§X8.3 理想气体的状态方程 气体热现象的微观意义
- 格式:doc
- 大小:101.50 KB
- 文档页数:6
高三上册物理知识点解析:气体热现象的微观意义
高三上册物理知识点解析:气体热现象的微观意义
物理学是研究自然界的物质结构、物体间的相互作用和物体运动最一般规律的自然科学,对客观世界的规律作出了深刻地揭示。
跟着一起看看高三上册物理知识点解析:气体热现象的微观意义。
合作探究一随机事件与统计规律
1.建立概念:
①必然事件:
②不可能事件:
③随机事件:
2.实验探究:伽尔顿板实验
实验原理简介:小球从漏斗口落下,在到达底部前,与钉子发生碰撞,然后落到下面的槽中。
观察现象一:单个小球会落到哪个槽?有什么特点?
答:
观察现象二:大量小球下落会出现什么情况?有什么规律吗?
答:
小结:个别随机事件的出现具有:
大量随机事件的整体会表现出一定的性,这种规律叫做统计规律。
合作探究二气体分子运动的特点
阅读课本27页气体分子运动的特点,小组讨论总结分子运动有哪些特点?
合作探究三气体热现象的微观解释
1.气体温度的微观解释
小组讨论后回答下面问题:
①同一温度下分子速率的分布有什么样的特点?
②不同温度下的分子速率的分布有什么样的规律?
小结:
①通过定量分析可以得出:理想气体的与分子的
成正比。
表达式:
②温度是的标志
2.气体压强的微观解释
【观察与思考】请同学们观察雨伞的受力情况,同时思考气体对器壁的压强是怎样产生的?
小结:.气体压强的产生原因(微观解释):
【做出猜想】压强的大小跟哪些因素有关呢?
合作探究四对气体实验定律的微观解释
1.玻意耳定律:一定质量的气体,在温度不变的情况下,压强p 与体积V成反比。
§X8.3 理想气体的状态方程气体热现象的微观意义执笔人:陵县一中魏德宾[学习目标]1、准确理解理想气体这个物理模型。
2、会推导理想气体的状态方程,并能够应用理想气体状态方程求解相应的题目和解释相关的现象。
3、了解统计规律及其在科学研究和社会生活中的作用。
4、知道分子运动的特点,掌握温度的微观定义。
5、掌握压强、实验定律的微观解释。
[自主学习]一、理想气体1、为了研究问题的方便,可以设想一种气体,在任何,我们把这样的气体叫做理想气体。
2、理想气体是不存在的,它是实际气体在一定程度的近似,是一种理想化的模型。
3、理想气体分子间,除碰撞外无其它作用力,从能量上看,一定质量的理想气体的内能完全由决定。
二、理想气体的状态方程1、内容:一定质量的理想气体在从一个状态变到另一个状态时,尽管P、V、T都可能改变,但是压强跟体积的乘积与热力学温度的比值保持不变。
2、方程:,。
3、推导:(两种方法)4、推论(1)一定质量的理想气体当状态变化过程中三个状态参量保持某一个参量不变时,就可以从理想气体状态方程分别得到(2)根据气体的密度ρ=m/V,可以得到气体的密度公式5、适用条件6、注意方程中各物理量的单位,温度必须用,公式两边中P和V单位必须,但不一定是国际单位。
三、气体分子运动的特点1、从微观的角度看,物体的热现象是由的热运动所决定的,尽管个别分子的运动有它的不确定性,但大量分子的运动情况会遵守一定的。
2、分子做无规则的运动,速率有大有小,由于分子间频繁碰撞,速率又将发生变化,但分子的速率都呈现的规律分布。
这种分子整体所体现出来的规律叫统计规律。
3、气体分子运动的特点(1)分子的运动杂乱无章,在某一时刻,向着运动的分子都有,而且向各个方向运动的气体分子数目都。
(2)气体分子速率分布表现出“中间多,两头少”的分布规律。
温度升高时,速率大的分子数目,速率小的分子数目,分子的平均速率。
4、温度是的标志。
用公式表示为。
第四节气体热现象的微观意义气体热现象的微观意义指的是通过研究气体的分子结构和运动,来解释和理解气体的热传导、热膨胀、热传递等热现象的行为。
这种研究方法能够从微观的角度出发,揭示出气体热现象的根本原理,对于我们更深入地理解气体的性质和行为具有重要意义。
首先,气体热现象的微观意义在于揭示了气体分子的运动特性。
根据动理论,气体分子在运动过程中的速度、方向和碰撞等行为对于气体的热传导、热膨胀等现象具有重要影响。
通过研究气体分子的平均速度、能量分布以及碰撞的频率和方式,我们可以更准确地预测和解释气体的热传导和热膨胀现象。
