自动控制原理课程教案-附录1-拉普拉斯变换
- 格式:doc
- 大小:747.00 KB
- 文档页数:12
自动控制原理课程教案-附录1-拉普拉斯变换附录1. 拉普拉斯变换附录1.1拉氏变换的定义如果有一个以时间为变量的函数()f t ,它的定义域是0t >,那么拉氏变换就是如下运算式()()st t F s f t e dt ∞=⎰ A-1式中s 为复数。
一个函数可以进行拉氏变换的充分条件是 (1) 在0t <时,()0f t =;(2) 在0t ≥时的任一有限区域内,()f t 是分段连续的; (3) 0()st f t e dt ∞<∞⎰在实际工程中,上述条件通常是满足的。
式A-1中,()F s 成为像函数,()f t 成为原函数。
为了表述方便,通常把式A-1记作()[()]F s L f t =如果已知象函数()F s ,可用下式求出原函数1()()2c j st c j f t F s e ds j π+∞-∞=⎰ (A-2)式中c 为实数,并且大于()F s 任意奇点的实数部分,此式称为拉氏变换的反变换。
同样,为了表述方便,可以记作1()[()]f t L F s -=为了工程应用方便,常把()F s 和()f t 的对应关系编成表格,就是一般所说的拉氏变换表。
表A-1列出了最常用的几种拉氏变换关系。
一些常用函数的拉氏变换附录1.1.1单位阶跃函数的拉氏变换这一函数的定义为0, 0()0, 0t u t t <⎧=⎨>⎩它表示0t =时,突然作用于系统的一个不变的给定量或扰动量,如图3-1所示。
单位阶跃函数的拉氏变换为0011()[]st st F s e dt e s s∞--∞==-=⎰ 在进行这个积分时,假设s 的实部比零大,即Re[]0s >,因此lim 0st t e -→∞→附录1.1.2 单位脉冲函数的拉氏变换单位脉冲函数也是作为自动控制系统常用的标准输入量。
它是在持续时间0ε→期间内作用的矩形波,其幅值与作用时间的乘积等于1,如图3-3所示。
第一讲 拉普拉斯变换及其应用1.1基本要求1,熟悉拉氏变换的基本法则2,熟练掌握典型函数的拉氏变换式。
3,掌握用拉氏变换求解微分方程初值问题的思路。
4,熟练掌握求有理分式函数拉氏反变换的方法 1.2.重点讲解1, 对于学习本课程而言,广义积分式(拉氏变换的定义)的收敛性以及复变量主值积分式(反变换定义式)的计算,与正确地熟练地运用拉氏变换的基本法则相比不是主要的,因为在工程计算中可以用查表的方式来完成拉氏变换和拉氏反变换的计算。
而拉氏变换的基本法则的运用则直接关系到是否真正掌握这种变换的工具。
2,拉氏变换的线性性质源自定积分的线性性质,这说明作为一种变换关系,拉氏变换是线性变换。
应当指出线性关系并非所有变换都具有的性质,例如以十为底的对数可以看成正半数轴到数轴的变换关系,但关系式g()g g l a b l a l b +≠+说明取对数的运算显然不满足线性关系。
3, 为了保证拉氏变换的一一对应关系,总假定拉氏变换的定义式中的原函数()f t 在t 时为零。
即原函数应写成0<()1()f t t ⋅,根据单位阶跃函数1(t)的定义,这里()1()f t ⋅t 为()0()1()00f t t f t t t > ⋅=<下面给出()f t 、()1()f t t ⋅、、0()1()f t t t ⋅−00()1(f t t t t )−⋅−、0(f t t )−的函数关系,以说明通常所说“将()f t 延迟t ” 的正确表示。
显然应当是图1-1中的(d) ,不是(c)或(e) 0()1()f t t ⋅0()1()f t t t ⋅−00()1()f t t t t −⋅− (d)(c)(b) (a) (e)图1-1 将()f t 延迟t基于上述认识,就能正确表达图形和用延迟定理求出某些图形的拉氏变换式。
例题1-2图1-2 波形图求图1-2中的波形的拉氏变换。
解 图1-2中的波形可以看成、()1()t t ⋅001(t t t t )−⋅−、t t 01()t 0⋅−这三个信号的代数和,读者可画出这三个信号的波形图以验证下式的正确性。
附录1: 拉普拉斯(LapLace )变换机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。
按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。
一、拉普拉斯变换的定义如果有一个以时间t 为自变量的实变函数)(t f ,它的定义域是0≥t ,那么)(t f 的拉普拉斯变换定义为⎰∞-==0)()()]([dt e t f s F t f L st (1-1)式中,s 是复变数, ωσj s +=(σ、ω均为实数),⎰∞-0st e 称为拉普拉斯积分; )(s F 是函数)(t f 的拉普拉斯变换,它是一个复变函数,通常也称)(s F 为)(t f 的象函数,而称)(t f 为)(s F 的原函数;L 是表示进行拉普拉斯变换的符号。
式(1-1)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数)(s F 。
二、几种典型函数的拉氏变换1.单位阶跃函数)(1t 的拉氏变换)(t f 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为)0()0(101≥<⎩⎨⎧∆t t t )(图1-1 单位阶跃函数单位阶跃函数如图1-1所示,它表示在0=t 时刻突然作用于系统一个幅值为1的不变量。
单位阶跃函数的拉氏变换式为∞--∞-===⎰00|1)(1)](1[)(st st e sdt e t t L s F 当 0)Re(>s ,则 0lim →-∞→stt e所以 ss e ss F st1)]1(0[1)(0=--=-=∞-(1-2)2.指数函数atet f -=)(的拉氏变换指数函数也是控制理论中经常用到的函数,其中 是常数。
dt e dt ee eL s F t s a atst at⎰⎰∞+--∞--===0)(0][)(令a s s +=1则与求单位阶跃函数同理,就可求得 as e L s F sat+===-11][)(1(1-3) 3.正弦函数与余弦函数的拉氏变换 设t t f ωsin )(1=, t t f ωcos )(2=,则dt te t L s F st ⎰∞-==01sin ][sin )(ωω由欧拉公式,有je e t tj t j 2sin ωωω--=所以⎥⎦⎤⎢⎣⎡-=⎰⎰∞∞---001j 21)(dt e e dt e e s F stt j st t j ωω ⎥⎦⎤⎢⎣⎡-=⎰⎰∞∞+---00)()(j 21dt e dt e t j s t j s ωω ⎥⎥⎦⎤⎢⎢⎣⎡+--=∞+-∞--0)(0)(j s 1j -s 1j 21t j s t j s e e ωωωω22s j s 1j -s 1j 21ωωωω+=⎥⎦⎤⎢⎣⎡+--=(1-4)同理 222][cos )(ωω+==s st L s F (1-5)4.单位脉冲函数 δ(t ) 的拉氏变换单位脉冲函数是在持续时间)0(→=εεt 期间幅值为ε1的矩形波。
附录1 拉普拉斯变换拉普拉斯变换简称拉氏变换,是常用的积分变换之一。
拉氏变换可用于求解常系数线性微分方程,是分析研究线性系统的有力数学工具。
通过拉氏变换,将时域的微分方程变换为复数域的代数方程,使系统的分析大大简化。
这里首先复习复数、复变函数的概念,然后介绍拉氏变换及反拉氏变换的定义、性质与方法,以及一些典型时间函数的拉氏变换方法。
1 复数与复变函数1-1 复数的定义设σ和ω是任意两个实数,则j σω+称为复数,记为s j σω=+ (1-1)其中,σ和ω分别称为复数s 的实部和虚部,记为 Re()s σ=, I m ()s ω=。
j =为虚数单位。
对于一个复数,只有当实部和虚部均为零时,该复数为零;对于两个复数而言,只有当实部和虚部分别相等时,两复数相等。
j σω+和j σω-称为共轭复数。
注意:实数间有大小的区别,而复数间却不能比较大小,这是复数域和实数域的一个重要的不同.1-2 复数的表示方法1) 平面向量表示法复数s j σω=+可以用从原点指向点σω(,)的向量来表示如图1-1,向量的长度称为复数s j σω=+的模,即s r == (1-2)向量与σ轴的夹角θ称为复数s 的幅角,即1tan ωθσ-= (1-3) 2) 三角表示法 由图1-1可知,cos r σθ=,sin r ωθ= 图1 -1复数的向量表示因此,复数的三角表示法为(cos sin )s r j θθ=+ (1-4)3) 指数表示法 由欧拉公式cos sin j ej θθθ=+式(1.1)可以写成j s r e θ= (1-5)分别称式(1-4)和式(1-5)分别称为复数的三角形式和指数形式,则式(1-1)称为复数的代数形式,这三种形式可相互转换。
1-3复变函数以复数s j σω=+为自变量,并按某种确定规则构成的函数()G s 称为复变函数。
复变函数()G s 可写成()()G s u j vs E =+∈ (1-6)其中,u v 分别称为复变函数的实部和虚部,点集E 称为函数的定义域,相应地()G s 取值的全体称为函数的值域。
附录1. 拉普拉斯变换附录1.1 拉氏变换的定义如果有一个以时间为变量的函数()f t ,它的定义域是0t >,那么拉氏变换就是如下运算式()()st t F s f t e dt ∞=⎰ A-1式中s 为复数。
一个函数可以进行拉氏变换的充分条件是 (1) 在0t <时,()0f t =;(2) 在0t ≥时的任一有限区域内,()f t 是分段连续的; (3)()st f t e dt ∞<∞⎰在实际工程中,上述条件通常是满足的。
式A-1中,()F s 成为像函数,()f t 成为原函数。
为了表述方便,通常把式A-1记作()[()]F s L f t =如果已知象函数()F s ,可用下式求出原函数1()()2c j st c j f t F s e ds j π+∞-∞=⎰ (A-2) 式中c 为实数,并且大于()F s 任意奇点的实数部分,此式称为拉氏变换的反变换。
同样,为了表述方便,可以记作1()[()]f t L F s -=为了工程应用方便,常把()F s 和()f t 的对应关系编成表格,就是一般所说的拉氏变换表。
表A-1列出了最常用的几种拉氏变换关系。
一些常用函数的拉氏变换附录1.1.1 单位阶跃函数的拉氏变换这一函数的定义为 0, 0()0, 0t u t t <⎧=⎨>⎩它表示0t =时,突然作用于系统的一个不变的给定量或扰动量,如图3-1所示。
单位阶跃函数的拉氏变换为0011()[]st st F s e dt e s s∞--∞==-=⎰ 在进行这个积分时,假设s 的实部比零大,即Re[]0s >,因此lim 0st t e -→∞→附录1.1.2 单位脉冲函数的拉氏变换单位脉冲函数也是作为自动控制系统常用的标准输入量。
它是在持续时间0ε→期间内作用的矩形波,其幅值与作用时间的乘积等于1,如图3-3所示。
其数学表达式为00, 0()1lim 0 t t t t εεδεε→>>⎧⎪=⎨<<⎪⎩和 其拉氏变换为0000220[()]()lim ()11lim[]lim [1]1 lim [1()]11!2!st st s L t s t e dte e ss s s s εεεεεεεδδδεεεεε-→--→→→===⨯=-=-++=⎰附录1.1.3 单位斜坡时间函数和抛物线时间函数的拉氏变换单位斜坡时间函数为0,0(),0t f t t t <⎧=⎨>⎩如图3-2所示,斜坡时间函数的拉氏变换为022011()[]st st st t F s te dt e e s s s∞---∞==-+=⎰。
Re[]0s > 同理单位抛物线函数为21()2f t t =其拉氏变换为31()F s s =,Re[]0s >。
附录1.1.4 正弦和余弦时间函数的拉氏变换正弦函数的拉氏变换为00()()00221[sin ]()sin ()211 22111()2 st j tj t st s j t s j tL t F s te dt e e e dt je dt e dt j j j s j s j s ωωωωωωωωωω∞∞---∞∞---+===-=-=--+=+⎰⎰⎰⎰同理求得余弦函数的拉氏变换为22[cos ]()L t F s s ωωω==+常用的拉氏变换法则(不作证明)1. 线性性质 拉氏变换也遵从线性函数的齐次性和叠加性。
拉氏变换的齐次性是一个时间函数乘以常数时,其拉氏变换为该时间函数的拉氏变换乘以该常数,即(())()L af t aF s = 拉氏变换的叠加性是:若1()f t 和2()f t 的拉氏变换分别是1()F s 和2()F s ,则有1212[()()]()()L f t f t F s F s +=+2.微分定理 原函数的导数的拉氏变换为()()(0)df t L sF s f dt ⎡⎤=-⎢⎥⎣⎦式中 (0)f ——()f t 在0t =时的值。
同样,可得()f t 各阶导数的拉氏变换是222()()(0)'(0)d f t L s F s sf f dt ⎡⎤=--⎢⎥⎣⎦3323()()()'(0)''(0)d f t L s F s s f s sf f dt ⎡⎤=---⎢⎥⎣⎦121()()()'(0)(0)n n n n n nd f t L s F s s f s s f f dt ---⎡⎤=---⎢⎥⎣⎦如果上列各式中所有的初始值都为零,则各阶导数的拉氏变换为['()]()L f t sF s =2[''()]()L f t s F s = 3['''()]()L f t s F s =[()]()n n L f t s F s =图1 平移函数3.积分定理 原函数()f t 积分的拉氏变换为(())()()t f t dt F s L f t dt ss=⎡⎤=+⎣⎦⎰⎰ 当初始值为零时()()F s L f t dt s⎡⎤=⎣⎦⎰ 4.时滞定理 如图A-1所示,原函数()f t 沿时间轴平移T ,平移后的函数为()f t T -。
该函数满足下述条件0t <时,()0f t = 0t T <<时,()0f t T -=则平移函数的拉氏变换为[()]()()st sT L f t T f t T e dt e F s ∞---=-=⎰这就是时滞定理。
5.初值定理 如果原函数()f t 的拉氏变换为()F s ,并且lim ()s sF s →∞存在,则时间函数()f t 的初值为lim ()lim ()t s f t sF s →→∞=表A-1 拉普拉斯变换对照表6.终值定理 如果原函数()f t 的拉氏变换为()F s ,并且()sF s 在s 平面得右半平面和虚轴上是解析的,则时间函数()f t 的稳态值可如下求得lim ()lim ()t s f t sF s →∞→=这一定理对于求暂态过程的稳态值是很有用的。
但是,当()sF s 的极点的实部为正或等于零时,不能应用终值定理。
这一点必须注意。
在下面的例题中,还要说明。
例1 应用初值定理求21()(2)F s s =+的原函数()f t 的初始值(0)f 和'(0)f 。
(1) 求()0f 。
根据初值定理()()0lim s f sF s →∞=得()()210limlim0424s s sf s s s→∞→∞===+++(2) 求()0f '。
因为()()()()()2002sL f t sF s f f s '=-=-⎡⎤⎣⎦+将已求得的()00f =带入上式得()()22sL f t s '=⎡⎤⎣⎦+根据初值定理得()()210lim lim14421s s sf ss s s→∞→∞'===+++可以校核这一结果的正确性,由()()L F s f t -=⎡⎤⎣⎦得()2t f t te -=()200l i m 0t t f t e -→== ()2200lim 21t tt f e te --→'⎡⎤=-=⎣⎦例2 应用终值定理求()55t f t e -=-的终值。
因 ()()51F s s s =+所以得()()()05lim lim lim51t s s f t sF s s →∞→→===+也可以按下式求()f t 的终值()lim lim(55)5t t t f t e -→∞→∞=-=例3 应用终值定理()22F s s ωω=+原函数的终值,并用()sin f t t ω=的终值进行校核。
由于()22s sF s s ωω=+有两个极点在虚轴上,所以不能应用终值定理。
如用终值定理,则得()()220lim lim lim0t s s s f t sF s s ωω→∞→→===+这个结论是错误的,因为表1A -得知原函数为()sin f t t ω=,该函数为周期性的简谐振荡函数,没有终值。
7. 卷积和定理 如果时间函数()1f t 和()2f t 都满足条件:当0t <时,()()120f t f t ==则()1f t 和()2f t 的卷积为()()()()12120tf t f t f f t d τττ*=-⎰由于卷积符合交换律,卷积也可写成()()()()21210tf t f t f f t d τττ*=-⎰()()()()1221f t f t f t f t *=*如果()1f t 和()2f t 是可以进行拉氏变换的,()()11F s L f t =⎡⎤⎣⎦,()()22F s L f t =⎡⎤⎣⎦。
那么()()12f t f t *的拉氏变换可求得如下()()()()12120tL f f t d F s F s τττ⎡⎤-=⎢⎥⎣⎦⎰ 这称为卷积定理。
根据卷积符合交换律得()()()()21210tL f f t d F s F s τττ⎡⎤-=⎢⎥⎣⎦⎰ 因此()()()()()()()()12211221L f t f t L f t f t F s F s F s F s *=*==⎡⎤⎡⎤⎣⎦⎣⎦8. 位移性质 如果()()L f t F s =⎡⎤⎣⎦,则有()()at L e f t F s a -⎡⎤=+⎣⎦,[]Re 0s a +>附录1.2 拉普拉斯反变换求反变换的运算公式是()()12c j st c j f t F s e ds j π+∞-∞=⎰用上式求反变换显然是很复杂的,但是对与绝大多数控制系统,并不需要利用这一公式求解反变换,而是按照下面的方法求反变换。
在控制系统中,拉氏变换可以写成下列一般形式()10111011m m m mn n n nb s b s b s b F s a s a s a s b ----++⋅⋅⋅⋅⋅⋅++=++⋅⋅⋅⋅⋅⋅++ ()3A -一般n m >。
式3A -可以分解为诸因式之积:()()()()()()()1212m n K s z s z s z F s s p s p s p ++⋅⋅⋅⋅⋅⋅+=++⋅⋅⋅⋅⋅⋅+ ()4A -式中当12, , , m s z s z s z =-=-⋅⋅⋅⋅⋅⋅=-时,()0F s =。
因此,12, , , m z z z --⋅⋅⋅⋅⋅⋅-称为复变函数()F s 的零点。
当12, , , n s p s p s p =-=-⋅⋅⋅⋅⋅⋅=-时,()F s =∞,因此,12, , , n p p p --⋅⋅⋅⋅⋅⋅-称为复变函数()F s 的极点。