高中物理选修理想气体的状态方程
- 格式:ppt
- 大小:18.74 MB
- 文档页数:26
3 理想气体的状态方程[学科素养与目标要求]物理观念:1.了解理想气体的模型,并知道实际气体看成理想气体的条件.2.理解理想气体状态方程的内容和表达式.科学思维:1.掌握理想气体状态方程,知道其推导过程.2.能利用理想气体状态方程分析、解决实际问题.一、理想气体1.理想气体:在任何温度、任何压强下都遵从气体实验定律的气体. 2.理想气体与实际气体(1)实际气体在温度不低于零下几十摄氏度、压强不超过大气压的几倍时,可以当成理想气体来处理.(2)理想气体是对实际气体的一种科学抽象,就像质点、点电荷模型一样,是一种理想模型,实际并不存在. 二、理想气体的状态方程1.内容:一定质量的某种理想气体,在从一个状态(p 1、V 1、T 1)变化到另一个状态(p 2、V 2、T 2)时,尽管p 、V 、T 都可能改变,但是压强跟体积的乘积与热力学温度的比值保持不变. 2.表达式:p 1V 1T 1=p 2V 2T 2或pVT =C .3.成立条件:一定质量的理想气体.1.判断下列说法的正误.(1)理想气体在超低温和超高压时,气体的实验定律不适用了.( × )(2)能用气体实验定律来解决的问题不一定能用理想气体状态方程来求解.( × ) (3)对于不同的理想气体,其状态方程pVT=C (恒量)中的恒量C 相同.( × )(4)一定质量的理想气体温度和体积均增大到原来的2倍,压强增大到原来的4倍.( × ) 2.一定质量的某种理想气体的压强为p ,温度为27 ℃时,气体的密度为ρ,当气体的压强增为2p ,温度升为327 ℃时,气体的密度是________. 答案 ρ一、对理想气体的理解为什么要引入理想气体的概念?答案由于气体实验定律只在压强不太大,温度不太低的条件下理论结果与实验结果一致,为了使气体在任何温度、任何压强下都遵从气体实验定律,引入了理想气体的概念.理想气体的特点1.严格遵守气体实验定律及理想气体状态方程.2.理想气体分子本身的大小与分子间的距离相比可忽略不计,分子不占空间,可视为质点.3.理想气体分子除碰撞外,无相互作用的引力和斥力.4.理想气体分子无分子势能的变化,内能等于所有分子热运动的动能之和,只和温度有关.例1(多选)下列对理想气体的理解,正确的有()A.理想气体实际上并不存在,只是一种理想模型B.只要气体压强不是很高就可视为理想气体C.一定质量的某种理想气体的内能与温度、体积都有关D.在任何温度、任何压强下,理想气体都遵从气体实验定律答案AD解析理想气体是一种理想模型,温度不太低、压强不太大的实际气体可视为理想气体;理想气体在任何温度、任何压强下都遵从气体实验定律,选项A、D正确,选项B错误.一定质量的理想气体的内能只与温度有关,与体积无关,选项C错误.二、理想气体的状态方程如图所示,一定质量的某种理想气体从状态A到B经历了一个等温过程,又从状态B到C 经历了一个等容过程,请推导状态A的三个参量p A、V A、T A和状态C的三个参量p C、V C、T C之间的关系.答案从A→B为等温变化过程,根据玻意耳定律可得p A V A=p B V B①从B→C为等容变化过程,根据查理定律可得p BT B=p CT C②由题意可知:T A=T B③V B=V C④联立①②③④式可得p A V AT A=p C V CT C.1.对理想气体状态方程的理解(1)成立条件:一定质量的理想气体.(2)该方程表示的是气体三个状态参量的关系,与中间的变化过程无关.(3)公式中常量C仅由气体的种类和质量决定,与状态参量(p、V、T)无关.(4)方程中各量的单位:温度T必须是热力学温度,公式两边中压强p和体积V单位必须统一,但不一定是国际单位制中的单位.2.理想气体状态方程与气体实验定律p1V1T1=p2V2T2⇒⎩⎪⎨⎪⎧T1=T2时,p1V1=p2V2(玻意耳定律)V1=V2时,p1T1=p2T2(查理定律)p1=p2时,V1T1=V2T2(盖—吕萨克定律)例2(2019·清远市高三上期末)如图1所示,一汽缸竖直固定在水平地面上,活塞质量m =4 kg,活塞横截面积S=2×10-3 m2,活塞上面的汽缸内封闭了一定质量的理想气体,下面有气孔O与外界相通,大气压强p0=1.0×105 Pa.活塞下面与劲度系数k=2×103 N/m的轻弹簧相连,当汽缸内气体温度为T1=400 K时弹簧为自然长度,此时缸内气柱长度L1=20 cm,g取10 m/s2,活塞不漏气且与缸壁无摩擦.图1(1)当弹簧为自然长度时,缸内气体压强p1是多少?(2)当缸内气柱长度L2=24 cm时,缸内气体温度T2为多少K?答案(1)8×104 Pa(2)720 K解析(1)当弹簧为自然长度时,设封闭气体的压强为p1,对活塞受力分析得:p1S+mg=p0S代入数据得:p 1=8×104 Pa(2)当缸内气柱长度L 2=24 cm 时,设封闭气体的压强为p 2,对活塞受力分析得: p 2S +mg =p 0S +F 其中:F =k (L 2-L 1) 联立可得:p 2=p 0+F -mgS代入数据得:p 2=1.2×105 Pa 对缸内气体,根据题意得:V 1=20S V 2=24S T 1=400 K根据理想气体状态方程,得:p 1V 1T 1=p 2V 2T 2解得T 2=720 K.