脉冲响应阵与传递函数阵的关系、卷积定理。
11.状态转移矩阵及其性质。
12.线性连续系统离散化及其性质、求解。
13.连续系统与离散系统的能控性、能达性、能观性、能测性及其判据。
14.能控性指数、能观性指数、对偶原理。
15.能控能观标准型及其结构分解,结构分解后各部分与输入输出描述,状态空间描述之间的关系,会对约当标准型进行结构分解并求传递函数。
16.线性系统内部稳定、BIBO稳定概念及其性质。
17.连续和离散系统的lyapunov稳定概念及其各种判别定理,会用lyapunov方法判断连续系统、离散系统的稳定性。
18.状态反馈、输入输出反馈性能比较。
19.极点配置及其算法。
20.镇定条件、镇定与极点配置的关系(算法不考,但对一个线性系统能进行是否能镇定条件判断)。
21.解耦控制形式、分类,各种解耦方法特点,系统能否解耦判断,会进行积分型解耦算法。
22.跟踪问题及其结构框图、内模原理(会建立跟踪问题的内模)、可跟踪条件。
23.各种线性二次型最优控制问题指标含义,掌握最优控制及其性能指标求法。
24.无限时间最优控制的稳定裕度,反馈增益可摄动范围及其物理意义。
25.状态观测器设计、分类及其特点,掌握全维和降维观测器设计方法。
26.状态观测器设计与状态反馈设计之间的关系问题。
第二部分复习大纲1.多项式、多项式矩阵的基本概念。
管致中信号与线性系统第5版知识点课后答案第1章绪论1.1 复习笔记⼀、信号的概念信号是随着时间变换的某种物理量。
信号可按不同⽅式进⾏分类,通常的分类如下:1.确定信号与随机信号当信号是⼀确定的时间函数时,给定某⼀时间值,就可以确定⼀相应的函数值。
这样的信号是确定信号。
但是,带有信息的信号往往具有不可预知的不确定性,它们是⼀种随机信号。
随机信号不是⼀个确定的时间函数,当给定某⼀时间值时,其函数值并不确定,⽽只知道此信号取某⼀数值的概率。
严格地说,在实际⼯程中遇到的信号绝⼤部分都是随机信号。
2.连续信号与离散信号确定信号可以表⽰为确定的时间函数,如果在某⼀时间间隔内,对于⼀切时间值,除了若⼲不连续点外,该函数都给出确定的函数值,这信号就称为连续信号(continuous signal)。
在⽇常⽣活中遇到的信号⼤都属于连续信号,例如⾳乐、声⾳、电路中的电流和电压等。
和连续信号相对应的是离散信号(discrete signal)。
离散信号的时间函数只在某些不连续的时间值上给定函数值。
3.周期信号与⾮周期信号⽤确定的时间函数表⽰的信号,⼜可分为周期信号(periodic signal)和⾮周期信号(non—periodic signal)。
周期信号是指对于任意的时间点,都满⾜=其中的被称为信号的周期。
从直观上看,周期信号是⼀段长度为的信号按照时间不断重复⽽构成的信号。
⽽不满⾜上述特性的信号被称为⾮周期信号。
4.能量信号与功率信号信号的能量,功率公式为:如果信号总能量为⾮零的有限值,则称其为能量信号;如果信号平均功率为⾮零的有限值,则称其为功率信号(power signal)。
⼆、信号的简单处理1.信号的相加与相乘两个信号的相加(乘)即为两个信号的时间函数相加(乘),反映在波形上则是将相同时刻对应的函数值相加(乘)。
图1-1所⽰就是两个信号相加的⼀个例⼦。
图1-12. 信号的延时发射机发出的信号传输到接收机的过程中,必须经过⼀定的信道。