第七章 平面势流
平面不可压位流的基本方程 几种简单的二维位流 一些简单流动的迭加
平面不可压位流的基本方程
前一章介绍了流体运动所必须遵守的规律:质量方程及 欧拉方程。 这一章应该讨论怎样求解这些方程。 但是,要求得这些偏微分方程的解,是要满足一定边界 条件的,否则求出来的解没有实际意义。不过,飞行器的外 形都比较复杂,要在满足如此复杂的边界条件之下来求得这 些方程的解,实际上是办不到的。
达朗培尔疑题
达朗培尔(D’Alembert)18世纪法国著名数学家,他提 出,在理想不可压流中,任何一个封闭物体的绕流,其阻
力都是零。
这个结论不符合事实。这个矛盾多少耽误了一点流体 力学的发展,那时人们以为用无粘的位流去处理实际流动
是没有什么价值的。
后来才知道,这样撇开粘性来处理问题,是一种很有
2、直匀流加偶极子
只有当正源和负源的总强度等于零时,物形才是封闭的。设 直匀流 v 平行于x轴,由左向右流。再把一个轴线指向负x 的偶极子放在坐标原点处。这时,流动的位函数是:
x ( x, y ) v x M 2 r
流动是直匀流流过一个圆。圆的半径可以从驻点A的 坐标定出来。令:
1 , 2 ,..., n a11 a2 2 an n
不可压平面流必有流函数
vx y
无旋条件
vy x
v y
v x x y
也满足拉普拉斯方程
2 2 2 0 2 x y
几种简单的二维位流
1、直匀流
直匀流是一种速度不变的最简单的平行流动。其流速为
末这流动便只有υr,而没有v 。 设半径为r处的流速是υr,那末这个源的总流量是:
Q 2rv r
流量是常数,故流速υr与半径成反比: