当前位置:文档之家› 互通式立体交叉设计与选型

互通式立体交叉设计与选型

互通式立体交叉设计与选型
互通式立体交叉设计与选型

公路互通式立体交叉的设计与选型

马家宇

(河南省新开元路桥工程咨询有限公司)

一. 互通式立交简介 1 ?路线交叉的分类

[―?

加铺转角式

渠化

平面交丸 环形交叉(俗称转盘) 交通信号灯管制

—? 分码式立体交叉

立体交叉

- 互通式立体交叉

公路与公路交叉设计时,应采取措施尽可能消灭冲突点或减少改善冲突点。

(1) 实行交通管制 在交叉口设置交通信号灯或由交通警察指挥,使发生冲突的

车流从通行 时间上错开。

(2)

采用渠化交通 在交叉口内合理布置交通岛、交通标志和标线,或增设车逍

等,引导各

方向车流沿固定路径行驶,以减少车辆之间的相互干扰,改善冲突点和分合流点的位程及角度。

(3) 变冲突点为分合流点 环形平面交叉可以变冲突点为分合流点,进行交织,消灭了冲突点。 (4)

修建立体交叉 将相互冲突的车流从空间上分开,使其互不干扰。这是解决

交叉口交通 问题最彻底的办法a

2 ?互通式立交发展概况

1928年美国在新泽西州修建了世界上第一座苜蓿叶型互通式立交。由于英社会、经济效益良好, 发展十分迅速,到1936年,美国修建了 125座互通式立交。

我国互通式立交发展较晚且发展缓慢。1955年武汉滨江路修建了我国第一座部分苜蓿叶型互通 式立交:1956年北京市郊京密引水滨河路修建了三座部分互通式立交:1964年广州大北路修建了一 座双层环型立交。从1988年10月沪嘉高速公路通车至今,中国大陆髙速公路上过了 18年的快速发 展历程,公路互通式立交也随着高速公路得到快速的发展。

3?互通式立交分类

公路与铁路交叉

公路与管线交叉

路线交址一?

公路与公路咬潢

3.1按跨越方式分:上跨式、下穿式、半上跨半下穿式

3.2按交通功能分:全互通式、部分互通式

3.3按行车轨迹相互关系分:完全立交型、部分平交型、交织型

3.4按相交道路数分:两路相交、三路相交、四路相交、多路相交

3.5按立交层数分:两层式、三层式、四层式、多层式

3.6按收费与否分:收费立交、不收费立交

3.7按相交道路等级分:枢纽互通式立体交叉、一般互通式立体交叉

4.互通式立交组成

主线、被交线、立交桥、匝道、变速车道、渐变段(过渡段)、出入口、集散车道、辅助车道。

5.公路互通式立交的几个概念

公路互通式立体交叉分为枢纽互通式立体交叉和一般互通式立体交叉。

枢纽互通式立体交叉主要指髙速公路与髙速公路相互交叉的互通式立体交叉。

一般互通式立体交叉则主要指高速公路或一级公路与双车道公路相交叉的互通式立体交叉。

髙速公路与一级公路、一级公路与一级公路之间相交叉时,一般亦为枢纽互通式立体交叉,但当匝道合并设置收费站时为一般互通式立体交叉。枢纽互通式立体交叉的主要特点是交叉范用内的交通流无交叉冲突,并不得设置收费站,而一般互通式立体交叉则在除主线以外的其它部位可以设置收费站和平面交叉。

6.公路立交与城市立交的主要区别

61高等级公路一般通过互通式立交来实现收费:城市立交一般不考虑收费问题。

6.2城市立交必须处理非机动车流和行人问题:高等级公路限制非机动车和行人进入,故公路立交一般仅处理机动车问题。

6. 3公路立交的间距较大,地物障碍少,多采用地上明沟排水系统。立交形式简单,以二层式为主,但因匝道计算行车速度相对较高,立交占地较大。

城市立交相邻间距较小,需要合理解决庞大的自行车流和行人交通,且用地较紧张,受地上和地下各种管线及建筑物的影响大,多采用地下暗管排水并与城市排水系统连接;同时,要考虑施工时便于维

持原交通和快速施工等问题,比公路立交更多地重视美观的要求,常作为一种城市景观来设计。城市立交形式复杂、多样,往往做成多层式。

二、互通式立交匝道的基本型式

匝道的形式多种多样,按匝道与相交道路的关系,分为右转匝道和左转匝道两大类。

1?右转匝道

右转匝道如图2-1所示,从右侧驶出后直接右转约90°,到相交道路的右侧驶入,一般不设跨线构造物。其特形式简单,车辆运行方便,直接顺当,行车安全。

12^1 O— 1 R 八绘匕IW 斗旨三亡音* 同

图2-1右转匝道示意图

2.左转匝道

左转匝道车辆需转约270。越过对向车道,至少需要一座跨线构造物。按匝道与相交道路的关系, 左转匝道又可分为以下几种基本形式。

(1)直连式(又称直接式、定向式或左出左进式)

如图2-2所示,左转车辆直接从左侧驶岀,左转弯,到相交道路从左侧驶入。优点是匝道长度最短,可降低营运费用,没有反向迂回运行,自然顺畅,可适应较高车速。

缺点是跨线构造物较多,单行跨线桥二层式二座,或三层式一座,一般车辆左侧高速驶入驶出困难,对重型车和慢速车左侧髙速驶入也困难且不安全。

因宜连式左转匝道存在左出和左进的不利问题,与我国右侧行驶规则不相适应,所以除左转交通量很大外,一般不采用。

(2)半直连式(半直接式又称半立向式匝道)

按车辆由相交道路的进出方式可分为三种基本形式。

①左出右进式

如图2-3所示,左转车辆从左侧直接驶岀后左转弯,到相交道路时由右侧驶入。与左向式匝道相比,右进改变了左进的缺点,但仍然存在左出的问题;匝道略绕行。对应图式三种情况,需设二层式单行跨线桥和双向跨线桥各一座,或三层式双向跨线桥一座,或二层式单行跨线桥一座。

②右岀左进式

如图2 — 4所示,左转车辆从右侧右转驶出,在匝道上左转,到相交道路后直接由左侧驶入。改善了左岀的缺点,但左进仍然存在。

图9-16 右山左进

图2-4半直连式左转匝道(右出左进式)

③右出右进式

如图2-5所示,左转车辆都是右转弯驶出和驶入,在匝道上左转改变方向。完全消除了左出、左进的缺点,行车安全。但匝道绕行最长,构造物最多。图中五种形式应视地形、地物及线形等条件确定。

图2-5半宜连式左转匝道(右出右进式)

(3)间接式(又称环形式、环圈式)

如图2-6所示,左转车辆先驶过正线跨线构造物,然后向右回转约270°达到左转的目的。苴特点是右岀右进,行车安全;不需设构造物;造价最低。但最低线形指标差;占地较大:车速和通行能力低:左转绕行较长。

环圈式匝道为苜蓿叶式和喇叭式立交的标准组成部分。图中a)为常用的基本形式。

1^9-18 代冋逍

图2-6间接式左转匝道(环圈式)

三、公路互通式立交常用型式及适用条件

互通式立体交叉的基本型式按交叉的岔路数目分为T形、Y形和十字形三种。

T形交叉:包括喇叭形、直连式T形。

Y形交叉:包括全部直连式匝逍的Y形和有半直连式匝道的Y形。

十字形交叉:包括独象限式、菱形、苜蓿叶形、半苜蓿叶形、喇叭形、环形、和直连式。

1?喇叭形立交:

喇叭形立交是国内外髙等级公路最广泛采用的互通立交形式,按主要公路的左转弯出口在跨线构造物之前和之后而分为A型和B型两种,经环圈式左转匝道驶入主线的为A式,驶出时为B式,如图3-1中a和b所示。一般情况下宜采用A型,因地形、地物的限制或左转进入主线的交通量远大于左转驶码主线的交通量时,宜采用B型。但双车道匝道不应布登为环形匝道。由于这种立交的环圈式匝道车速较低,布设时应将环圈式匝道设在交通量小的方向上。主线可上跨或下穿,主线下穿对转弯交通出入口加减速有利,主线上跨时视野开阔,能够看到出入口情况。宜斜交或弯穿。

一、

a、A型

b>

b、B型

C、双喇叭

图34喇叭形立交

喇叭形立交适用于T形交叉或收费公路的十字交叉。双喇叭互通式立体交叉(图3-1 c)适用于匝

道上设有收费站的髙等级公路之间的一般互通式立体交叉。

特点:各转弯方向有独立匝道,完全互通,无冲突点和交织段,行车干扰小,安全度大,线形简单而造型优美。转弯车流一律从主线右侧出入,方向明确。只有一座跨线桥,工程较小。

缺点:左转弯匝道绕行路程较长。

2.直连式T形立交

直连式T形立交(图3?2)适用出入交通量相对较少或左转弯速度较低的枢纽互通式立体交叉。

bs两处跨线桥

图3—2直连式T形立交

3. Y形立交

Y形立交(图3-3)适用于右转弯速度髙,且交通量大的枢纽互通式立体交叉。从交通运行角度考虑,图3-3 b的布置比图3?3a的为优。

图3-3 Y形立交

特点:线形组合紧凑,占地相对较少,直接转向,方向明确,有利驾驶。左转弯车辆从左侧出入,右转弯车辆从右侧出入。

缺点:桥梁结构物多,特别是三层桥方案,高程相差大.引桥较长,路线纵坡较陡,造价髙。

4?子叶式立交

特点:匝道对称,形成叶状.造型优美,仅一座跨线桥,工程较小。

缺点:有两个内环匝道,且半径较小,左转弯车辆需旋转270度,绕行较长;有一交织段, 且靠近主线,于行车不利。

图3?4菱形立交

5?菱形立交

菱形立交(图3-5):形式简单且运行路程短捷,适合于岀入交通量较小,匝道上无收费站的一般互通式立体交叉。

立交能保证主线直行车辆快速畅通:转弯车辆绕行距离较短;主线上具有高标准的单一进岀口,交通标志简单;主线下穿时匝道坡度便于驶出车辆的减速和驶入车辆的加速:菱形立交形式简单,仅需一座桥,用地和工程费用小。但次线与匝道连接处为平面交叉,影响了通行能力和行车安全,只适用于髙速公路与次要道路相交的场合。

特点:结构简单,只有一座跨线桥,占地较少,工程费用省:左转弯匝道直捷,车辆绕行路程短。

缺点:有两个平交口。

6?半苜蓿叶形立交

半苜蓿叶形立交:按匝道布置方式可分为三类,即主要公路的出口在跨线构造物之前的A型(图3-6 a)和岀口在跨线构造物后的B型(3?6 b),以及以主要公路为对称轴布置匝道的A-B型(图3-6 c)。

它们适用于岀入交通疑较小的一般互通式立体交叉。

A 、

B 两种型式的选择主要取决于转弯交通的特点和用地条件。转弯交通量不平衡时,应以平而 交叉中的冲突最少作为匝道布设象限选择的原则。

A-B 型只适用于被交路傍依铁路或密集建筑群,或滨河的情况。

立交的主线直行车快速通畅:仅需一座桥,用地和工程费用较小;远期可扩建为全苜蓿叶式立 交。但次线上存在平而交叉,有停车等待和错路运行的可能。

半苜蓿叶形立交中,在不设环形匝道的象限内增加右转弯匝逍(图3-6 d ),适用于不设收费站的 一般互通式立体交叉。

ck 附加右转弯匝道 图3?6半苜蓿叶形立交

7.苜蓿叶形立交

苜蓿叶形立交(图3-7 a ):适用于左转交通咼较小的一般互通式立体交叉。在苜蓿叶形立交 中的直行车道旁增辟集散道(图3-7 b ),可避免转弯车流的交织对直行车流的干扰,但交织依然 存在,因而枢纽互通式立交应尽量避免采用这种类型。

a. A 型

b. B 型

c 、A-B 型

a b

图3?7苜蓿叶形立交

特点:各转弯方向有独立匝道,完全互通,转弯车流一律从主线右侧岀入,方向明确,无冲突点和交织段,安全度大,线形对称,造型优美。只有一座跨线桥,工程较小。

缺点:左转弯匝道绕行路程较长:四个内环匝道的岀入口之间构成两个交织段:整体占地面积较大:左转弯匝道限速较低也不便管理。

8.环形立交

环形立交:分两层式和三层式两种(图3-8),相交道路的车流轨迹线因匝道数不足而共同使用,且有交织路段的交叉,它们的特点是用地较省,但承担的转弯交通量有限。因此只适用于转弯交通量较小的交叉。规模较大的平而环形交叉扩容改建时,可采用两层式环形立交。

a、两层 b.三层

图3?8环形立交

环形立交适用于城市主要道路与一般道路交叉,可以用于5条以上道路的相交。这种立交能保证主线直通,交通组织方便,无冲突点,占地较少。但次要道路的通行能力受到环道交织能力的限制,车速受到中心岛直径的影响,构造物较多,左转车辆绕行距离长。当采用环形立交时,必须根据相交道路的性质进行比较研究,看环道的最大通行能力和所采用的中心岛尺寸能否满足远景交通疑和车速的要求。布设时应让主线直通,中心岛可采用圆形、椭圆形或其它形状。

特点:线形简单,造型优美,出入口位垃好,内环半径较大,匝逍车速较高,行驶方向明确,有利于行车:线形组合紧凑,占地相对较少但随内环半径变化而变化。

缺点:左转弯匝道有交织段。

9?直连式立交

(1)直连式立交:左转弯全部采用半直连式或同时有直连式匝道(即无环形匝道,如图3-9 所示),适合于各左转弯交通量均大的枢纽互通式立体交叉。

图3-9直连式立交

特点:左转匝道直接从主线或交叉线左侧岀入:左转匝道转向角较小(90度左右),曲线半径较 大,容许车速较高,车辆行程短捷,各向匝道独立设置,无冲突点,无交织段,交通条件优越,安 全度高;线形紧凑,造型优美,可以向空间竖向发展,占地、拆迁相对较少。

缺点:左转弯匝道从主线左侧出入,不符合司机习惯:跨线桥较多,桥梁工程疑大,造价昂贵, 施工难度大。

(2)涡轮形立交:(图3-9a 和b )是直连式立交中左转弯匝道平而指标较低的一种,适用于转弯 速度较低的枢纽互通式立体交叉。

b

图340涡轮形立交

10

?混合式立交

a

左转弯匝道既有环形匝道,又有半直连式匝道(图340)。而且应布置在对角象限中。它适

用于一个或两个左转弯交通量较小的枢纽互通式立体交叉。

图3-10混合式立交

11?复合式立交

当两处互通式立体交叉相距很近而不能保证应有的立交间距时,可将它们复合成一个立交,亦即在被复合的立交的宜行车道旁设置分隔的集散道,将出入口串联起来,使主线一个行驶方向上只保留一对出入口或减少某些出入口,如图3-11中a所示。对于出入交通量较大的复合立交(如其中一个为枢纽立交时),应采用匝道间的立体分离等措施来避免所有交织或髙速公路间的主流匝

道上的交织,如图3-11中b所示。

图3-11复合式立交

四、互通立交设计原则和思路

1.互通立交设计原则

1.1线形简单、直接、去向明确、正常

1.2运转顺适流畅

1.3行驶安全

1.4总体经济

1.5构造美观

2.互通立交设计步骤

在立体交叉设计之前,应收集下列所需设汁资料:

1自然资料测绘立交范围内的1: 500-1: 2000地形图,详细标注建筑物的建筑线、种类、层髙、地上及地下各种杆柱和管线;调查并收集用地发展规划,水文、地质、上壤、气候条件资料; 收集附近的国家控制点和水准点等。

2交通资料收集各转弯及直行交通疑,交通组成:推算远景交通量;绘制交通量流量及流

向图;调查非机动车和行人流量等。

3道路资料调查相交道路的等级、平纵而线形、横断面形式及尺寸;相交角度、控制坐标

和标髙:路而类型及厚度等。

收集立交所在区域的排水规划及现状:各管渠位置、埋深和尺寸。

调查取上、弃上和材料的来源:施工单位、季节、工期和交通组织与安全。

设计步骤

1初拟设汁方案 根据交通量和地形条件,在地形图上或其上覆盖的透明纸上勾绘出 各种可能的立交方案。

2确定比较方案 对初拟方案进行分析,应考虑线形是否顺适,技术指标能否满足,

各层间能否跨越,拆迁是否合理等,从中选岀2?4个方案进行进一步的比较。

3确左推荐方案

在地形图上按比例绘岀各比较方案,完成初步平纵设讣和概略工程量计

算,做出各方案的比较表,全而比较后确定推荐方案,一般1?2个。

4确泄采用方案 对推荐方案视需要做出模型或透视图,征询有关方面的意见,最后泄出采 用方案。 5详细测疑 对采用方案实地放线并详细测量,进一步收集技术设计所需的全部资料。 6技术设计

完成全部施工图和工程预算。

以上1-4步为初步设计阶段,5?6步为施工图设计阶段。

3、互通立交设计思路 3.1互通式立体交叉位置选择

互通式立体交叉位置的选泄所要考虑的主要因素,首先是路网分布情况,所要考虑的设置位麗 首先是路网系统的主要石点,即主线与沿线主要公路的相交点和与主要交通发生源连接线的相交点。 其次是主线和被交叉公路条件,要求交叉范伟I 内的主线技术指标,如出入口端部的视距和主线横坡 等,能提供安全的分合流条件并能与匝道顺适连接。被交叉公路则应具有与互通式立体交叉出入交 通量相适应的通行能力,并能为交通发生源提供近便的连接。此外,还应考虑地质和地形条件,以 及用地、文物、规划、景观和防污染等社会和环境因素。互通式立体交叉位苣选择在路线选线时应 重点考虑。

3.2在拟龙互通式立体交叉的形式时,交叉公路的功能、总出入交通屋以及是否合并设置收费设 施等决定了互通式立体交叉的基本类型。地形、地质、用地规划和施工期间维持临时通车等现场条 件、直行和转弯交通疑的分布以及是否需分期修建等决定了匝道的具体布局。

3.3在路网密度较高的区域,可通过路网中结点交通转换的合理分配,而将某些立交做成非全互 通式的(某些岔路间不相沟通,包括平交的转弯在内)。但一旦提供沟通,则应使往返匝道成对岀现。

3.4路口不宜过多,以不超过四肢为宜。 3.5应合理利用交叉角度和跨越的优势。

3.6立交形式应前后协调,出口类型最好一致,同时应重视岀入口的规划设讣,尤其是出口, 有条件互通立交应在主线上一个出口,然后在匝道上分流。

3.7立交布置应长远规划,近远期结合。 五、公路互通立交的选型

互通式立体交叉型式的选择是立交建设中重要的前期工作,型式不同,将使整个立交的交 通功能、投资、竟观及社会和经济效益等方而均受到影响。立体交叉的布局型式选择及设计的 合理与否,对交叉口通行能力的提高、交通安全、行驶时间的肖省和道路功能的提髙均有很大 影响。它不仅关系到主线的整体规划,还关系到道路的经济价值及周围环境等因素。

(一)影响立交形式选择的因素

影响因素可概括为道路、交通、环境及自然条件,具体内容详见下图所示。

5文书资料 收集设计任务书及有关文件等。

4排水资料 6其它资料

(二)立交形式选择的基本原则

互通式立交形式选择,应遵循下列基本原则:

1立交的形式首先取决于相交道路的性质、任务和远景交通量等,确保行车安全畅通和车流的连续。相交道路等级髙时应采用完全互通式立交,且交通屋大、计算行车速度高的行车方向要求线形标准高、路线短捷、纵坡平缓。

2选宦的立交形式应与所在地的自然环境条件相适应,要充分考虑区域规划、地形地质条件、可能提供的用地范围、周用建筑物及设施分布现状等。在满足交通要求前提下综合分析研究,力求合理利用地形,与周围环境相协调:力求造型美观,结构新颖合理。

3选型应全而考虑近远期结合,既要考虑近期交通要求,减少投资费用,又要考虑远期交通发展需要。

4选型应从实际出发,有利施工、养护和排水,尽量采用新技术、新工艺、新结构,以提髙质量、缩短工期和降低成本。

5选型和总体布宜要全面安排,分淸主次,充分考虑平面线形指标和竖向标高的要求。高速道路与其它道路相交,原则上髙速道路不变或少变,其它道路抬高或降低:城市立交以非机动车道不变或少变,有利于行人及自行车通行。

6选型应与左位相结合。立交的形式随所在位豊的地形、地物及环境条件而异,通常先建位后选型,二者统筹考虑。

(三)立交形式选择的步骤和要点

1?初定立交的基本形式

首先选择立交的总体布局,如上跨式或下穿式,完全互通式或

部分互通式,二层式、三层式或四层式,机动车与非机动车分行或混行,是否考虑行人交

通,是否收费等,在此基础上进一步选择立交的基本形式。表为常用立交形式的选择条件,可供参考。

对公路立交在确泄基本形式时,应根据各方面的交通量,结合地形、地物、当地交通条件综合考虑而定,并注意以下几点:

(1)直行和转弯交通量均大,相交道路的计算行车速度较高并要求用较高的速度集散时, 可采用定向式或半定向式匝道。

(2)相交道路等级相差较大,且转弯交通量不大时,可用菱形、部分苜蓿叶形或喇叭形。

(3)不设收费站的高速公路、一级公路相交时,可用苜蓿叶式。但英规模和用地较大,

且应设置集散车道以减少交通堵塞和交通事故。

<4)部分苜蓿叶式有两处相隔较近的平面交叉,对次线直行交通不利。当各向转弯交通量相差悬殊时,应在适当象限内布置匝道,将冲突减至最低程度。

<5)苜蓿叶式的环圈式匝逍以单车道为宜。若交通疑接近或大于单车道通行能力,则应采用半定向或定向匝道。

2立交方案的比较

有时要有几个立交方案可供选择,要经过多方案的技术、经济比较,以选择出满足交通功能要

求、适合现场条件、工程量小、投资省的最佳立交方案。

(三)各级公路互通立交形式的选择

1.一级公路和一级(或二级)公路交叉的互通立交的选型

一般不设豊收费站,满足功能要求,通行即可,服务水平和投资一般较低,设计时应注意 非机动车辆通行的处理,但应已机动车道为主。

两条一级公路相交需要设互通式立体交叉时,宜采用有附加右转弯匝道的半苜蓿叶形、苜 蓿叶形、环形立交和混合式立交。

一级公路与较低等级公路相交,因交通转换而设宜互通式立体交叉时,宜采用菱形、半苜 蓿叶形立交。在特殊情况下,也可采用独象限式立交。

属于地形需要而设互通式立体交叉时,可采用匝道布巻简单,造价低廉的独象限立交或菱 形立交等。

2?高速公路和一级(或二级)公路交叉的互通立交的选型

髙速公路与一级公路或交通量大的二级公路相交,而且需设置收费站的情况下,宜采用双 喇叭立交。

髙速公路与英余公路相交时,宜采用在低等级公路上存在平面交叉的旁It 式单喇叭形、 半苜蓿

叶形立交。匝道上不设收费时,宜采用菱形立交。 3?高速公路和高速公路交叉的互通立交的选型

以往的高速公路往往是条孤立的线,仅需设置一泄的一般互通式立体交叉,满足车辆上下 髙速公路的需求,枢纽互通式立体交叉很难形成。然而随着这几年国家髙速公路建设的发展, 以国家高速公路网为计于,以省市髙速公路为补充的髙速公路路网逐渐的形成,同时高速公路 的联网收费已是大势所趋,作为高速公路路网结点的枢纽互通式立体交叉,开始在髙速公路建 设中大量的岀现。

枢纽互通式立体交叉不同于英它的互通式立体交叉,其不但要保证交叉各髙速公路直行交 通的快速

最优立交方案

功能指标

环境扌

1

整 体

行 I1J

1J

i.i

通行能力

饱和度

技术咸

经济指标

2007-7-17

分期建逛应件

通畅,还要满足较大的转向交通的需求。枢纽互通式立体交叉已成为髙速公路上不可缺少的组成部分,而且在髙速公路建设中占有相当重要的位宜。枢纽互通立交的规划与设计日益显得重要,他直接关系着立交本身及相交髙速公路的通行能力是否能达到要求。