例3 如图2所示,U 形管左端封闭,右端开口,左管横截面积为右管横截面积的2倍,在左管内用水银封闭一段长为26 cm 、温度为280 K 的空气柱,左右两管水银面高度差为36 cm ,外界大气压为76 cmHg.若给左管的封闭气体加热,使管内空气柱长度变为30 cm ,则此时左管内气体的温度为多少?图2答案 420 K解析 以封闭气体为研究对象,设左管横截面积为S ,当左管封闭的空气柱长度变为30 cm 时,左管水银柱下降4 cm ;右管水银柱上升8 cm ,即两端水银柱高度差为:h ′=24 cm ,由题意得:V 1=L 1S =26S ,p 1=p 0-p h =76 cmHg -36 cmHg =40 cmHg ,T 1=280 K ,p 2=p 0-p h ′=52 cmHg ,V 2=L 2S =30S .由理想气体状态方程:p 1V 1T 1=p 2V 2T 2,解得T 2=420 K.应用理想气体状态方程解题的一般步骤1.明确研究对象,即一定质量的理想气体;2.确定气体在初、末状态的参量p 1、V 1、T 1及p 2、V 2、T 2; 3.由状态方程列式求解; 4.必要时讨论结果的合理性.例4 (2019·唐山市期末)如图3所示,绝热性能良好的汽缸固定放置,其内壁光滑,开口向右,汽缸中封闭一定质量的理想气体,活塞(绝热)通过水平轻绳跨过滑轮与重物相连,已知活塞的面积为S =10 cm 2,重物的质量m =2 kg ,重力加速度g =10 m/s 2,大气压强p 0=1.0×105 Pa ,滑轮摩擦不计.稳定时,活塞与汽缸底部间的距离为L 1=12 cm ,汽缸内温度T 1=300 K.图3(1)通过电热丝对汽缸内气体加热,气体温度缓慢上升到T 2=400 K 时停止加热,求加热过程中活塞移动的距离d ;(2)停止加热后,在重物的下方加挂一个2 kg 的重物,活塞又向右移动4 cm 后重新达到平衡,求此时汽缸内气体的温度T 3. 答案 (1)4 cm (2)375 K解析 (1)加热前p 1S +F T =p 0S ,F T =mg 加热后p 2S +F T =p 0S ,F T =mg , 所以p 1=p 2=0.8×105 Pa ,加热过程为等压变化,故有L 1S T 1=(L 1+d )S T 2代入数据解得d =4 cm.(2)加挂重物后p 3S +F T ′=p 0S ,F T ′=(m +m ′)g 由理想气体状态方程p 1L 1S T 1=p 3(L 1+d +d ′)ST 3代入数据解得T 3=375 K.1.(理想气体状态方程的应用)用固定的活塞把容器分成A 、B 两部分,其容积之比V A ∶V B =2∶1,如图4所示.起初A 中空气温度为127 ℃,压强为1.8×105 Pa ,B 中空气温度为27 ℃,压强为1.2×105 Pa.拔去销钉,使活塞可以无摩擦地移动(不漏气),由于容器缓慢导热,最后都变成室温27 ℃,活塞也停止移动,求最后A 中气体的压强(T =t +273 K).图4答案 1.3×105 Pa解析 设开始时气体A 和B 的压强、体积、温度分别为p A 、V A 、T A 和p B 、V B 、T B ,最终活塞停止时,两部分气体压强相等,用p 表示,温度相同,用T 表示,A 和B 的体积分别为V A ′和V B ′.根据理想气体状态方程可得 A 部分气体:p A V A T A =pV A ′T ①B 部分气体:p B V B T B =pV B ′T②活塞移动前后总体积不变,则V A ′+V B ′=V A +V B ③ 联立①②③和V A =2V B 可得p =T (2p A 3T A +p B 3T B )=300×(2×1.83×400+ 1.23×300)×105 Pa =1.3×105 Pa.2.(理想气体状态方程的综合应用)(2019·济宁一中高三开学考试)图5为一上粗下细且下端开口的薄壁玻璃管,管内有一段被水银密闭的气体,下管足够长,图中管的横截面积分别为S 1=2 cm 2,S 2=1 cm 2,管内水银长度为h 1=h 2=2 cm ,封闭气体长度l =10 cm ,大气压强p 0相当于76 cm 高水银柱产生的压强,气体初始温度为300 K ,若缓慢升高气体温度.试求:(g 取10 m/s 2)图5(1)当粗管内的水银刚被全部挤出时气体的温度;(2)当气体温度为525 K 时,水银柱上端距玻璃管最上端的距离. 答案 (1)350 K (2)24 cm解析 (1)选择封闭气体作为研究对象,设末态粗管内的水银刚被全部挤出时水银的总长度为h ′,根据水银的总体积保持不变可得:h 1S 1+h 2S 2=h ′S 2,可得:h ′=6 cm 初态:压强p 1=p 0-p h 1-p h 2=72 cmHg , 体积V 1=lS 1=20 cm 3,温度T 1=300 K 末态:压强p 2=p 0-p h ′=70 cmHg , 体积V 2=(l +h 1)S 1=24 cm 3,温度为T 2 根据理想气体的状态方程可得p 1V 1T 1=p 2V 2T 2解得粗管内的水银刚被全部挤出时气体的温度: T 2=350 K.(2)设温度为525 K 时水银柱上端距离玻璃管最上端的距离为H , 初态:压强p 2=70 cmHg , 体积V 2=24 cm 3,温度T 2=350 K末态:压强p 3=70 cmHg ,体积V 3=(l +h 1)S 1+(H -l -h 1)S 2,温度T 3=525 K 这个过程是等压变化,根据盖—吕萨克定律可得:V 2T 2=V 3T 3解得气体温度为525 K 时,水银柱上端距离玻璃管底部的距离:H =24 cm.一、选择题考点一 理想气体及理想气体状态方程的理解1.(多选)关于理想气体的认识,下列说法正确的是( ) A .它是一种能够在任何条件下都能严格遵守气体实验定律的气体 B .它是一种从实际气体中忽略次要因素,简化抽象出来的理想化模型 C .在温度不太高、压强不太低的情况下,气体可视为理想气体 D .被压缩的气体,不能视为理想气体 答案 AB2.对于一定质量的理想气体,下列状态变化中可能实现的是( ) A .使气体体积增加而同时温度降低B .使气体温度升高,体积不变、压强减小C .使气体温度不变,而压强、体积同时增大D .使气体温度升高,压强减小,体积减小 答案 A解析 由理想气体状态方程pVT=C 得A 项中若使压强减小就有可能,故A 项正确;体积不变,温度与压强应同时变大或同时变小,故B 项错误;温度不变,压强与体积成反比,故不能同时增大,故C 项错误;温度升高,压强减小,体积不可能减小,故D 项错误. 3.关于气体的状态变化,下列说法中正确的是( )A .一定质量的理想气体,当压强不变而温度由100 ℃上升到200 ℃时,其体积增大为原来的2倍B .气体由状态1变化到状态2时,一定满足方程p 1V 1T 1=p 2V 2T 2C .一定质量的理想气体体积增大到原来的4倍,则气体可能压强减半,热力学温度加倍D .一定质量的理想气体压强增大到原来的4倍,则气体可能体积加倍,热力学温度减半 答案 C解析 一定质量的理想气体压强不变,体积与热力学温度成正比,温度由100 ℃上升到200 ℃时,体积增大为原来的1.27倍,故A 错误;理想气体状态方程成立的条件为气体可看做理想气体且质量不变,故B 错误;由理想气体状态方程pVT =C 可知,C 正确,D 错误.考点二 理想气体状态方程的应用4.如图1所示为伽利略设计的一种测温装置示意图,玻璃管的上端与导热良好的玻璃泡连通,下端插入水中,玻璃泡中封闭有一定质量的空气.若玻璃管中水柱上升,则外界大气的变化可能是( )图1A .温度降低,压强增大B .温度升高,压强不变C .温度升高,压强减小D .温度不变,压强减小答案 A解析 由题意可知,封闭空气温度与大气温度相同,封闭空气体积随水柱的上升而减小,将封闭空气近似看作理想气体,根据理想气体状态方程pVT=常量,若温度降低,体积减小,则压强可能增大、不变或减小,A 正确;若温度升高,体积减小,则压强一定增大,B 、C 错误;若温度不变,体积减小,则压强一定增大,D 错误.5.已知湖水深度为20 m ,湖底水温为4 ℃,水面温度为17 ℃,大气压强为1.0×105 Pa.当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g =10 m/s 2,ρ水=1.0×103 kg/m 3)( ) A .12.8倍 B .8.5倍 C .3.1倍 D .2.1倍 答案 C解析 湖底压强为p 0+ρ水gh =3.0×105 Pa ,即3个大气压强,由理想气体状态方程可得3p 0V 1(4+273.15) K =p 0V 2(17+273.15) K,即V 2=290.15277.15×3V 1≈3.14V 1.所以当一气泡从湖底缓慢升到水面时,其体积约为原来的3.1倍,C 正确.6.一定质量的理想气体,经历了如图2所示的状态变化过程,则此三个状态的温度之比是( )图2A .1∶3∶5B .3∶6∶5C .3∶2∶1D .5∶6∶3答案 B解析 由理想气体状态方程得:pVT =C (C 为常数),可见pV =TC ,即pV 的乘积与温度T 成正比,故B 项正确.7.(多选)一定质量的理想气体处于某一平衡态,此时其压强为p 0,有人设计了四种途径,使气体经过每种途径后压强仍为p 0.下面可能实现的途径是( ) A .先等温膨胀,再等容降温 B .先等温压缩,再等容降温 C .先等容升温,再等温压缩D .先等容降温,再等温压缩 答案 BD解析 由理想气体状态方程pVT=C 分析.T 不变,V 增大时,p 减小;V 不变,T 变小时,p 仍变小,故A 项错误.T 不变,V 减小时,p 增大;V 不变,T 变小时,p 变小,压强可能回到初态的压强值,故B 项正确.V 不变,T 变大时,p 增大;T 不变,V 减小时,p 增大,故C 项错误.V 不变,T 变小时,p 减小;T 不变,V 减小时,p 增大,压强可能回到初态的压强值,故D 项正确. 二、非选择题8.我国“蛟龙”号深海探测船载人下潜超过七千米.在某次深潜试验中,“蛟龙”号探测到990 m 深处的海水温度为280 K .某同学利用该数据来研究气体状态随海水深度的变化,如图3所示,导热良好的汽缸内封闭一定质量的气体,不计活塞的质量和摩擦,汽缸所处海平面的温度T 0=300 K ,压强p 0=1 atm ,封闭气体的体积V 0=3 m 3.如果将该汽缸下潜至990 m 深处,此过程中封闭气体可视为理想气体.求990 m 深处封闭气体的体积(1 atm 相当于10 m 深的海水产生的压强).图3答案 2.8×10-2 m 3解析 当汽缸下潜至990 m 深处时,设封闭气体的压强为p ,温度为T ,体积为V ,由题意知p =100 atm.由理想气体状态方程得p 0V 0T 0=pV T ,代入数据得V =2.8×10-2 m 3.9.如图4所示,圆柱形汽缸A 中用质量为2m 的活塞封闭了一定质量的理想气体,气体温度为27 ℃,汽缸中的活塞通过滑轮系统悬挂一质量为m 的重物,稳定时活塞与汽缸底部的距离为h ,现在重物m 上加挂一个质量为m3的小物体,已知大气压强为p 0,活塞横截面积为S ,m =p 0Sg,不计一切摩擦,求当气体温度升高到37 ℃且系统重新稳定后,重物m 下降的高度.图4答案 0.24h解析 以汽缸内气体为研究对象,初状态下:p 1S +mg =p 0S +2mgV 1=hS ,T 1=300 K末状态下:p 2S +43mg =p 0S +2mg V 2=(h +Δh )S ,T 2=310 K由题意知m =p 0S g ,解得p 1=2p 0,p 2=53p 0 根据理想气体状态方程:p 1V 1T 1=p 2V 2T 2解得:Δh =0.24h .10.如图5所示,绝热汽缸A 与导热汽缸B 均固定于地面上,由刚性杆连接的绝热活塞与两汽缸间均无摩擦.两汽缸内装有处于平衡态的理想气体,开始时体积均为V 0、温度均为T 0.缓慢加热A 中气体,停止加热达到稳定后,A 中气体压强变为原来的1.2倍.设环境温度始终保持不变,求汽缸A 中气体的体积V A 和温度T A .图5答案 76V 0 1.4T 0 解析 设初态压强为p 0,膨胀后A 、B 中气体压强相等,p A =p B =1.2p 0,B 中气体始、末状态温度相等,有p 0V 0=1.2p 0(2V 0-V A ),所以V A =76V 0,A 中气体满足p 0V 0T 0=1.2p 0V A T A,所以T A =1.4T 0.11.竖直平面内有一直角形内径处处相同的细玻璃管,A 端封闭,C 端开口,最初AB 段处于水平状态,中间有一段水银将气体封闭在A 端,各部分尺寸如图6所示.初始时,封闭气体温度为T1=300 K,外界大气压强p0=75 cmHg.求:图6(1)若对封闭气体缓慢加热,当水平管内水银全部进入竖直管内时,气体的温度是多少;(2)若保持(1)问的温度不变,从C端缓慢注入水银,使水银与C端管口平齐,需要注入水银的长度为多少.答案(1)450 K(2)14 cm解析(1)设细管的横截面积为S,以AB内封闭的气体为研究对象.初态p1=p0+5 cmHg=80 cmHg,V1=30S,T1=300 K当水平管内水银全部进入竖直管内时,此时:p2=p0+15 cmHg=90 cmHg,体积V2=40S,设此时温度为T2,由理想气体状态方程得:p1V1T1=p2V2T2解得T2=450 K.(2)保持温度不变,初态p2=90 cmHg,体积V2=40S,末态p3=p0+25 cmHg=100 cmHg 由玻意耳定律得:p2V2=p3V3解得V3=36S故需要加入的水银长度Δl=(30+20-36) cm=14 cm.。
理想气体状态方程(选修3-3)(一)理想气体定义:在任何温度、任何压强下都遵从气体实验定律的气体简化条件:实际气体,在压强不太大(不超过大气压的几倍),温度不太低(不低于零下几十摄氏度)时,可以近似地视为理想气体内能:微观角度——理想气体的内能等于所有分子的总动能宏观角度——一定质量的理想气体,其内能只与温度有关,与体积无关(二)理想气体的状态方程表述:一定质量气体的状态变化时,其压强和体积的乘积与热力学温度的比是个常数表达式:pV/T=C适用条件:质量一定的理想气体(三)气体热现象的微观意义气体压强的微观意义:A、大小及定义:气体压强的大小等于气体作用在器壁单位面积上的压力B、决定因素:气体分子的平均动能;分子的密集度对气体实验定律的微观解释习题1.关于理想气体,下列说法正确的是( )A.理想气体能严格遵守气体实验定律B.实际气体在温度不太高、压强不太大的情况下,可看成理想气体C.实际气体在温度不太低、压强不太大的情况下,可看成理想气体D.所有的实际气体任何情况下,都可以看成理想气体2.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p1、V1、T1,在另一平衡状态下的压强、体积和温度分别为p2、V2、T2,下列关系正确的是( ) A.p1=p2,V1=2V2,T1=12T2B.p1=p2,V1=12V2,T1=2T2C.p1=2p2,V1=2V2,T1=2T2 D.p1=2p2,V1=V2,T1=2T23.一定质量的理想气体,经历一膨胀过程,这一过程可以用下图上的直线ABC来表示,在A、B、C三个状态上,气体的温度T A、T B、T C相比较,大小关系为( )A.T B=T A=T CB.T A>T B>T CC.T B>T A=T CD.TB<TA=TC4.如图所示,一定质量的空气被水银封闭在静置于竖直平面的U形玻璃管内,右管上端开口且足够长,右管内水银面比左管内水银面高h,能使h变大的原因是A.环境温度升高B.大气压强升高C.沿管壁向右管内加水银D.U形玻璃管自由下落5.下图中A、B两点代表一定质量理想气体的两个不同的状态,状态A的温度为T A,状态B的温度为T B;由图可知( )A.T B=2T A B.T B=4T AC.T B=6T A D.T B=8T A6.有两个容积相等的容器,里面盛有同种气体,用一段水平玻璃管把它们连接起来。
气体状态方程 热力学定律理想气体的状态方程:(1)理想气体:能够严格遵守气体实验定律的气体,称为理想气体。
理想气体是一种理想化模型。
实际中的气体在压强不太大,温度不太低的情况下,均可视为理想气体。
(2)理想气体的状态方程:C TPVT V P T V P ==或222111 一定质量的理想气体的状态发生变化时,它的压强和体积的乘积与热力学温度的比值保持不变。
即此值为—恒量。
热力学第一定律:(1)表达式为:ΔE=W+Q1.改变内能的两种方式:做功和热传递都可以改变物体的内能。
2.做功和热传递的本质区别:做功和热传递在改变物体内能上是等效的。
但二者本质上有差别。
做功是把其他形式的能转化为内能。
而热传递是把内能从一个物体转移到另一个物体上。
3.功、热量、内能改变量的关系——热力学第一定律。
①内容:在系统状态变化过程中,它的内能的改变量等于这个过程中所做功和所传递热量的总和。
②实质:是能量转化和守恒定律在热学中的体现。
③表达式:∆E W Q=+ ④为了区别不同情况,对∆E 、W 、Q 做如下符号规定: ∆E > 0 表示内能增加∆E < 0 表示内能减少Q > 0 表示系统吸热 Q < 0 表示系统放热 W > 0 表示外界对系统做功W < 0 表示系统对外界做功能的转化和守恒定律:1.物质有许多不同的运动形式,每一种运动形式都有一种对应的能。
2.各种形式的能都可以互相转化,转化过程中遵守能的转化和守恒定律。
3.能的转化和守恒定律:能量既不能凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体。
应注意的问题:1.温度与热量:①温度:温度是表示物体冷热程度的物理量。
从分子动理论观点看,温度是物体分子平均动能的标志。
温度是大量分子热运动的集体表现,含有统计意义,对个别分子来说,温度是没有意义的。
温度高低标志着物体内部的分子热运动的剧烈程度。
理想气体的状态方程知识元理想气体的状态方程知识讲解1.理想气体(1)宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.(2)微观上讲:分子本身的大小可以忽略不计,分子可视为质点;理想气体分子除碰撞外,无相互作用的引力和斥力;从能量上看,分子间无相互作用力,也就没有分子力做功,故无分子势能。
理想气体的内能等于所有分子热运动的动能之和,一定质量的理想气体的内能只与温度有关。
2.理想气体的状态方程一定质量的理想气体状态方程:.(1)气体实验定律可看作一定质量理想气体状态方程的特例.(2)适用条件:压强不太大,温度不太低(3)式中常量C由气体的各类和质量决定,与其它参量无关例题精讲理想气体的状态方程例1.'如图所示,汽缸开口向上固定在水平面上,其横截面积为S,内壁光滑,A、B为距离汽缸底部h2处的等高限位装置,限位装置上装有压力传感器,可探测活塞对限位装置的压力大小,活塞质量为m,在汽缸内封闭了一段高为h1、温度为T1得到理想气体,对汽缸内气体缓缓降温,已知重力加速度为g,大气压强为p0,变化过程中活塞始终保持水平状态。
求:①当活塞刚好与限位装置接触(无弹力)时,汽缸内气体的温度T2;②当A、B处压力传感器的示数之和为2mg时,汽缸内气体的度T3。
'例2.'如图所示,一定质量的理想气体从状态A变化到状态B,再变化到状态C.已知状态A的温度为600K.求:(I)气体在状态C的温度;(II)若从状态A变化到状态B的整个过程中,气体是从外界吸收热量为Q,气体对外界做了多少功。
'例3.'热气球是靠加热气球内部空气排出部分气体而获得上升动力的装置。
已知空气在1个大气压,温度27℃时的密度为1.16kg/m3.现外界气体温度是17℃,气球内、外气压始终为1个标准大气压。
现要用容积V0=1000m3的气球(气球自身质量忽略不计)吊起m1=200kg的重物。
庖丁巧解牛知识·巧学一、理想气体1.严格遵守气体实验定律的气体叫做理想气体.2.微观模型:①与分子间的距离相比,分子本身的大小可以忽略不计;②除碰撞的瞬间外,分子之间没有相互作用;③具有分子动能而无分子势能,内能由温度和气体物质的量决定,只是温度的函数,内能的变化与温度的变化成正比.3.理想气体是一种经科学的抽象而建立的理想化模型,实际上是不存在的,实际气体,特别是那些不易液化的气体,在压强不太大(和大气压强比较)、温度不太低(和室温比较)的条件下,都可视为理想气体,例如氢气、氧气、氮气、空气等在常温、常压的条件下,都可看作理想气体.深化升华 (1)宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.(2)微观上讲,理想气体应有如下性质:分子间除碰撞外无其他作用力;分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.显然这样的气体是不存在的,只是实际气体在一定程度上近似.(3)从能量上看,理想气体的微观本质是忽略了分子力,所以其状态无论怎么变化都没有分子力做功,即没有分子势能的变化,于是理想气体的内能只有分子动能,即一定质量的理想气体的内能完全由温度决定.联想发散 理想气体实际上是不存在的,它只是为了研究问题的方便,突出事物的主要因素,忽略次要因素而引入的一种理想化模型,就像力学中引入质点、静电学中的点电荷模型一样,这些理想化模型的引入使我们对物体运动规律的研究大大简化.二、理想气体的状态方程1.状态方程的推导方法一:(1)条件:一定质量的理想气体(2)推导过程:设想气体状态变化过程,即气体由状态Ⅰ先经等温变化使气体体积由V 1变到V 2,然后再经过等容变化到状态Ⅱ,如图8-3-1所示.图8-3-1等温变化过程:p 1V 2=p c V 2p c =211V V p 等容变化过程:1T p C =22T p p C =212T T p 得111T V p =222T V p ,这就是理想的气体状态方程,即T pV =恒量. 方法二:推导推导过程:p A 、V A 、T A 、p C 、V C 、T C 的关系首先画出p-V 图象,如图8-3-2所示.图8-3-2由图8-3-2可知,A→B 为等温过程,根据玻意耳定律可得p A V A =p B V B ①从B→C 为等容过程,根据查理定律可得:B B T p =CC T p ② 又T B =T A ,V B =V C联立①②可得1A A A T V p =C C C T V p 上式表明,一定质量的某种理想气体在从一个状态1变化到另一个状态2时,尽管其p 、V 、T 都可能变化,但是压强跟体积与热力温度的比值保持不变,也就是说111T V p =222T V p 或T pV =C (C 为恒量). 学法一得 选定状态变化法设一定质量的气体由状态1(p 1、V 1、T 1)变化到状态2(p 2、V 2、T 2),我们给它选定一个中间过渡状态C ,遵守玻意耳定律,从状态C 至2遵守查理定律,所以p 1V 1=p C V 2,1T p C =22T p ,从两式消去p C 得111T V p =222T V p . 深化升华 中间状态的选定应使这一状态前后的状态变化各自遵守某一实验定律,并注意一定质量气体状态变化时,只有一个状态量变化是不可能的.2.理想气体状态方程(1)内容:一定质量的某种理想气体,从一个状态变化到另一个状态,压强和体积的乘积与热力学温度的比值保持不变.它是一定质量的某种理想气体处于某一状态时,三个状态参量必须满足的关系,即为理想气体的状态方程.(2)表达式一定质量的理想气体的状态方程为T pV =C (恒量)或111T V p =222T V p ① 深化升华 (1)把①式两边分别除以被研究气体的质量m ,可以得到方程111T p ρ=222T p ρ②即某种气体的压强除以这种气体的密度与绝对温度的乘积所得的商是一个常量.②式适用于密度变化的问题,如漏去气体或补充气体的情况,但等式两边所讨论的气体属于同种气体.(2)若理想气体在状态变化过程中,质量为m 的气体分成两个不同状态的部分m 1、m 2,或者由同种气体的若干个不同状态的部分m 1、m 2、…,m n 混合而成,有T pV =111T V p +222T V p +…+nn n T V p ③ ③式表示在总质量不变的前提下,同种气体进行分、合变态过程中各参量之间的关系,很多问题 可用这个来处理,显得较为简便.典题·热题知识点一 理想气体例1 关于理想气体,下列说法正确的是( )A.理想气体能严格遵守气体实验定律B.实际气体在温度不太高,压强不太大的情况下,可看成理想气体C.实际气体在温度不太低,压强不太大的情况下,可看成理想气体D.所有的实际气体在任何情况下,都可以看成理想气体解析:理想气体是在任何温度,任何压强下都能遵守气体实验定律的气体,A 选项正确.理想气体是实际气体在温度不太低,压强不太大情况下的抽象,故C 正确.答案:AC巧妙变式 能遵守气体实验定律的气体就是理想气体吗?不是.知识点二 理想气体的状态方程例2 一个半径为0.1 cm 的气泡,从18 m 深的湖底上升,如果湖底水的温度是8 ℃,湖面的温度是24 ℃,湖面的大气压强是76 cmHg ,那么气泡升至湖面时体积是多少?解析: 气泡从湖底上升过程中气泡的温度随上升而升高,可认为是水的温度.另外,气泡的压强和体积也发生变化.先确定初、末状态,再应用理想气体状态方程进行计算.此题的关键是确定气泡内气体的压强.由题意可知V 1=34πr 3=4.19×10-3 cm 3 p 1=p 0+汞水水p h p =76+6.1310182⨯ cmHg=208 cmHg T 1=273+8 K=281 Kp 2=76 cmHgT 2=273+24 K=297 K根据理想气体的状态方程111T V p =222V V p 得 V 2=12211T p T V p =28176297104.19208-3⨯⨯⨯⨯ cm 3=0.012 cm 3. 方法归纳 ①应用理想气体状态方程解题,关键是确定气体初、末状态的参量;②注意单位的换算关系;③用公式111T V p =222T V p 解题时,要求公式两边p 、V 、T 的单位分别一致即可,不一定采用国际单位.例3 用销钉固定的活塞把水平放置的容器分隔成A 、B 两部分,其体积之比为V A ∶V B =2∶1,如图8-3-3所示.起初A 中有温度为27 ℃、压强为1.8×105Pa 的空气,B 中有温度为127 ℃、压强为2×105 Pa 的空气.现拔出销钉,使活塞可以无摩擦地移动(无漏气),由于容器壁缓慢导热,最后气体都变到室温27 ℃,活塞也停止移动,求最后A 中气体的压强.图8-3-3解析:分别对A 、B 两部分气体列气态方程,再由A 、B 体积关系及变化前后体积之和不变、压强相等列方程,联立求解.(1)以A 中气体为研究对象:初态下:p A =1.8×105 Pa ,V A ,T A =300 K.末态下:p A ′=? V A ′=? T A ′=300 K.根据理想气体状态方程:p A V A =p A ′V A ′.(2)以B 中气体为研究对象:初态下:p B =2×105 Pa ,V B ,T B =400 K.末态下:p B ′=? V B ′=? T B ′=300 K.根据理想气体状态方程:B B B T V p ='''BB B T V p . (3)相关条件:V A ∶V B =2∶1,V A ′+V B ′=V A +V B ,p A ′=P B ′联立可解得:p A ′=1.7×105 Pa.方法归纳 本题涉及的两部分气体,虽然它们之间没有气体交换,但它们的压强或体积之间存在着联系,在解题时首先要用隔离法对各部分气体分别列式,再找出它们的压强和体积间的相关条件联立求解.知识点三 关于理想气体和力学知识的综合问题例4 如图8-3-4所示,一根一端封闭、一端开口向上的均匀玻璃管,长l=96 cm ,用一段长h=20 cm 的水银柱封住长h 1=60 cm 的空气柱,温度为27 ℃,大气压强p 0=76 cmHg ,问温度至少要升高到多少度,水银柱才能全部从管中溢出?图8-3-4解析:实际上,整个过程可分为两个阶段.第一阶段,水银柱尚未溢出阶段,加热气体,气体作等压变化,体积增大,温度升高;第二阶段,水银溢出,气体体积增大,但压强却减小,由TpV =C 可知,当p 、V 乘积最大时,温度应为最高. 由于第二个过程中,体积增大,压强减小,则可能出现温度的极值.以封闭气体为研究对象则初始状态下p 1=p 0+h=96 cmHgV 1=h 1S=60S T 1=300 K设管中剩余水银柱长为x cm 时,温度为T 2p 2=(p 0+x) cmHg=(76+x) cmHgV 2=(96-x)S根据理想气体状态方程111T V p =222T V p 有3006096⨯=2x)-x)(96(76T + 显然,要使T 2最大,则(76+x )(96-x )应最大,即x=10 cm 时,T 2有极大值是385.2 K. 温度至少要升至385.2 K ,水银柱才能全部排出.误区警示 当温度升高到T 2时管内水银柱全部排出,则1110)(T h h p +=20T l p T 2=100)(h h p L p +T=6020)(769676⨯+⨯×300 K=380 K 错误地认为温度升高后,水银逐步被排出管外,水银全部被排出时,对应温度最高,起初一看,似乎是合理的,但如果将末状态的压强和体积数值交换,即p 2=96 cmHg,h 2=76 cm ,这时温度仍为380 K ,但水银柱与气体的总和度却是(96-76+76) cm=96 cm ,恰好与管等长,也就是水银柱尚未溢出玻璃管.例5 如图8-3-5所示,粗细均匀的U 形玻璃管如图放置,管的竖直部分长为20 cm ,一端封闭,水平部分长40 cm ,水平段管内长为20 cm 的水银柱封住长35 cm 的气柱.