这对于相关领域的研究和应用具有重要意义,例如热工学、热力学、材料科学等。
其次,气体热现象的微观意义在于揭示了气体的热传导机制。
气体的热传导是指热能从高温区域向低温区域的传递过程。
在微观尺度上,气体分子之间通过碰撞和相互作用传递能量。
通过研究气体分子之间的碰撞方式和能量传递机制,我们可以理解气体热传导的原理和规律。
例如,通过研究气体分子的自由路径和碰撞概率,我们可以计算气体的热导率和热传导速率,从而更好地控制和应用气体的热传导性能。
此外,气体热现象的微观意义还在于揭示了气体的热膨胀机制。
在微观尺度上,气体分子的运动导致气体的体积随着温度的变化而发生变化。
通过研究气体分子的运动规律和热膨胀机制,我们可以解释和预测气体的体积随温度变化的规律。
这对于工程设计和材料选择具有重要意义,例如在设计汽车内燃机时需要考虑气体的热膨胀对引擎的影响,同时在材料选择时需要考虑气体的热膨胀系数以及材料的热稳定性。
最后,气体热现象的微观意义还在于揭示了气体的热传递机制。
热传递是指热能从高温区域向低温区域的传递过程,它由传导、对流和辐射三种方式组成。
通过研究气体分子的运动和能量的传递规律,我们可以理解气体的传导、对流和辐射热传递机制,从而更准确地预测和解释气体的热传递行为。
这对于能源利用和热工学应用具有重要意义,例如在工业生产中的热能转换和传输过程中需要考虑气体的热传递性能,同时在设计和优化热力系统时要考虑气体传导、对流和辐射的综合影响。
第八章第3、4节 理想气体的状态方程 气体热现象的微观意义1.理想气体:(1)定义:在任何温度、压强下都严格遵守气体实验定律的气体。
(2)理想气体是从实际中抽象出来的物理模型,实际中不存在。
但在温度不太低,压强不太大的情况下,可把实际气体看作是理想气体。
2.理想气体的状态方程:(a )状态方程:=或=C(b )气体实验定律可看作是状态方程的特例:当m 不变,T1=T2时 p1V1=p2V2 玻意耳定律当m 不变,V1=V2时 = 查理定律当m 不变,p1=p2时 = 盖·吕萨克定律(c )推广:气体密度与状态参量的关系;由此可知,气体的密度与压强成正比,与热力学温度成反比。
3.气体分子运动的特点:(1)气体分子的微观模型:气体分子可看作没有相互作用力的质点,气体分子间距大(约为分子直径的10倍),分子力小(可忽略)所以气体没有一定的形状和体积。
(2)气体分子运动的统计规律:①统计规律:大量偶生事件整体表现出来的规律叫统计规律②气体分子沿各个方向运动的机会(几乎)相等③大量气体分子的速率分布呈现中间多(具有中间速率的分子数多)两头少(速率大或小的分子数目少)的规律4.气体压强的微观解释:(1)气体的压强是大量分子频繁的碰撞容器壁而产生的(2)影响气体压强的两个因素:①气体分子的平均动能,从宏观上看由气体的温度决定②单位体积内的分子数,从宏观上看是气体的体积5.理想气体的内能仅由温度和气体质量决定,与体积无关。
因其分子间无相互作用力6. 对气体实验定律的微观解释:(n0为单位体积内的分子数,为分子平均动能) 111T V p 222T V p T V p 11T p 22Tp 11T V 22T V k E【例1】一定质量的理想气体被一绝热气缸的活塞封在气缸内,气体的压强为p0.如果外界突然用力压活塞,使气体的体积缩小为原来的一半,则此时压强p的大小为[ ]A.p<2p0 B.p=2p0C.p>2p0 D.无法判断【答案】正确答案为C【小结】气体被绝热压缩,其内能将会变大,相应的气体的温度会升高,所以绝热压缩的终状态的压强比同情况下等温压缩的终状态的压强大.【例2】如果使一个普通居室的室温升高一些,则室中空气的压强(设室外的大气压强不变)[ ]A.一定增大B.一定减小C.保持不变D.一定会发生变化【答案】正确答案是C【小结】一般说来普通居室是室内空气与室外空气相通的,温度升高,室内空气发生等压变化,气体温度升高,分子密度变小.【例3】密封容器中气体的压强[ ]A.是由气体受到重力产生的B.是由气体分子间的相互作用(吸引和排斥)产生的C.是大量气体分子频繁地碰撞器壁产生的D.当容器处于下落时将减小为零【解析】气体的压强是大量气体分子频繁地碰撞器壁产生的,与宏观运动没有直接关系.【答案】C【例4】有一医用氧气钢瓶,瓶内氧气的压强p=5.0×106Pa,温度t=27℃,求氧气的密度,氧气的摩尔质量μ=3.2×10-2kg/mol.结果取两位有效数字.【解析】用克拉珀龙方程求解.也可以用取1mol的氧气在标准状态与此状态比较,求出此状态下的密度.【答案】略。
物理教研活动说课稿
——《理想气体状态方程》和《气体热现象的微观意义》
说教材:
1.地位:气体实验定律是3-3唯一的Ⅱ级要求知识点,理想气体状态方程是气体
实验定律的综合,难度较大,属于高考必考内容;气体热现象的微观意
义在小题中出现,了解但要辨清。
2.内容:(1)理想气体:基本考查,难度较小,热考。
注意理想气体的内能与体
积无关
(2)理想气体状态方程:会推导,能利用。
(3)分子运动的特点及其分布规律:注意分布规律图
(4)气体压强的微观解释及气体实验定律的微观解释。
说学情:(1)对理想气体状态方程学生并不陌生,在化学中已经掌握(2)在物理中能够确定研究对象的初、末状态的状态参量及研究对象经
过的变化过程,准确选择气体实验定律。
与力学内容相联系,确定气体
压强,对两部分气体相联系的问题确定两者间的等量关系,寻找隐含的
条件,以及两部分气体相联系的具有多过程的问题。
对于学生难度不小,
需逐步理清。
(3)对于气体热现象的微观解释,不是难点。
说教法:
(一)理想气体的状态方程
1、理想气体的定义:直接解释,不过多的解释。
(什么是理想气体,是
理想化的模型,可看作理想气体)
2.气体状态方程的推导:课本思考与讨论,学生自主完成
3.例题分析:逐步引导,由易到难,理清思路,建立信心。
(二)气体热现象的微观意义
1.统计规律那一块儿一句话带过,不必过多解
2.速率分布那儿要让学生认识清楚,提问的方式巩固。
3.气体压强的微观解释和气体实验定律的微观解释学生自主阅读,提问
的方式巩固记住就行。
理想气体状态方程 气体热现象的微观意义知识精讲1.理想气体:(1)定义:在任何温度、压强下都严格遵守气体实验定律的气体。
(2)理想气体是从实际中抽象出来的物理模型,实际中不存在。
但在温度不太低,压强不太大的情况下,可把实际气体看作是理想气体。
2.理想气体的状态方程:(a )状态方程:111T V p =222T V p 或TV p =C(b )气体实验定律可看作是状态方程的特例:当m 不变,T 1=T 2时 p 1V 1=p 2V 2 玻意耳定律 当m 不变,V 1=V 2时11T p =22T p查理定律当m 不变,p 1=p 2时 11T V =22T V盖·吕萨克定律(c )推广:气体密度与状态参量的关系;由此可知,气体的密度与压强成正比,与热力学温度成反比。
3.气体分子运动的特点:(1)气体分子的微观模型:气体分子可看作没有相互作用力的质点,气体分子间距大(约为分子直径的10倍),分子力小(可忽略)所以气体没有一定的形状和体积。
(2)气体分子运动的统计规律:①统计规律:大量偶生事件整体表现出来的规律叫统计规律 ②气体分子沿各个方向运动的机会(几乎)相等③大量气体分子的速率分布呈现中间多(具有中间速率的分子数多)两头少(速率大或小的分子数目少)的规律4.气体压强的微观解释:(1)气体的压强是大量分子频繁的碰撞容器壁而产生的 (2)影响气体压强的两个因素:①气体分子的平均动能,从宏观上看由气体的温度决定 ②单位体积内的分子数,从宏观上看是气体的体积5.理想气体的内能仅由温度和气体质量决定,与体积无关。
因其分子间无相互作用力6. 对气体实验定律的微观解释:(n 0为单位体积内的分子数,k E 为分子平均动能)例1. 如图所示,粗细均匀的一端封闭一端开口的U型玻璃管,当t1=31℃,大气压强p0=1atm时,两管水银面相平,这时左管被封闭,气柱长l1=8cm。
求:(1)当温度t2等于多少时,左管气柱长l2为9cm?(2)当温度达到上问中温度t2时,为使左管气柱长l3为8cm,则应在右管加多长水银柱?【解析】本题考查理想气体状态方程在两个物理方程中的应用。
§X8.3 理想气体的状态方程气体热现象的微观意义执笔人:陵县一中魏德宾[学习目标]1、准确理解理想气体这个物理模型。
2、会推导理想气体的状态方程,并能够应用理想气体状态方程求解相应的题目和解释相关的现象。