两条髙速公路相交时,宜采用直连式立交。但部分交通量较小(单车道能满足要求)的左转匝道可釆用设计速度低的直连式匝道,甚至环形匝道。如涡轮形立交和混合式立交

汽轮机设备选型原则

汽轮机设备选型原则 一、汽轮机: 1、汽轮机的一般要求 1、1主要设计参数: 汽轮机额定功率12MW 汽轮机最大功率15MW 进汽压力 3.43MPa 进汽温度435°C 额定进汽量/最大进汽量 90/120t/h 抽汽压力0.687MPa 抽汽温度200°C±20°C 额定抽汽量/最大抽汽量 50/80t/h 排汽压力 0.0049MPa(绝压) 冷却水温 20℃~33℃ 1、2机组运行方式:定压方式运行,短时可滑压运行。 1、3负荷性质:带可调整的供热负荷:压力、温度为抽汽口参数,承包商根据现场用汽参数可进行计算调整。 1、4 冷却方式:机力通风冷却塔 1、5汽轮机机组应满足规定的操作条件。在规定的操作条件下,机组应能全负荷、连续、安全地运行。 1、6汽轮机的设计寿命(不包括易损件)不低于30年,在其寿命期内能承受以下工况,总的寿命消耗应不超过75%。 1、7汽轮机及所有附属设备应是成熟的、先进的,并具有制造类似容量机组、运行成功的经验。不得使用试验性的设计和部件。 1、8机组的设计应充分考虑到可能意外发生的超速、进冷汽、冷水、着火和突然振动。防止汽机进水的规定按ASME标准执行。 1、9机组配汽方式为喷嘴调节,其运行方式为定压运行,短时可滑压运行。 1、10汽轮机进排汽及抽汽管口上可以承受的外力和外力矩至少应为按NEMA SM23计算出的数值的1.85倍。 1、11所有与买方交接处的接管和螺栓应采用公制螺纹。

1、12轴封应采用可更换的迷宫密封以减少蒸汽泄漏量,优先选用静止式易更换的迷宫密封。 1、13转子的第一临界转速至少应为其最大连续转速120%。 1、14整个机组应进行完整的扭振分析,其共振频率至少应低于操作转速10%或高于脱扣转速10%。 1、15材料:所使用的材料应是新的,所有承压部件均为钢制。所有承压部件不得进行补焊。主要补焊焊缝焊后需热处理。 1、16 低压缸与凝结器联接方式为弹性连接。 2、汽轮机转子及叶片 2、1汽轮机设计允许不揭缸进行转子的动平衡,即具有不揭缸在转子上配置平衡重块的条件,并设有调整危急保安器动作转速的手孔。 2、2叶片的设计应是成熟高效的,使叶片在允许的频率变化范围内不致产生共振。 2、3低压末级及次末级叶片应具有必要的防水蚀措施。 2、4应使叶根安装尺寸十分准确,具有良好互换性,以便顺利更换备品叶片。 2、5叶片组应有防止围带断裂的措施。 2、6发电机与汽轮机连接的靠背轮螺栓能承受因电力系统故障发生振荡或扭振的机械应力而不发生折断或变形。 2、7汽轮机转子应为不带中心孔结构,汽轮机转子应为整锻转子。 3、汽缸 3、1汽缸的设计应能使汽轮机在起动、带负荷、连续稳定运行及冷却过程中,因温度梯度造成的变形最小,能始终保持正确的同心度。 3、2汽缸进汽部分及喷嘴室设计能确保运行稳定、振动小。 3、3汽缸上的压力、温度测点必须齐全,位置正确,符合运行、维护、集中控制和试验的要求。 3、4汽缸端部汽封及隔板汽封有适当的弹性和推挡间隙,当转子与汽封偶有少许碰触时,可不致损伤转子或导致大轴弯曲。 3、5汽缸必须具有足够的强度和刚度,确保在任何运行工况下都不得发生跑偏、变形等现象。 4、轴承及轴承座 4、1主轴承的型式应确保不出现油膜振荡,各轴承的设计失稳转速应避开额定转速25%以上,并具有良好的抗干扰能力。 4、2检修时不需要揭开汽缸和转子,就应能够把各轴承方便地取出和更换。

浅析高速公路互通式立体交叉的安全因素

浅析高速公路互通式立体交叉的安全因素 邱英姿 (福建省交通规划设计院,福州350004) 摘要从选型、位置、出入口、连续性及标志牌的设置等方面来分析高速公路互通式立体交叉的安全因素,为互通式立交设计提供参考。 关键词高速公路互通式立体交叉安全因素 随着经济和科学的发展,我国的交通事业正以迅猛的姿势不断地发展壮大,而高速公路的建设是交通发展的一个重要体现。高速公路在满足人们的出行需求的最基本的要求下,更需要满足安全、快捷、舒适的高层次要求,追求与自然环境和社会环境的和谐统一,而安全是公路设计和建设需考虑的首要因素。 互通式立体交叉是高速公路与高速公路、一级公路以及其他公路相交实现交通转换的大型结构物,它是高速公路路线布设的一个重要的控制点,许多时候,它也是沿线城镇及路线的标志性建筑,来自各个方向的交通源都要通过它来实现交通转换。互通式立交在高速公路中扮演着重要的角色,它的运行方向的复杂性以及匝道指标低而产生的对行车速度的限制,都使得互通式立交成为交通事故的多发地,因此,对于我们设计人员来说,就应该特别注意互通式立交设计的安全因素。 互通式立交设计的安全因素体现在以下几个方面: (1)交叉形式和位置的选择。 互通式立体交叉是高速公路控制出入的主要道口,它是利用桥跨结构物和匝道从空间上进行交通分流。其形式的选择,应根据相交公路的功能、等级、交通量大小及流向、地形条件,并配合平、纵面线形,同时考虑工程量大小,设计为经济、适用的互通立交形式,以期最大限度地满足交通安全和畅通的要求。在互通立交形式中,主要是左转匝道的设计,一般较为迂回。如主要交通源为左转时,应采取对策,尽可能地获得短捷通畅的效果。 互通式立体交叉位置的选定,应以现有公路网或已批准的规划为依据,选择地形平坦开阔、地质良好、拆迁较少以及两相交公路均具有较高的平、纵线形技

机械工程师知识架构

机械工程师知识架构 —2018.12.15 第一大类是所有工程师的基础; 第二大类是设计工程师、工艺工程师、热处理工程师需要掌握的; 第三大类是设计工程师需要掌握的; 第四大类是工艺工程师需要掌握的,设计工程师需要了解的; 第五大类是设计工程师领导人需要掌握的,设计工程师需要了解的; 第六大类是质量工程师需要掌握的,设计工程师需要了解计量与检测; 第七大类是数控工程师需要掌握的,计算机绘图所有工程师需要掌握的; 第八大类是物流工程师、设备工程师、工厂布局工程师需要掌握的 一、工程制图与公差配合 1.工程制图的一般规定 (1)图框 (2)图线 (3)比例 (4)标题栏、明细表 (5)视图表示方法 (6)图面的布置 (7)剖面符号与画法 2.零部件图样的规定画法 (1)机械系统零、部件图样的规定画法(螺纹及螺纹紧固件的画法齿轮、齿条、蜗杆、蜗轮及链轮的画法花键的画法及其尺寸标注弹簧的画法) (2)机械、液压、气动系统图的示意画法(机械零、部件的简化画法和符号管路、接口和接头简化画法及符号常用液压元件简化画法及符号) 3.原理图 (1)机械系统原理图的画法 (2)液压系统原理图的画法 (3)气动系统原理图的画法