已知所封闭的气体温度为7 ℃,大气压强为75 cmHg ,当管内温度升到351 ℃时管内空气柱的总长度是多少?(弯管部分体积忽略不计)图8-3-5解析:温度升高时,气体体积增加,水银柱可能进入直管也可能溢出,所以要首先分析各临界状态的条件,然后针对具体情况计算.设水银柱刚好与竖直管口平齐而正好不溢出,此时气柱高度为60 cm ,设温度为T 2. 以封闭气体为研究对象:初状态:p 1=p 0=75 cmHg,l 1=35 cm,T 1=280 K末状态:p 2′=95 cmHg,l 2=60 cm,T 2=?根据理想气体状态方程:111T S l p =222T S l p 所以T 2=1122l p l p T 1=35756095⨯⨯×280 K=608 K 即t 2=(608-273) ℃=335 ℃<351 ℃,所以水银柱会溢出.设溢出后,竖直管内仍剩余水银柱长为h cm ,则初状态:p 1=75 cmHg,l 1=35 cm,T 1=280 K末状态:p′2=(75+h) cmHg,l′2=(80-h) cm,T′2=(351+273) K=624 K根据理想气体状态方程得:111T S l p =222T S l p 即28035S 75⨯=624h)S h)(80(75++ h=15 cm故管内空气柱的长度为l 2′=(80-15) cm=65cm.方法归纳 理想气体状态方程的应用要点:(1)选对象:根据题意,选出所研究的某一部分气体,这部分气体在状态变化过程中,其质量必须保持一定.(2)找参量:找出作为研究对象的这部分气体发生状态变化前后的一组p 、V 、T 数值或表达式,压强的确定往往是个关键,常需结合力学知识(如力的平衡条件或牛顿运动定律)才能写出表达式.(3)认过程:过程表示两个状态之间的一种变化方式,除题中条件已直接指明外,在许多情况下,往往需要通过对研究对象跟周围环境的相互关系的分析中才能确定,认清变化过程是正确选用物理规律的前提.(4)列方程:根据研究对象状态变化的具体方式,选用气态方程或某一实验定律,代入具体数值,T 必须用热力学温度,p 、V 的单位统一,最后分析讨论所得结果的合理性及其物理意义.问题 ·探究交流讨论探究问题 为什么实际气体不能严格遵守气体实验定律?探究过程:郝明:分子本身占有一定的体积分子半径的数量级为10-10 m ,把它看成小球,每个分子的固有体积约为4×10-30 m 3,在标准状态下,1 m 3气体中的分子数n 0约为3×1025,分子本身总的体积为n 0V 约为1.2×10-4 m 3,跟气体的体积比较,约为它的万分之一,可以忽略不计.当压强较小时,由于分子本身的体积可以忽略不计,因此实际气体的性质近似于理想气体,能遵守玻意耳定律,当压强很大时,例如p=1 000×105 Pa ,假定玻意耳定律仍能适用,气体的体积将缩小为原来的千分之一,分子本身的总体积约占气体体积的1/10.在这种情况下,分子本身的体积就不能忽略不计了.由于气体能压缩的体积只是分子和分子之间的空隙,分子本身的体积是不能压缩的,就是说气体的可以压缩的体积比它的实际体积小.由于这个原因,实际气体当压强很大时,实测的p-V 值比由玻意耳定律计算出来的理论值偏大. 胡雷:分子间有相互作用力实际气体的分子间都有相互作用,除了分子相距很近表现为斥力外,相距稍远时则表现为引力,距离再大,超过几十纳米(纳米的符号是nm ,1 nm=10-9 m )时,则相互作用力趋于零.当压强较小时,气体分子间距离较大,分子间相互作用力可以不计,因此实际气体的性质近似于理想气体.但当压强很大时,分子间的距离变小,分子间的相互吸引力增大.于是,靠近器壁的气体分子受到指向气体内部的引力,使分子对器壁的压力减小,因而气体对器壁的压强比不存在分子引力时的压强要小,因此,当压强很大时,实际气体的实测p-V 值比由玻意耳定律计算出来的理论值偏小.探究结论:实际气体在压强很大时不能遵守玻意耳定律的原因,从分子运动论的观点来分析,有下述两个方面.(1)分子本身占有一定的体积;(2)分子间有相互作用力.上述两个原因中,一个是使气体的p-V 实验值偏大,一个是使气体的p-V 实验值偏小.在这两个原因中,哪一个原因占优势,就向哪一方面发生偏离.这就是实际气体在压强很大时不能严格遵守玻意耳定律的原因.同样,盖·吕萨克定律和查理定律用于实际气体也有偏差.思想方法探究问题 理想气体状态方程的推导可以有哪些种情况?探究过程:一定质量理想气体初态(p 1、V 1、T 1)变化到末态(p 2、V 2、T 2),因气体遵从三个实验定律,我们可以从三个定律中任意选取其中两个,通过一个中间状态,建立两个方程,解方程消去中间状态参量便可得到气态方程,组成方式有6种,如图8-3-6所示.图8-3-6我们选(1)先等温、后等压来证明从初态→中间态,由玻意耳定律得p 1V 1=p 2V′①从中间态→末态,由盖·吕萨克定律得2'V V =21T T ② 由①②得 111T V p =222T V p 其余5组大家可试证明一下.探究结论:先等温后等压;先等压后等温;先等容后等温;先等温后等容;先等压后等容;先等容后等压.。