3、了解统计规律及其在科学研究和社会生活中的作用。
4、知道分子运动的特点,掌握温度的微观定义。
5、掌握压强、实验定律的微观解释。
[自主学习]一、理想气体1、为了研究问题的方便,可以设想一种气体,在任何,我们把这样的气体叫做理想气体。
2、理想气体是不存在的,它是实际气体在一定程度的近似,是一种理想化的模型。
3、理想气体分子间,除碰撞外无其它作用力,从能量上看,一定质量的理想气体的内能完全由决定。
二、理想气体的状态方程1、内容:一定质量的理想气体在从一个状态变到另一个状态时,尽管P、V、T都可能改变,但是压强跟体积的乘积与热力学温度的比值保持不变。
2、方程:,。
3、推导:(两种方法)4、推论(1)一定质量的理想气体当状态变化过程中三个状态参量保持某一个参量不变时,就可以从理想气体状态方程分别得到(2)根据气体的密度ρ=m/V,可以得到气体的密度公式5、适用条件6、注意方程中各物理量的单位,温度必须用,公式两边中P和V单位必须,但不一定是国际单位。
三、气体分子运动的特点1、从微观的角度看,物体的热现象是由的热运动所决定的,尽管个别分子的运动有它的不确定性,但大量分子的运动情况会遵守一定的。
2、分子做无规则的运动,速率有大有小,由于分子间频繁碰撞,速率又将发生变化,但分子的速率都呈现的规律分布。
这种分子整体所体现出来的规律叫统计规律。
3、气体分子运动的特点(1)分子的运动杂乱无章,在某一时刻,向着运动的分子都有,而且向各个方向运动的气体分子数目都。
(2)气体分子速率分布表现出“中间多,两头少”的分布规律。
温度升高时,速率大的分子数目,速率小的分子数目,分子的平均速率。
4、温度是的标志。
用公式表示为。
四、气体压强的微观意义1、气体的压强是而产生的。
气体压强等于大量气体分子作用在器壁。
2、影响气体压强的两个因素:,。
从两个因素中可见一定质量的气体的压强与,两个参量有关。
五、对气体实验定律的微观解释1、一定质量的气体,温度保持不变时,分子的平均动能是的,在这种情况下,体积减小时,分子的,气体的压强就这就是玻意耳定律的微观解释。
2、这就是查理定律的微观解释。
3、是盖·吕萨克定律的微观解释。
[典型例题]1、如图8—23所示,一定质量的理想气体在不同体积时的两条A.气体由状态a变到状态c,其内能减少,一定向外界放出了热量B.气体由状态a变到状态d,其内能增加,一定向外界吸收了热量C.气体由状态d变到状态b,其内能增加,一定向外界吸收了热量图8—23 D.气体由状态b变到状态a,其内能减少,一定向外界放出了热量2、如图8—24所示,粗细均匀一端封闭一端开口的U形玻璃管,当t1=310C,大气压强P0=76cmHg时,两管水银面相平,这时左管被封闭的气柱长L1=8cm,则(1)当温度t2多少时,左管气柱L2为9cm?(2)当温度达到上问中的温度t2时,为使左管气柱长L为8cm,图8—233、关于温度的概念,下列说法中正确的是( ) A 、温度是分子平均动能的标志,物体温度越高,则物体的分子的平均动能大 B 、物体的温度高,则物体每一个分子的动能都大 C 、某物体内能增大时,其温度一定升高 D 、甲物体温度比乙物体温度高,则甲物体的分子平均速率比乙物体大 4、有关气体的压强,下列说法正确的是( ) A 、气体分子的平均速率增大,则气体的压强一定增大 B 、气体分子的密集程度增大,则气体的压强一定增大 C 、气体分子的平均动能增大,则气体的压强一定增大 D 、气体分子的平均动能增大,气体的压强有可能减小 5、以查理定律为例,用分子动理论从微观的角度作出解释[针对训练]1、 如图8—24所示,表示一定质量的理想气体沿从a 到b 到c 到d 再到a 的方向发生状态变化的过程,则该气体压强变化情况是( ) A 、 从状态c 到状态d ,压强减小,内能减小 B 、 从状态d 到状态a ,压强增大,内能减小 C 、 从状态a 到状态b ,压强增大,内能增大 D 、 从状态b 到状态c ,压强不变,内能增大2、 钢筒内装有3kg 气体,当温度是-230C 时,压强为4atm ,如果用掉1kg 后,温度升高到270C ,求筒内气体的压强。
