皮拉德喷煤管备课讲稿
- 格式:ppt
- 大小:8.32 MB
- 文档页数:33
第二炼铁部喷煤系统计划 2002 年 9 月份投入使用,为准确分析喷煤后的 高炉主要操作参数变化,给高炉调剂提供可靠依据,以确保喷吹后炉况稳定顺 行,使喷吹后达到降低生铁成本的效果,特制订本作业指导书,望有关岗位认 真参照执行。
1、直吹管 40 根,耐高温大于 1200 ·C 。
(负责人:王胜利) 1) 7 月 30 日以前完成喷煤直吹管的灌制,按 40 根准备。
2)直吹管灌制质量必须有保证,存放、运输过程中注意保护,避免内衬 受损。
2、喷煤枪 40 根。
(负责人:王胜利)1)尺寸要求:外径 22mm 的无缝钢管,每根长度 1 .5~1.8 米。
2)插入位置实际测定, 7 月 30 日前制作完毕。
3、其它材料准备:(负责人:王胜利) 1)喷煤葫芦 30 套。
2) 25mm 金属软管 20 根。
3) 25mm 风压管 60 米。
4) 20mm 焊管 20 米。
1、安排高炉工长和看水工到一炼铁进行实际操作培训,每期学习 7 天, 共分 4 批。
(2002 年 7 月-8 月)2、从一炼铁礼聘专业人员对高炉工长、看水工进行有关喷煤知识讲座。
(7 月中旬)3、人员配备: 2 座高炉 4 名看水工,负责冷却设备和喷煤设备的维护和 管理。
三、 :1.入炉风量:阶 段第一阶段 第二阶段 第三阶段 时 间 9 月 10 月~11 月 12 月以后 喷吹量 1200kg/h 2100kg/h 3000kg/h 煤 比 40kg/t 70kg/t100kg/t第三批7 月 24~7 月 30 日马书江 张国柱 孙会杰第四批7 月 31~8 月 6 日高学谦 谢理强 王胜利第一批 7 月 10~16 日 张景刚 黄伟峰 赵新庆第二批 7 月 17~23 日 岳章生 刘运清 李文昌时间 值班工长 看 水 工①送风面积:(直径单位: mm 面积单位: mm2)1#炉:1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 面积95 100 100 95 100 100 95 100 100 95 0.07544 2#炉:1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 面积95 100 95 100 95 100 95 95 100 95 0.07391②风量:1#炉:日产 700 吨,焦比 530kg/t 铁,风温1070 ·C,C =0.85, C =0.65,热k ψ风压力=0.167MpaV 混=22.4/24/ (0.21+0.29*0.015) *530*0.85*0.65=1275m3/tVb=1275*700/1440=620m3/min2#炉:日产 720 吨,焦比 540kg/t 铁,风温1050 ·C,C =0.85, C =0.65,热k ψ风压力=0.167MpaV 混=22.4/24/ (0.21+0.29*0.015) *540*0.85*0.7*0.65=1299m3/tVb=1299*720/1440=650m3/min2.风速:1#炉:V 标准=620/60/0.07544=137m/sV 实际=137*101*(273+1070)/273/(101+167)=254m/s2#炉:V 标准=650/60/0.07391=147m/sV 实际=147*101*(273+1050)/273/(101+167)=268m/s3.鼓风动能:1#炉:E=620*0.5*1.293/(9.8*10*60)*V 实际2=4398kg.m/s2#炉:E=650*0.5*1.293/(9.8*10*60)*V 实际2=5133kg.m/s4.理论燃烧温度:1#炉:t =1570+0.808*t =2435 ·C理论风2#炉:t =1570+0.808*t =2418 ·C理论风1.第一阶段(煤比 40kg/t 铁)喷吹时风量、风速、鼓风动能及理论燃烧温度:1)入炉风量:1#炉:日产 700 吨,综合焦比 530kg/t 铁,入炉焦比 498kg/t 铁,煤比 40kg/t 铁,风温 1100 ·C,C =0.85, k0.8煤理化性能:C =0.65,热风压力=0.167Mpa ,置换比ψV 混=22.4/24/ (0.21+0.29*0.015) *[ (498*0.85+40*0.8) *0.65 - (0.015+16/18*0.007) *40]+5.6*0.5*40*0.038+22.4/18*40*0.007 =1288m3/tVb=1288*700/1440=626m3/min 2#炉:日产 720 吨,综合焦比 540kg/t 铁,入炉焦比 508kg/t ,煤比 40kg/t铁,风温 1080 ·C,C =0.85, C =0.7,热风压力=0.167Mpa,其它同 1#炉.k ψV 混=22.4/24/ (0.21+0.29*0.015) *[ (508*0.85+40*0.8) *0.65 - (0.015+16/18*0.007) *40]+5.6*0.5*40*0.038+22.4/18*40*0.007 =1316m3/tVb=1316*720/1440=658m3/min 2)风速: 1#炉:V 标准=626/60/0.07544=138m/sV 实际=138*101*(273+1100)/273/(101+167)=262m/s 2#炉:V 标准=658/60/0.07391=148m/sV 实际=148*101*(273+1080)/273/(101+167)=276m/s 3)鼓风动能: 1#炉:E=626*0.5*1.293/(9.8*10*60)*V 实际 2=4725kg.m/s 2#炉:E=658*0.5*1.293/(9.8*10*60)*V 实际 2=5455kg.m/s 4)理论燃烧温度: 1#炉:t =1570+0.808*t -4.4*31.06=2298 ·C 理论 风 2#炉:t =1570+0.808*t -4.4*30.4=2284 ·C理论 风水分 0.7 Aa 11.5 S 0.4 H2 3.8 O2 1.5 N2 1.2C 801)入炉风量:1#炉:日产 700 吨,综合焦比 530kg/t 铁,入炉焦比 474kg/t 铁,煤比 70 铁,风温 1100 ·C,C =0.85, C =0.65,热风压力=0.167Mpa,置换比 0.8k ψV 混=22.4/24/ (0.21+0.29*0.015) *[ (474*0.85+70*0.8) *0.65- (0.015+16/18*0.007) *70]+5.6*0.5*70*0.038+22.4/18*70*0.007=1300m3/tVb=1300*700/1440=632m3/min2#炉:日产 720 吨,综合焦比 540kg/t 铁,入炉焦比 484kg/t,煤比 70kg/t 铁, 风温1080 ·C,C =0.85, C =0.7,热风压力=0.167Mpa,其它同 1#炉.k ψV 混=22.4/24/ (0.21+0.29*0.015) *[ (484*0.85+70*0.8) *0.65- (0.015+16/18*0.007) *70]+5.6*0.5*70*0.038+22.4/18*70*0.007=1324m3/tVb=1324*720/1440=662m3/min2)风速:1#炉:V 标准=632/60/0.07544=139.6m/sV 实际=139.6*101*(273+1100)/273/(101+167)=265m/s2#炉:V 标准=662/60/0.07391=149.3m/sV 实际=149.3*101*(273+1080)/273/(101+167)=278m/s3)鼓风动能:1#炉:E=632*0.5*1.293/(9.8*10*60)*V 实际2=4880kg.m/s2#炉:E=662*0.5*1.293/(9.8*10*60)*V 实际2=5625kg.m/s4)理论燃烧温度:1#炉:t =1570+0.808*t -4.4*53.84=2221 ·C理论风2#炉:t =1570+0.808*t -4.4*52.87=2210 ·C理论风1)入炉风量:1#炉:日产 700 吨,综合焦比 530kg/t 铁,入炉焦比 450kg/t 铁,煤比 100 铁,风温 1100 ·C,C =0.85, k0.8C =0.65,热风压力=0.167Mpa ,置换比ψV 混=22.4/24/ (0.21+0.29*0.015) *[ (450*0.85+100*0.8) *0.65 - (0.015+16/18*0.007) *100]+5.6*0.5*100*0.038+22.4/18*100*0.007 =1311m3/tVb=1311*700/1440=637m3/min 2#炉:日产 720 吨,综合焦比 540kg/t 铁,入炉焦比 460kg/t,煤比 100kg/t 铁, 风温 1080 ·C,C =0.85, C =0.7,热风压力=0.167Mpa,其它同 1#炉.k ψV 混=22.4/24/ (0.21+0.29*0.015) *[ (460*0.85+100*0.8) *0.65 - (0.015+16/18*0.007) *100]+5.6*0.5*100*0.038+22.4/18*100*0.007 =1335m3/tVb=1335*720/1440=667m3/min 2)风速: 1#炉:V 标准=637/60/0.07544=140.7m/sV 实际=140.7*101*(273+1100)/273/(101+167)=267m/s 2#炉:V 标准=667/60/0.07391=150.4m/sV 实际=150.4*101*(273+1080)/273/(101+167)=280m/s 