4.示意图 5.尺寸、公差、配合与形位公差标注 (1)尺寸标注 (2)公差与配合标注(基本概念公差与配合的标注方法) (3)形位公差标注 6.表面质量描述和标注 (1)表面粗糙度的评定参数 (2)表面质量的标注符号及代号 (3)表面质量标注的说明 7.尺寸链 二、工程材料 1.金属材料 (1)材料特性(力学性能物理性能化学性能工艺性能) (2)晶体结构(晶体的特性金属的晶体结构金属的结晶金属在固态下的转变合金的结构) (3)铁碳合金相图(典型的铁碳合金的结晶过程分析碳对铁碳合金平衡组织和性能的影响铁碳合金相图的应用) (4)试验方法(拉力试验冲击试验硬度试验化学分析金相分析无损探伤) (5)材料选择(使用性能工艺性能经济性) 2.其他工程材料 (1)工程塑料(常用热塑性工程塑料常用热固性工程塑料常用塑料成型方法工程塑料的应用) (2)特种陶瓷(氧化铝陶瓷氮化硅陶瓷碳化硅陶瓷氮化硼陶瓷金属陶瓷) (3)光纤(种类应用) (4)纳米材料(种类应用) 3.热处理 (1)热处理工艺(钢的热处理铸铁热处理有色金属热处理) (2)热处理设备(燃料炉电阻炉真空炉感应加热电源)

直流屏设计原则及部分设备选型原则

直流屏设计原则及部分设备选型原则 本设计原则的制定是根据:DL/T 5044-2014 电力工程直流电源系统设计技术规程。 DL/T 720-2013 电力系统继电保护及安全自动装置柜(屏) 通用技术条件 DL/T 459-2000 电力系统直流电源柜订货技术条件 一、充电机的选型原则: 1、1组蓄电池配置1套充电机装置时,应按额定电流选择高频开关电源基本模块。当基本模块数量为6个及以下时,可设置1个备用模块;当基本模块数量为7个及以上时,可设置2个备用模块。 1.1每组蓄电池配置一组高频开关电源时,其模块选择应按下式计算: n =1n +2n 基本模块的数量按下式计算: 1n = me r I I 附加模块的数量应按下列公式计算: 2n =1(当1n ≤6时) 2n =2(当1n ≥7时) 1.2一组蓄电池配置两组高频开关电源或两组蓄电池配置三组高频开关电源时,其模块选择应按下式计算: n me r I I 式中:n —高频开关电源模块选择数量,当模块选择数量不为整数时,可取邻近值;

1n —基本模块数量 2n —附件模块数量 r I —充电装置电流(A ) me I —单个模块额定电流(A ) 2、高频开关电源模块数量根据充电装置额定电流和单个模块额定电流选择,模块数量控制在3个~8个。 3、充电装置回路断路器额定电流应按充电装置额定输出电流选择,且应按下式计算: n I ≥k K rn I 式中:n I —直流断路器额定电流(A ); k K —可靠系数,取1.2; rn I —充电装置额定输出电流(A ) 表1 充电机装置回路设备选择表

互通式立交设计实例-2

2.7.17.2 延安路-南北高架立交 1.立交概况 1)立交等级 延安路-南北高架立交位于成都路、延安路交叉口,是市中心的重要交通节点。延安路是横穿上海市中心城区高架系统东西向的交通主干道,东接延安路隧道复线与浦东陆家嘴地区相连,西至虹桥国际机场和沪青平高速公路。南北高架是一条纵贯市中心区南北向的城市主干道,往南穿越黄浦江与浦东济阳快速路连接,往北至南北高架延伸线,与彭浦工业区和宝钢地区连接。延安路-南北高架立交不仅是连接这两条干道的交通枢纽,而且是上海市高架系统“申”字型骨架的中心点。因此,该立交是市区高架系统中最重要的交通枢纽工程之一,它的建成将为高架系统安全、畅通、快速运行起到极其重要的作用。根据立交所处的地理位置、相交道路的等级和在路网中的重要性,立交等级确定为互通式立交1级。 2)设计标准 立交主线设计车速为60km/h,匝道为30km/h;主线净空为5.2m,主线最小半径为1000m;匝道净空为4.5m,匝道最小半径为55m;主线最大纵坡为4.16%,匝道最大纵坡为5.5%。 3)选型依据 (1)用地条件 南北高架与延安路高架轴线间呈斜交72度,规划红线均控制在65m范围内,交叉口规划半径仅为80m。立交四周建筑物稠密,有8层高的浦东大楼,多幢5层楼新工房,其余大多为2至3层的老式砖房,在交叉口西南象限紧贴红线有2幢24层新建高层建筑,立交占地很小,设计条件极为苛刻,立交方案的取舍受地形约束较大。 (2)交通量预测 根据上海市交研所提供的交通流量预测资料,该立交远期2020年立交高峰小时流量为12683pcu/h,南北高架与延安路高架的交通比重2020年为54:45,南北高架流量略大于延安路高架流量。南北高架的直行流量占进口总流量的58%,延安路高架的直行流量占进口总流量的53%,因此首先应保证该节点直行车流的流量。

机械结构设计的方法和基本要求

机械结构设计的方法和基本要求 摘要:随着现代机械制造业的快速发展,对机械产品质量也提出更高的要求。 从现行大多机械设备设计情况看,更注重以自动化、轻量化、精密型以及高效型 等为设计方向。但也有部分设备运行中在噪声、振动问题上较为严重,不仅影响 设备综合性能的发挥,也容易对操作人员带来一定的伤害。通过实践研究发现, 将动态设计方法引入其中,对提升机械结构设计水平可起到明显作用。 关键词:机械结构设计;方法;要求 引言 机械结构设计是在总体设计的基础上,根据所确定的原理方案,确定并绘出 具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或 零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表 面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之 间关系等问题。 1机械零件结构工艺性分析的重要性 日常生产中,在对机器零件进行设计时,要求其结构不仅具体满足使用条件,而且要求结构的工艺性能良好,即具有很强的可行性和经济性。只有满足机械结 构设计的工艺性,才能保障生产地顺利进行,还具有零件装载完整、成本消耗少 等优点,能在市场竞争中处于优势地位。因此机器零件的结构工艺性设计是进行 机械设计的关键,其涉及面广、综合性强,值得深入研究。 此外,重视对机械零件的结构工艺性进行分析,可以促进机械加工工艺过程 合理化,减少工作量,提高工作效率。具体来讲,应该做好以下几方面工作:1)认真分析机械零件的结构对机械零件(尤其是复杂零件)的结构进行分析时,首 先要通过对图纸的详细分析,弄清各零件在产品中的装配关系和作用,再对该零 件指数(包括形状、尺寸等)和性质(如粗糙度等)进行详细分析;2)认真分 析零件加工工艺性在对机械零件的结构进行了详细、认真分析的基础上,搞清楚 各形状和尺寸的设计基准,分析个表面工艺性,检查各加工面设计基准与定位基 准是否重合,避免基准链换算而增加计算工作量。 2.机械结构设计常见问题分析 2.1机械结构在温度变化较大时,会产生较大的尺寸变化 较长零部件或者机械结构在温度变化较大时,会产生较大的尺寸变化,在设 计时应考虑温度变化产生的自由伸缩空间,如可以采用能够自由移动的支座、自 由胀缩的管道结构等。 2.2滑动轴承采用接触式密封结构 由于滑动轴承比滚动轴承的间隙大,而且滑动轴承发生一些磨损后,轴心产 生相应的移动,因此滑动轴承宜采用接触式密封结构。 2.3同一轴上布置两个键时,根据不同的键类型,选择不同的结构方式 半圆键是靠侧面传力的,由于键槽较深,若在同一个横剖面内采用对称布置 两个半圆键,将严重削弱轴的强度,最好将两个半圆键设计在同一轴向母线上, 平键两侧是工作面,上表面与轮毂键槽底面间有间隙,工作时靠轴槽、键及毂槽 的侧面受挤压来传递转矩,不能实现轴上零件的轴向固定,靠上下面压紧产生承 受载荷,连接处的偏压也承受载荷。 2.4对于带传动、链传动错误的结构设计 带传动结构设计时,由于紧边下垂较小,而松边下垂较大,应使紧边在下,

设备选型的原则和考虑的主要问题

设备选型的原则和考虑的主要问题 一:原则: 所谓设备选型即是从多种可以满足相同需要的不同型号、规格的设备中,经过技术经济的分析评价,选择最佳方案以作出购买决策。合理选择设备,可使有限的资金发挥最大的经济效益。 设备选型应遵循的原则如下。 ①生产上适用―所选购的设备应与本企业扩大生产规模或开发新产品等需求相适应。 ②技术上先进―在满足生产需要的前提下,要求其性能指标保持先进水平,以利提高产品质量和延长其技术寿命。 ③经济上合理―一即要求设备价格合理,在使用过程中能耗、维护费用低,并且回收期较短。 设备选型首先应考虑的是生产上适用,只有生产上适用的设备才能发挥其投资效果;其次是技术上先进,技术上先进必须以生产适用为前提,以获得最大经济效益为目的;最后,把生产上适用、技术上先进与经济上合理统一起来。一般情况下,技术先进与经济合理是统一的。因为技术一上先进的设备不仅具有高的生产效率,而且生产的产品也是高质量的。但是,有时两者也是矛盾的。例如,某台设备效率较高,但可能能源消耗量很大,或者设备的零部件磨损很快,所以,根据总的经济效益来衡量就不一定适宜。有些设备技术上很先进,自动化程度很高,适合于大批量连续生产,但在生产批量不大的情况下使用,往往负荷不足,不能充分发挥设备的能力,而且这类设备通常价格很高,维持费用大,从总的经济效益来看是不合算的,因而也是不可取的。

二:考虑的主要问题 1.设备的主要参数选择 (l)生产率 设备的生产率一般用设备单位时间(分、时、班、年)的产品产量来表示。例如,锅炉以每小时蒸发蒸汽吨数;空压机以每小时输出压缩空气的体积;制冷设备以每小时的制冷量;发动机以功率;流水线以生产节拍(先后两产品之间的生产间隔期);水泵以扬程和流量来表示。但有些设备无法直接估计产量,则可用主要参数来衡量,如车床的中心高、主轴转速,压力机的最大压力等。设备生产率要与企业的经营方针、工厂的规划、生产计划、运输能力、技术力量、劳动力、动力和原材料供应等相适应,不能盲目要求生产率越高越好,否则生产不平衡,服务供应工作跟不上,不仅不能发挥全部效果反而造成损失,因为生产率高的设备,一般自动化程度高、投资多、能耗大、维护复杂,如不能达到设计产量,单位产品的平均成本就会增高。 (2)工艺性 机器设备最基本的一条是要符合产品工艺的技术要求,把设备满足生产工艺要求的能力叫工艺性。例如:金属切削机床应能保证所加工零件的尺寸精度、几何形状精度和表面质量的要求;需要坐标镗床的场合很难用铣床代替;加热设备要满足产品工艺的最高和最低温度要求、温度均匀性和温度控制精度等。除上面基本要求外,设备操作控制的要求也很重要,一般要求设备操作轻便,控制灵活。产量大的设备自动化程度应高,进行有害有毒作业的设备则要求能自动控制或远距离监督控制等。 2.设备的可靠性和维修性 (l)设备的可靠性

互通式立体交叉双车道匝道出入口形式分析

互通式立体交叉双车道匝道出入口形式分析 摘要:近年来,随着社会经济发展速度的加快,信息技术水平的提高,我国交通事业也取得了突飞猛进的发展。在道路工程项目的建设中,互通式立体交叉匝道的出入口形式化通常分为两种,即平行式与直接式,这两种形式各有优点与缺点,下面文章基于国内双车道匝道出入口形式侧移转向以及车道数平衡等相关问题的分析,结合车道渐变率、车道数的平衡、变速车道的长度以及辅助车道等相关内容,就互通式立体交叉双车道匝道出入口形式进行详细地阐述。 关键词:双车道;匝道出入口;互通式;车道 一、引言 在互通式立体交叉匝道设计上,一般情况下为单车道,而伴随着社会经济发展速度的加快,城市化进程脚步的加快,公路建设项目的增多,交通量的加大,在公路互通式立体交叉上所用车道已逐渐从单车道向双车道匝道方向发展,并不断增多。相对于单车道而言,双车道匝道出入口形式在设计上有很大的不同,且也更为复杂。 二、互通式立体交叉双车道匝道常见的出入口形式 在公路建设规范与要求中,对于双车道匝道出口形式予以了明确的规定,即应为直接式的双车道,且其入口形式应为辅助车道直接式双车道。双车道匝道出入口形式大致可分为三种,即平行式、直接式以及混合式,其中平行式由平行式与辅助车道所构成;混合式由直接式与辅助车道所构成。为便于阐述与对比,下面笔者结合分河流车辆行车轨迹、车道数平衡以及变速车道长度等,对比分析每一种形式。 第一,在路政建设规定中明确规定若互通式立体交叉匝道数量大于1,则在出入口应设置相应的辅助车道,简单地讲就是双车道匝道的出口首先应满足的一个条件就是车道数平衡,满足该条件的目的主要表现为以下三个方面:一为基于行车安全以及可靠的满足,使每一个行车道均可得到合理且充分地利用;二为以免车辆因车道数的增加,而使车流量减少,有效避免交通事故的发生;三为避免因无辅助车道与车道数不平衡,同一出口的多次分流间距比较近而发生交通事故或者对主线直行车辆正常行驶造成影响。但是在实际设计建设过程中,采用的这种直接式双车道匝道出入口形式,其车道数明显不平衡。针对这种情况,在实际双车道匝出入口形式的应用过程中,还需谨慎应用该形式,同时在设计过程中,还需进行交通标志的设置或者在变速车道进行变速装置的设置,以此有效避免上述问题的发生。 第二,在双车道匝道出入口设计上,若采用辅助车道与直接式相结合的形式,尽管其车道数能够达到平衡,但车辆自主线基本车道至匝道这一过程中存在着两个两个线形转折,甚至超过两个,而这也很容易给驾驶人员带来不便,同时在一定程度上还会使部分路面出现严重的浪费现象。

机械结构设计准则汇总

机械结构设计准则汇总 第一部分、塑料件 1、概述: 注塑件设计的一般原则: z 充分考虑塑料件的成型工艺性,如流动性; z 塑料件的形状在保证使用要求的前提下,应有利于充模,排气,补缩, 同时能适应高效冷却硬化; z 塑料设计应考虑成型模具的总体结构,特别是抽芯与脱出制品的复杂程 度,同时应充分考虑到模具零件的形状及制造工艺,以便使制品具有较 好的经济性: z 塑料件设计主要内容是零件的形状、尺寸、壁厚、孔、圆角、加强筋、 螺纹、嵌件、表面粗糙度的设计。 1.1、常用塑料介绍 常用的塑料主要有 ABS、AS、PC、PMMA、PS、HIPS、PP、POM 等,其 中常用的透明塑料有 PC、PMMA、PS、AS。高档电子产品的外壳通常采用 ABS+PC;显示屏采用 PC,如采用 PMMA 则需进行表面硬化处理。日常生活中 使用的中底挡电子产品大多使用 HIPS 和 ABS 做外壳,HIPS 因其有较好的抗老 化性能,逐步有取代 ABS 的趋势。 1.2、常见表面处理介绍 表面处理有电镀、喷涂、丝印、移印。ABS、HIPS、PC 料都有较好的表面处 理效果。而 PP 料的表面处理性能较差,通常要做预处理工艺。近几年发展起来 的模内转印技术(IMD)、注塑成型表面装饰技术(IML)、魔术镜(HALF MIRROR)制造技术。 IMD 与 IML 的区别及优势: 1、 IMD 膜片的基材多数为剥离性强的 PET,而 IML 的膜片多数为 PC。 2、 IMD 注塑时只是膜片上的油墨跟树脂接合,而 IML 是整个膜片履在树 脂上。 9 3、 IMD 是通过送膜机器自动输送定位,IML 是通过人工操作手工挂。 1.3、外形设计 对于塑料件,如外形设计错误,很可能造成模具报废,所以要特别小心。外 形设计要求产品外观美观、流畅,曲面过渡圆滑、自然,符合人体工程。 现实生活中使用的大多数电子产品,外壳主要都是由上、下壳组成,理论上 上下壳的外形可以重合,但实际上由于模具的制造精度、注塑参数等因素影响, 造成上、下外形尺寸大小不一致,即面刮(面壳大于底壳)或底刮(底壳大于面壳)。可接受面刮<0.15mm,可接受底刮<0.1mm。所以在无法保证零段差时,尽 量使产品:面壳>底壳。 一般来说,上壳因有较多的按键孔,成型缩水较大,所以缩水率选择较大, 一般选 0.5%。 底壳成型缩水较小,所以缩水率选择较小,一般选 0.4%。

