MATLAB-第四章
- 格式:ppt
- 大小:140.50 KB
- 文档页数:20
m a t l a b入门经典教程--第四章数值计算-CAL-FENGHAI.-(YICAI)-Company One1第四章数值计算4.1引言本章将花较大的篇幅讨论若干常见数值计算问题:线性分析、一元和多元函数分析、微积分、数据分析、以及常微分方程(初值和边值问题)求解等。
但与一般数值计算教科书不同,本章的讨论重点是:如何利用现有的世界顶级数值计算资源MATLAB。
至于数学描述,本章将遵循“最低限度自封闭”的原则处理,以最简明的方式阐述理论数学、数值数学和MATLAB计算指令之间的内在联系及区别。
对于那些熟悉其他高级语言(如FORTRAN,Pascal,C++)的读者来说,通过本章,MATLAB卓越的数组处理能力、浩瀚而灵活的M函数指令、丰富而友善的图形显示指令将使他们体验到解题视野的豁然开朗,感受到摆脱烦琐编程后的眉眼舒展。
对于那些经过大学基本数学教程的读者来说,通过本章,MATLAB精良完善的计算指令,自然易读的程序将使他们感悟“教程”数学的基础地位和局限性,看到从“理想化”简单算例通向科学研究和工程设计实际问题的一条途径。
对于那些熟悉MATLAB基本指令的读者来说,通过本章,围绕基本数值问题展开的内容将使他们体会到各别指令的运用场合和内在关系,获得综合运用不同指令解决具体问题的思路和借鉴。
由于MATLAB的基本运算单元是数组,所以本章内容将从矩阵分析、线性代数的数值计算开始。
然后再介绍函数零点、极值的求取,数值微积分,数理统计和分析,拟合和插值,Fourier分析,和一般常微分方程初值、边值问题。
本章的最后讨论稀疏矩阵的处理,因为这只有在大型问题中,才须特别处理。
从总体上讲,本章各节之间没有依从关系,即读者没有必要从头到尾系统阅读本章内容。
读者完全可以根据需要阅读有关节次。
除特别说明外,每节中的例题指令是独立完整的,因此读者可以很容易地在自己机器上实践。
MATLAB从版升级到版后,本章内容的变化如下:MATLAB从版起,其矩阵和特征值计算指令不再以LINPACK和EISPACK库为基础,而建筑在计算速度更快、运行更可靠的LAPACK和ARPACK程序库的新基础上。
第4章图形处理功能1 内容简介基本内容主要包括:(1)二维图形(2)三维图形(3)图形处理的基本技术2 达到的目标(1)掌握二维图形的绘制。
(2)掌握三维图形的绘制。
(3)掌握图形处理的基本技术3 具体内容3.1 二维图形3.1.1 基本绘图命令(1)当plot函数仅有一个输入变量例4-1y=[5 2 3 8 5]; %y 行矩阵plot(y) %一条线例4-2y=[5 2 3 8 5;2 4 3 1 5;1 1 1 1 1]; %y 矩阵plot(y) %5条线,等于矩阵的列数(2)当plot函数有两个输人变量例4-3x=0:0.01*pi:pi;y=sin(x).*cos(x);plot(x,y)例4-3x=0:0.01*pi:pi;y=[sin(x);cos(x); sin(x).*cos(x)];plot(x,y)例4-4x1=0:0.01*pi:pi;x2=pi:0.01*pi:2*pi;x=[x1' x2'];y=[sin(x1') cos(x2')];plot(x,y)例4-5x1=1:5;x2=6:10;y1=x1;y2=2*x2;plot([x1;x2],[y1;y2])%plot([x1' x2'],[y1' y2'])(3)当plot函数有三个输入变量时MATLAB语言中提供的对曲线的线型、颜色以及标识的控制符如表4.l所示。
例4-6 绘制带有显示属性设置的二维图形。
x=0.5*pi: 0.1*pi:2*pi;y=sin(x);z=cos(x);plot (x, y, '--ko', x, z, '-. r*')3.1.2 特殊的二维图形函数(1)特殊坐标系的二维图形函数(a)对数坐标例4-7 绘制X坐标为对数坐标的二维图形。
x=0.5*pi: 0.1*pi:2*pi;y=sin(x);semilogx (x, y, '-ro')(b)极坐标例4-8绘制极坐标下的二维图形。