3)鼓风动能: 1#炉:E=637*0.5*1.293/(9.8*10*60)*V 实际 2=4993kg.m/s 2#炉:E=667*0.5*1.293/(9.8*10*60)*V 实际 2=5750kg.m/s 4)理论燃烧温度: 1#炉:t =1570+0.808*t -4.4*76.3=2123 ·C 理论 风 2#炉:t =1570+0.808*t -4.4*74.96=2113 ·C理论 风1.1#炉:1)第一阶段与喷吹前比较:理论燃烧温度2298 2435 -137指标 时期第一阶段喷吹前 比 较 入炉风量 626 620 +6 标准风速 138 137 +1 鼓风动能4725 4398 +327 实际风速 262 254 +82)第二阶段与喷吹前比较:3)第三阶段与喷吹前比较:2、2#炉:1)第一阶段与喷吹前比较:2)第二阶段与喷吹前比较:指标时期第二阶段 662 149.3 278 5625 2210 喷吹前 650 147 268 5133 2418 比较 +12 +2.3 +10 +492 -208 3)第三阶段与喷吹前比较:指标时期第三阶段 667 150.4 280 5750 2113 喷吹前 650 147 268 5133 2418 比较 +17 +3.4 +12 +617 -3051.喷吹煤粉前高炉上、下部调剂主要参数:1#高炉:装制风口2#高炉:装制风口5正1倒Ф100mm6 个,Ф 95mm4 个全正装(7 正)Ф100mm4 个,Ф 95mm6 个矿批: 5.65-5.75 吨面积: 0.07544mm2矿批: 5.75-5.85 吨面积: 0.07391mm2理论燃烧温度22842418-134指标时期第一阶段喷吹前比较入炉风量658650+8标准风速148147+1鼓风动能54555133+322实际风速276268+8理论燃烧温度21232435-312指标时期第三阶段喷吹前比较入炉风量637620+17标准风速140.7137+3.7鼓风动能49934398+595实际风速267254+13理论燃烧温度22212435-214指标时期第二阶段喷吹前比较入炉风量632620+12标准风速139.6137+2.6鼓风动能48804398+482实际风速265254+11入炉风量标准风速实际风速鼓风动能理论燃烧温度入炉风量标准风速实际风速鼓风动能理论燃烧温度从炉顶煤气分布看, 1#炉中心气流较为发展, 2#炉煤气分布基本合理。
喷煤安全培训教材1. 引言喷煤作为一种常见的采矿方法,广泛应用于煤矿行业。
然而,由于喷煤作业涉及到高温、高压、易爆等安全隐患,必须加强员工的安全培训和意识提升。
本文将介绍喷煤作业的基本知识和安全操作规范,以确保员工的安全,提高工作效率。
2. 喷煤概述喷煤是一种采用压缩空气将煤粉混合成煤尘云雾,并通过管道输送到工作面进行煤矿开采的方法。
喷煤作业不仅可以提高矿井采矿效率,还能减少矿山露天开采对环境的影响。
3. 喷煤作业的安全隐患喷煤作业中存在一系列的安全隐患,包括:3.1 煤尘爆炸:煤尘与空气混合形成可燃气体,一旦遇到火源,就会引发爆炸事故。
3.2 高温高压气体:喷煤过程涉及到高温高压气体的产生和运输,容易造成安全事故。
3.3 噪音和震动:喷煤机械的运转噪音和震动对员工的身体健康造成潜在影响。
4. 喷煤作业的安全操作规范为避免喷煤作业过程中发生安全事故,需严格遵守以下操作规范:4.1 安全装备:员工在喷煤作业中必须佩戴防护眼镜、耳塞、防护手套等必要的安全装备。
4.2 煤尘控制:严格执行煤尘控制措施,保持作业区域干燥,减少煤尘积聚。
4.3 火源控制:禁止在喷煤作业区域内使用明火,严禁吸烟。
4.4 定期维护:对喷煤设备进行定期检修和维护,确保其正常运转。
4.5 应急处理:建立有效的应急处理机制,配备相应的应急设备和灭火器材。
5. 喷煤作业的安全培训为提高员工的安全意识和操作技能,喷煤作业应进行全员安全培训,培训内容主要包括以下几个方面:5.1 喷煤作业流程:详细介绍喷煤作业的步骤和流程,让员工了解整个作业过程。
5.2 安全操作规范:讲解喷煤作业的安全操作规范,强调员工遵循规范的重要性。
5.3 应急处置能力:培养员工应对突发情况的能力,掌握应急处理技巧。
5.4 安全检查技巧:教授员工进行安全检查的方法和技巧,提高发现问题和隐患的能力。
6. 喷煤作业的风险评估在进行喷煤作业之前,必须进行风险评估,确定作业过程中可能存在的安全隐患,并采取相应的预防措施。
2014年云南澄江华荣水泥有限责任公司企业准入自查报告云南澄江华荣水泥有限责任公司2015年02月10日根据《水泥行业准入公告管理暂行办法》(原工信[2011]406号)的相关要求,现将2014年云南澄江华荣水泥有限责任公司企业准入情况自查报告如下:一、企业基本情况云南澄江华荣水泥有限责任公司位于云南省玉溪市澄江县九村镇龙潭村委会龙潭丫口旁,占地面积约367亩,距澄江县城约9km,距澄阳公路2km。