(完整word版)设备设计与选型

设备设计与选型 7.1全厂设备概况及主要特点 全厂主要设备包括反应器6台,塔设备3台,储罐设备8台,泵设备36台,热交换器19台,压缩机2台,闪蒸器2台,倾析器1台,结晶器2台,离心机1台,共计80个设备。 本厂重型机器多,如反应器、脱甲苯塔、脱重烃塔,设备安装时多采用现场组焊的方式。 在此,对反应器、脱甲苯塔等进行详细的计算,编制了计算说明书。对全厂其它所有设备进行了选型,编制了各类设备一览表(见附录)。 7.2反应器设计 7.2.1概述 反应是化工生产流程中的中心环节,反应器的设计在化工设计中占有重要的地位。 7.2.2反应器选型 反应器的形式是由反应过程的基本特征决定的,本反应的的原料以气象进入反应器,在高温低压下进行反应,故属于气固相反应过程。气固相反应过程使用的反应器,根据催化剂床层的形式分为固定床反应器、流化床反应器和移动床反应器。 1、固定床反应器 固定床反应器又称填充床反应器,催化剂颗粒填装在反应器中,呈静止状态,是化工生产中最重要的气固反应器之一。

固定床反应器的优点有: ①反混小 ②催化剂机械损耗小 ③便于控制 固定床反应器的缺点如下: ①传热差,容易飞温 ②催化剂更换困难 2、流化床反应器 流化床反应器,又称沸腾床反应器。反应器中气相原料以一定的速度通过催化剂颗粒层,使颗粒处于悬浮状态,并进行气固相反应。流态化技术在工业上最早应用于化学反应过程。 流化床反应的优点有: ①传热效果好 ②可实现固体物料的连续进出 ③压降低 流化床反应器的缺点入下: ①返混严重 ②对催化剂颗粒要求严格 ③易造成催化剂损失 3、移动床反应器 移动床反应器是一种新型的固定床反应器,其中催化剂从反应器顶部连续加入,并在反应过程中缓慢下降,最后从反应器底部卸出。反应原料气则从反应器底部进入,反应产物由反应器顶部输出,在移动床反应器中,催化剂颗粒之间没有相对移动,但是整体缓慢下降,是一种移动着的固定床,固得名。 本项目反应属于低放热反应,而且催化剂在小试的时候曾连续运行1000

校园网设备选型与设计

目录 第一章校园网概述.......................................................................................... - 1 - 第二章校园网设备选型 .................................................................................. - 2 - 2.1校园网设备选型对校园网建设的重要意义.......................................... - 2 - 2.2校园网设备的分类............................................................................... - 2 - 2.3校园网设备选型的原则 ....................................................................... - 2 - 2.4 校园网交换机选择.............................................................................. - 3 - 2.4.1交换机的分类标准 .................................................................... - 3 - 2.4.2交换机的性能参数 .................................................................... - 4 - 2.4.3交换机的网络参数 .................................................................... - 4 - 2.4.4交换机的接口............................................................................ - 4 - 2.4.5其它参数 ................................................................................... - 5 - 2.5校园网路由器选择............................................................................... - 5 - 2.5.1 路由器的分类标准 ................................................................... - 5 - 2.5.2 路由器的性能参数 ................................................................... - 5 - 第三章校园网网络规划与设计 ....................................................................... - 7 - 3.1 大学的背景......................................................................................... - 7 - 3.2 校园网用提供功能.............................................................................. - 7 - 3.3 校园网对主机系统的主要要求 ........................................................... - 7 - 3.4 校园网络系统设计方案应满足如下要求............................................. - 7 - 3.5校园网对网络设备的要求.................................................................... - 8 - 3.6 网络设计 ............................................................................................ - 8 - 3.6.1 目前各主流网络结构概述 ........................................................ - 8 - 3.6.2 千兆以太网技术 ....................................................................... - 8 - 3.7网络总体规划...................................................................................... - 9 - 3.8网络总体设计方案............................................................................... - 9 - 3.9网络产品定型.................................................................................... - 10 - 3.9.1网络设备中的产品定型 ........................................................... - 10 - 3.9.2校园网络出口设备定型 ........................................................... - 11 - 第四章网络技术介绍 .................................................................................... - 12 - 4.1 VLAN构建........................................................................................ - 12 - 4.1.2 VLAN的介绍.......................................................................... - 12 - 4.1.3 VLAN的作用.......................................................................... - 12 - 4.1.4 VLAN在交换机上的实现方法 ................................................ - 12 -

浅谈互通式立体交叉变速车道设计

浅谈互通式立体交叉变速车道设计 中图分类号:U491.2+23文献标识码: A 文章编号: 变速车道是主线与匝道的连接部,其主要功能是实现主线与匝道车辆进出及速度的过渡,是整个互通式立体交叉交通系统中最易发行交通事故的路段。具体表现为:1)合流端加速车道设置不合理,车辆提前进入主线;2)分流端减速车道设置不明显,汽车驶过或驶错匝道进口,驾驶员慌乱造成事故;3)分流端减速车道长度不够,汽车来不及减速而撞向护栏。可见变速车道的设置相当重要。如何减少事故隐患,提高行车舒适性,保证交通流畅通,是在设计阶段必须重视的问题。 变速车道由渐变段和变速车道规定长两部分组成。变速车道规定长是从渐变段车道宽度达到一个车道宽度的位置开始,到分(合)流端结束。变速车道从功能上可分为加速车道和减速车道,车速较高的立体交叉道口,为使高速车辆由干道能减速驶入匝道而设置减速车道;反之为使匝道的车辆能加速驶入干道而设置加速车道。从形式上可分为直接式与平行式两种。直接式变速车道的整个车道均由三角段构成,与平行式变速车道相比较,线形顺适圆滑,与实际行车轨迹相吻合,但直接式变速车道的起点位置不易识别,易合行车方向混淆。因此在设计时至少约500m前变要让司机识别三角端部,为此宜采用不同颜色的路面或采用画线方法予以区分,并加设交通标志。平行式变速车道中有一段与主线车道相平行,在端部以适当流出角度的三角段与主线相连接。其特点是车道划分明确,行车容易辩认,但车辆出入需按反向曲线行驶,对行车不利。尤其在短的变速车道上,出入的车辆会因来不及转向而偏离行车道,当主线交通量较小时,这种倾向尤为强烈。一般情况下,变速车道为单车道时,减速车道采用直接式,加速车道采用平行式;变速车道为双车道时,加、减速车道均可采用直接式;主线为左偏并接近圆曲线最小半径的一般值时,其右方的减速车道应为平行式,且应缩短渐变段(将缩短的长度补在平行段上);减速车道连接环形匝道时不宜采用平行式。 一)平面接线设计 单车道匝道及单向双车道匝道一般采用直接式变速车道。匝道的平面设计线一般为匝道行车道的中心线。对直接式变速车道,其接线起点位置的确定原则是:保证主线外侧车道的车辆能顺畅地驶入外侧匝道,根据这一原则,单车道匝道的设计起点位置应在主线外侧车道中心线上,由于单向双车道匝道的前段一般设置了辅助车道,因此,其设计位置应在主线外侧车道的右侧、辅助车道的左侧。对于采用直接式的变速车道,一般按照规范规定的渐变率确定流出角(减速车道渐变段起点的切线与主线外侧车道中心线的夹角)后,计算出直接式变速车道起点处的坐标值及切线方位角,所求切线方位线加上流出角,作为直接式变速车道第一段的线形的起始切线方位角,然后进行匝道的线形的设计计算。减速车道一般采用曲线法设计(因其易于控制渐变段及减速车道长度和指标)。直接式变速车道全长范围内宜采用与主线相同的线形,并且保持相同的流出角,以保证驶出的车辆能在一定的行驶距离内保持与主线一致的操作。单车道的变速车道一般采用

最新整理机械结构设计基础知识复习过程

机械结构设计基础知识 1前言 1.1机械结构设计的任务 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 1.2机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 2机械结构件的结构要素和设计方法 2.1结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 2.2结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、形状、尺寸、精度及表面质量等。同时还必须考虑满足间接相关条件,如进行尺寸链和精度计算等。一般来说,若某零件直接相关零件愈多,其结构就愈复杂;零件的间接相关零件愈多,其精度要求愈高。例如,轴毂联接见图1。 2.3结构设计据结构件的材料及热处理不同应注意的问题 机械设计中可以选择的材料众多,不同的材料具有不同的性质,不同的材料对应不同的加工工艺,结构设计中既要根据功能要求合理地选择适当的材料,又要根据材料的种类确定适当的加工工艺,并根据加工工艺的要求确定适当的结构,只有通过适当的结构设计才能使所选择的材料最充分的发挥优势。 设计者要做到正确地选择材料就必须充分地了解所选材料的力学性能、加工性能、使用成本等信息。结构设计中应根据所选材料的特性及其所对应的加工工艺而遵循不同的设计原则。

饲料机械设备的选型原则

混合后的粉状饲料经制粒,可使饲料的营养及食用品质等各方面都得到不同程度的改善和提高。制粒不仅适用于畜禽饲料,更适合于水产及特种饲料。由于饲料原料的品种、组分不同,成品规模不同,对制粒设备的性能、结构参数等亦有不同的要求。制粒工序中一般都配有制粒、冷却、碎粒及分级等设备,有的还配有油脂喷漆系统。上述几种设备的选型原则如下: 1、制粒机饲料厂使用的制粒机有环模和平模两种。平模更适合于粗饲料的制粒,因此仅对环模制粒机作以说明。由于环模制粒机的工作原理大体相同,选型时对其性能的评定主要从结构设计的合理性、操作方便程度、结构参数的选择、加工手段、制造水平、零部件选材、进货渠道及控制功能等几方面来综合考虑。 2、冷却器冷却是为了制粒后产品能保持较好的贮藏性能,是制粒后不可缺少的程序。长期以来,制粒以后冷却采用错流式冷却,虽然能满足使用要求,冷却颗粒温度小于7oC但在操作时如不慎就容易达不到标准。因此,近期出现的逆流式冷却器是冷却原理较为合理的机型,因对流式热交换系统最为完善和合理。 3、碎粒机碎粒可节约动力消耗,提高畜禽的消化吸收率。目前碎粒机几乎全部采用辊式碎粒,其性能主要通过对机器的结构合理性、结构参数、工艺参数、加工水平来评定。辊径大压力大,容易击碎。压辊齿形有两类,一类是交叉的斜齿,而且以锋对锋为宜,齿数不宜过多,这就减少出粉率;第二类是直齿与斜齿组合,这种组合处分率亦较少,但这两类齿形排列都能满足使用要求,出粉率应控制在3%以内。但从实际使用出发,调节两辊的距离十分重要,否则在两辊距离不等情况下工作,产品不均匀,可以在调节手轮处设有表尺以便于操作。另外选型时必须注意碎粒机的进口尺寸,要与冷却器出口完全吻合,否则将增加出粉率。 4、分级筛碎粒后物料经分级后除去其粉料部分,以保证物料具有纯粹的小颗粒,使喂养效果达到最佳。现有分级筛主要有振动分级筛、回转振动筛,两者都能达到较好的效果。振动分级筛应根据物料的性质、流量来调整筛体的振幅,以达到最佳效果。回转振动筛由于筛面距离较长,所以分级效果较好,亦是常用设备之一。总之,这两类机型均能达到使用要求,分级效率可达到98%~99%以上。 5、熟化熟化是为了提高饲料的糊化度,改善颗粒饲料的耐水性所设置的工序,同时亦可改善制粒性能及食用品质。熟化工艺还处于初级阶段。目前,后熟化工艺所选用带蒸汽添加系统及夹套保温装置的熟化稳定器,使料温保持在80oC~90oC颗粒在机内可保持20~40min(可调),使颗粒中的淀粉糊化或能成网状结构,这就能满足耐水性达6min以上的要求。 6、挤压(膨胀)器、膨化机挤压膨胀器与膨化机工作原理极为相似,主要是结构参数及工艺参数相差较大,如螺杆压缩比,1.05~1.2:1挤压室内稳定为120oC~130oC挤压腔内工作压力为9.8×10-5~4.9×10-6Pa.有害因子的破坏率在80%~90%以上,淀粉部分的糊化度为85%~90%. 另外螺杆合螺套的材料是否合金钢,加工手段是否合理、先进,热处理后性能如何,这些参数与使用效果有着直接关系,不可忽视,必须了解。

机械结构设计基本原则

机械结构设计基本原则 目录 一、改善力学性能的结构设计原则... (一)载荷分担原则... (二)均匀受载原则(载荷均布)... (三)附加力自平衡原则(载荷平衡)... (四)减小应力集中... (五)提高接触强度原则... (六)提高刚度原则... (七)变形协调原则... (八)等强度原则... (九)其它... 二、改善制造工艺性的结构设计原则... (一)焊接件结构设计原则... (二)铸件结构设计原则... (三)切削件结构设计原则... (四)锻件结构设计原则... (五)薄板件结构设计原则... (六)其它... 三、提高装配质量的结构设计原则... (一)便于运送原则... (二)便于方位识别原则... (三)方便抓取原则... (四)方便定位原则... (五)简化装配操作原则...

(六)可装配原则... (七)各装配面依次装配原则... (八)简单联接件原则... (九)便于拆卸原则... 四、提高精度的结构设计原则... (一)阿贝(Abbe)原则... (二)误差校正与补偿... (三)误差均化... (四)误差配置... (五)位置精确微调... 五、宜人化结构设计原则... (一)减小操作者疲劳的结构... (二)易于发力的结构... (三)减少操作者观察错误的结构... (四)减少操作者操作错误的结构... (五)考虑人体的振动特性的结构及减少操作环境噪声的结构0. (六)减弱工作环境光线照度的结构... (七)保证合适工作环境温度的结构... 六、其它机械结构设计要求简介... (一)减轻腐蚀的结构... (二)符合材料热胀冷缩性质的结构... 讨论题...

《公路立体交叉设计细则》答疑

《公路立体交叉设计细则》答疑 1.分流鼻端N C=N E+N F-1,为什么不能是 N C=N E+N F(P28)?互通内主线 车道减少,能否通过分流减少,而不向下游延伸辅道(P86)? 答:分流连接部如果也采用 = + 的车道分布原则,例如,当4=2+2, 即单向四车道分流为两双车道(图1),且第1、2车道均为基本车道时,主线有2条基本车道在分流鼻端处被中断,且位于第1车道的车辆如欲继续直行,需经两次换道;当第2车道为基本车道、第1车道为辅助车道时,主线有1条基本车道在分流鼻端处被中断;当第1、2车道均为辅助车道时,部分流出车辆需经两次换道。这些,都很容易引起交通混乱或误行,故分流连接部不应采用 = + 的平衡原则。为达到车道平衡, 当直行车道在分流鼻端减少时,应通过分流鼻端并在延长一段距离后再渐变中断,且互通内主线每次减少的基本车道数不应超过一条。 2.合分流连接部辅助车道“最小”长度为表10.6.3,与互通最小净距的数据 很接近,是否适用范围太狭隘了,更小的时候如何处理(P85)? 答:合分流连接部辅助车道长度与互通最小净距不是同一概念,辅助车道长度在表10.6.3的表注中已说明是合流鼻端与分流鼻端之间的距离;净距在术语2.0.12中也有明确定义,互通净距即减速车道渐变段终点至下一减速车道渐变段起点之间的距离,故两数值虽然接近,但由净距确定的鼻端之间的距离远大于辅助车道长度。 当合流鼻端与分流鼻端之间的距离小于辅助车道最小长度时,6.6.2~6.6.5条已规定,可采用集散道相连或匝道相连的复合式,甚至可采用多岔交叉的互通式立体交叉形式。 图1 单向四车道分流为两双车道时车道不平衡的连接

相关主题
文本预览
相关文档 最新文档