第4章数值运算习题 4 及解答1 根据题给的模拟实际测量数据的一组t和)(t y试用数值差分diff或数值梯度gradient指令计算)(t y',然后把)(t y和)(t y'曲线绘制在同一张图上,观察数值求导的后果。
(模拟数据从prob_data401.mat 获得)〖目的〗●强调:要非常慎用数值导数计算。
●练习mat数据文件中数据的获取。
●实验数据求导的后果●把两条曲线绘制在同一图上的一种方法。
〖解答〗(1)从数据文件获得数据的指令假如prob_data401.mat文件在当前目录或搜索路径上clearload prob_data401.mat(2)用diff求导的指令dt=t(2)-t(1);yc=diff(y)/dt; %注意yc的长度将比y短1plot(t,y,'b',t(2:end),yc,'r')grid on(3)用gradent 求导的指令(图形与上相似)dt=t(2)-t(1);yc=gradient(y)/dt;plot(t,y,'b',t,yc,'r')grid on〖说明〗● 不到万不得已,不要进行数值求导。
● 假若一定要计算数值导数,自变量增量dt 要取得比原有数据相对误差高1、2个量级以上。
● 求导会使数据中原有的噪声放大。
2 采用数值计算方法,画出dt tt x y x ⎰=0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。
〖提示〗● 指定区间内的积分函数可用cumtrapz 指令给出。
● )5.4(y 在计算要求不太高的地方可用find 指令算得。
〖目的〗● 指定区间内的积分函数的数值计算法和cumtrapz 指令。
● find 指令的应用。
〖解答〗dt=1e-4;t=0:dt:10;t=t+(t==0)*eps;f=sin(t)./t;s=cumtrapz(f)*dt;plot(t,s,'LineWidth',3)ii=find(t==4.5);s45=s(ii)s45 =1.65413 求函数x ex f 3sin )(=的数值积分⎰=π0 )(dx x f s ,并请采用符号计算尝试复算。
第四章MATLAB 的数值计算功能Chapter 4: Numerical computation of MATLAB数值计算是MATLAB最基本、最重要的功能,是MATLAB最具代表性的特点。
MATLAB在数值计算过程中以数组和矩阵为基础。
数组是MATLAB运算中的重要数据组织形式。
前面章节对数组、矩阵的特征及其创建与基本运算规则等相关知识已作了较详尽的介绍,本章重点介绍常用的数值计算方法。
一、多项式(Polynomial)`多项式在众多学科的计算中具有重要的作用,许多方程和定理都是多项式的形式。
MATLAB提供了标准多项式运算的函数,如多项式的求根、求值和微分,还提供了一些用于更高级运算的函数,如曲线拟合和多项式展开等。
1.多项式的表达与创建(Expression and Creating of polynomial)(1) 多项式的表达(expression of polynomial)_Matlab用行矢量表达多项式系数(Coefficient)和根,系数矢量中各元素按变量的降幂顺序排列,如多项式为:P(x)=a0x n+a1x n-1+a2x n-2…a n-1x+a n则其系数矢量(V ector of coefficient)为:P=[a0 a1… a n-1 a n]如将根矢量(V ector of root)表示为:ar=[ ar1 ar2… ar n]则根矢量与系数矢量之间关系为:(x-ar1)(x- ar2) … (x- ar n)= a0x n+a1x n-1+a2x n-2…a n-1x+a n(2)多项式的创建(polynomial creating)a,系数矢量的直接输入法利用poly2sym函数直接输入多项式的系数矢量,就可方便的建立符号形式的多项式。
例1:创建给定的多项式x3-4x2+3x+2poly2sym([1 -4 3 2])ans =x^3-4*x^2+3*x+2也可以用poly2str.求一个方阵对应的符号形式的多项式。