公司共投资66000万元分别于2009年8月、2010年10月建成并投产2×2000t/d新型干法水泥熟料生产线,产品产量、质量均达到设计要求,生产的“明珠牌”水泥得到了广大用户的认可和好评。
澄江华荣于2011年10月8日与中国建材股份公司资产联合重组后,大力弘扬中建材企业文化,以“善用资源、服务建设”为企业使命,以“创新、绩效、和谐、责任”为核心价值观,营造“三宽”、“三力”的人文环境,培育“敬畏、感恩、谦恭、得体”的干部素养。
在中建材管理文化的融合下,员工和企业素质进一步提高;在管理整合的道路上,企业实力得到增强。
云南澄江华荣水泥有限责任公司于2013年7月提出准入申请,2013年10月正式进入,2014年公司法人代表、股权、资质、主要产品品种及生产能力均未发生变化。
二、生产经营情况2014年生产水泥115.27万吨,生产熟料96.87万吨,窑综合运转率57.45%,窑综合台产96.24吨,熟料日产量2×2309.76吨/天,销售水泥115.27吨(其中销售32.5级水泥19.07万吨,销售42.5级及以上水泥96.2万吨),散装水泥数量99.3万吨,散装率86.15%,全年实现销售收入25867.78万元,利润总额1341.82万元,利用工业废弃物数量16.66万吨,颗粒物排放量115.992吨,二氧化硫排放量54.5吨,氮氧化物排放量542.88吨,余热发电3195.04万度,吨熟料发电量32.5度,全年窑产能达到设计要求,环保达标排放。
水泥工艺技术总结2015年生产技术处在区域公司生产技术部及公司各级领导的支持下,全体干部员工紧紧围绕全年生产目标,坚定信心,攻克困难,以降本增效为指导,以厂区生产组织、物料保供为中心,大型项目技改、矿山开采保供为重点,务实基础管理。
从年初以来截止12月31日,共生产熟料296.88万吨,完成年计划生产量310万吨的88.07%;生产水泥435.87万吨,完成年计划生产量550万吨的90.58%;发运水泥437.67万吨,完成年计划生销量550万吨的91.78%;发运商品熟料10.05万吨,完成年计划生销量30万吨的35.00%。
现将2015年工作总结如下:一、2015年生产任务完成情况表一、2015年生产完成情况对比表根据上表,可以看出,2015年较上年同期,熟料产量上升 2.9万吨,窑台产下降5.60t/h,窑运转率上升5.68%,实物煤耗下降24.92kg/t,标准煤耗下降 1.63kg/t,熟料综合电耗下降2.76Kwh/t,水泥产量上升20.6万吨,水泥磨台产升水2.24 t/h,水泥磨运转率上升8.01%,水泥工序电耗上升2.02Kwh/t。
二、2015年生产组织及完成情况1、厂区内物料组织方面由于我公司没有粘土、高硅土矿山。
受政府部门干涉,原料采购只能依靠周边矿山剥离土和政府新建项目开挖土方,在物料采购方面存在局限性。
为确保生产顺利进行在供应不足的情况下只能在厂区内部进行倒运。
另一方面由于厂区内料棚库容较小,受雨水季节影响,物料水分较重,造成物料输送不畅磨机开停频繁,思想汇报专题生料工序电耗较高。
厂区内物料保供困难,公司利用天晴及原燃材料价格低廉时段,大量组织原燃材料进厂,本部门合理安排堆放倒运,完成各类物料倒运共计15万吨,既保证了正常的生产物料组织,同时也降低了公司原燃材料的采购成本。
2、矿山管理方面针对以前矿山多种因素导致开采混乱、搭配不均匀、品质差,管控不严,严重影响我公司生产,2014年9月起实行对外承包,由西安中材中标承包开采。
喷管和扩压管教学设计一、设计目标本教学设计的目标是通过学习和实践,使学生掌握喷管和扩压管的基本原理、使用方法和安全注意事项。
通过本课程的学习,学生将能够正确使用喷管和扩压管,在农业、园艺、灌溉等领域中提高效率和效果。
二、教学内容1. 喷管和扩压管的定义和特点2. 喷管和扩压管的分类和材料3. 喷管和扩压管的工作原理4. 喷管和扩压管的安装和调试5. 喷管和扩压管的常见问题解决方法6. 喷管和扩压管的维护和保养三、教学步骤1. 导入环节介绍喷管和扩压管的应用领域和重要性,激发学生对本课程的兴趣。
2. 理论讲解通过课件和实物展示,详细讲解喷管和扩压管的定义、特点、分类和材料,以及工作原理。
引导学生正确理解和记忆相关概念和知识。
3. 实践操作给每个学生配备喷管和扩压管实物或模型,让他们实际操作和体验其中的原理。
教师可以演示操作步骤,然后让学生逐个操作,纠正错误并给予指导。
4. 问题解答鼓励学生提问喷管和扩压管使用中遇到的问题,并帮助他们解决。
教师可以提供常见问题的解决方法和技巧,培养学生独立解决问题的能力。
5. 总结复习结合实例,总结喷管和扩压管的重要性和使用注意事项。
强调学生在使用过程中要遵守操作规程和安全操作,保护自己和他人的安全。
四、教学评估1. 考核测试设计一份笔试或实际操作测试,以检验学生对喷管和扩压管的理解和掌握程度。
2. 作业评估布置一些课后作业,如编写使用方法、操作步骤等,检验学生对喷管和扩压管的理解和应用能力。