3、 下列哪些量是由大量分子热运动的整体表现所决定的( )A 、压强B 、温度C 、分子密度D 、分子的平均速率4、对一定质量的理想气体,下列说法正确的是( )A 、体积不变,压强增大时,气体分子的平均动能一定增大B 、温度不变,压强减小时,气体的密度一定减小C 、压强不变,温度降低时,气体的密度一定减小D 、温度升高,压强和体积都可能不变5、从气体压强的微观意义,解释在图8—25中,竖直放置两端封闭的玻璃管升温时液柱的移动方向。
[能力训练]1、分子运动的特点是()A、分子除相互碰撞或跟容器碰撞外,可在空间里自由移动B、分子的频繁碰撞致使它做杂乱无章的热运动C、分子沿各个方向运动的机会均等D、分子的速率分布毫无规律2、下面关于温度的叙述正确的是()A、温度是表示物体冷热程度的物理量B、两个系统处于热平衡时,它们具有一个共同的性质——温度相同C、温度是分子热运动平均动能的标志D、温度的高低决定了分子热运动的剧烈程度3、下面关于气体压强的说法正确的是()A、气体对器壁产生的压强是由于大量气体分子频繁碰撞器壁而产生的B、气体对器壁产生的压强等于作用在器壁单位面积上的平均作用力C、从微观角度看,气体压强的大小跟气体分子的平均动能和分子密集程度有关D、从宏观角度看,气体压强的大小跟气体的温度和体积有关4、对于理想气体下列哪些说法是不正确的()A、理想气体是严格遵守气体实验定律的气体模型B、理想气体的分子间没有分子力C、理想气体是一种理想模型,没有实际意义D、实际气体在温度不太低,压强不太大的情况下,可当成理想气体5、一定质量的理想气体,从状态P1、V1、T1变化到状态P2、V2、T2。
下述过程不可能的是()A、P2>P1,V2>V1,T2>T1B、P2>P1,V2>V1,T2<T1C、P2>P1,V2<V1,T2>T1D、P2>P1,V2<V1,T2<T16、密封的体积为2L的理想气体,压强为2atm,温度为270C。
加热后,压强和体积各增加20%,则它的最后温度是7、用活塞气筒向一个容积为V的容器内打气,每次能把体积为V0、压强为P0的空气打入容器内。
若容器内原有空气的压强为P0,打气过程中温度不变,则打了n次后容器内气体的压强为8、在温度为00C、压强为1.0×105Pa的状态下,1L空气的质量是1.29g,当温度为1000C、压强等于2.0×105Pa时。
1Kg空气的体积是多少?9、为了测定湖的深度,将一根试管开口向下缓缓压至湖底,测得进入管中的水的高度为管长的3/4,湖底水温为40C,湖面水温为100C,大气压强76cmHg。
求湖深多少?10、某房间的容积为20m3,在温度为170C,大气压强为74cmHg,室内空气质量为25Kg,则当温度升为270C,大气压强为76cmHg时,室内空气的质量为多少?[学后反思] ___________________________________________________ ————————————————————————————————————————————————————参考答案[自主学习]一、理想气体1、温度、任何压强下都遵从气体实验定律3、温度二、理想气体状态方程2、PV/T=C,P1V1/T1=P2V2T23、略4、(1)玻意耳定律,查理定律,盖·吕萨克定律(2)P1/T1ρ1=P2/T2ρ25、理想气体,一定质量6、热力学温度,统一三、气体分子运动的特点1、大量气体分子,统计规律2、中间多两头少3、(1)任何一个方向,相等(2)增加,减少,增大4、分子平均动能,T=a E K四、气体压强的微观意义1、大量气体分子频繁持续地碰撞器壁,单位面积上的平均作用力2、气体分子的平均动能,单位体积内的分子数,温度,体积五、对气体实验定律的微观解释1、一定,分子的密集程度增大,增大2、一定质量的气体,体积保持不变时,分子密集程度保持不变,在这种情况下,温度升高,分子平均动能增大,气体的压强就增大3、一定质量的气体,温度升高时,分子平均动能增大,只有气体的体积同时增大,使分子的密集程度减小,才能保持压强不变[典型例题]1、B、D2、(1)78℃(2)11.75cm3、A4、D5、略[针对练习]1、A、C2、3.2atm3、A、B、D4、A、B5、略[能力训练]1、A、B、C2、A、B、C、D3、A、B、C、D4、A、C5、B6、432K7、P0(1+nV0/V)8、530L 9、30.13m 10、24.8Kg。