3. 实践应用让学生在实际场景中应用所学知识,通过观察和评估他们的表现,评估他们在实际操作中的技能和能力。
五、教学资源1. 喷管和扩压管的实物或模型2. 课件和教材3. 喷管和扩压管使用手册和说明书六、教学亮点1. 结合实物展示和实践操作,加深学生对喷管和扩压管的理解和记忆。
2. 引导学生在实际操作中发现和解决问题,培养学生的动手能力和解决问题的能力。
3. 结合实际应用场景,增强学生对喷管和扩压管的实际运用能力。
皮拉德四通道燃烧器应用体会
王志红
【期刊名称】《水泥》
【年(卷),期】2011()8
【摘要】我公司2 000t/d生产线窑头原先采用三通道燃烧器。
在使用中存在内、外风速低,头部容易结焦变形等问题,导致窑头煤粉燃烧不完全,引发篦冷机"堆雪人"、窑尾结皮频繁等工艺故障,影响熟料产质量。
【总页数】2页(P45-46)
【作者】王志红
【作者单位】民和祁连山水泥有限公司
【正文语种】中文
【中图分类】TQ172.622.26
【相关文献】
1.一种新型燃烧器—ROTAFLAM四通道燃烧器
2.法国法孚集团:皮拉德回转窑燃烧器技术
3.我公司四通道燃烧器防堵装置的应用实践
4.BF四通道燃烧器在窑系统的应用
因版权原因,仅展示原文概要,查看原文内容请购买。
DS90LV048A3V LVDS Quad CMOS Differential Line ReceiverGeneral DescriptionThe DS90LV048A is a quad CMOS flow-through differential line receiver designed for applications requiring ultra low power dissipation and high data rates.The device is de-signed to support data rates in excess of 400Mbps (200MHz)utilizing Low Voltage Differential Signaling (LVDS)technology.The DS90LV048A accepts low voltage (350mV typical)dif-ferential input signals and translates them to 3V CMOS out-put levels.The receiver supports a TRI-STATE ®function that may be used to multiplex outputs.The receiver also supports open,shorted and terminated (100Ω)input fail-safe.The re-ceiver output will be HIGH for all fail-safe conditions.The DS90LV048A has a flow-through pinout for easy PCB layout.The EN and EN *inputs are ANDed together and control the TRI-STATE outputs.The enables are common to all four re-ceivers.The DS90LV048A and companion LVDS line driver (eg.DS90LV047A)provide a new alternative to high power PECL/ECL devices for high speed point-to-point interface applications.Featuresn >400Mbps (200MHz)switching ratesn Flow-through pinout simplifies PCB layout n 150ps channel-to-channel skew (typical)n 100ps differential skew (typical)n 2.7ns maximum propagation delay n 3.3V power supply designn High impedance LVDS inputs on power down n Low Power design (40mW 3.3V static)n Interoperable with existing 5V LVDS driversn Accepts small swing (350mV typical)differential signal levelsn Supports open,short and terminated input fail-safe n Conforms to ANSI/TIA/EIA-644Standardn Industrial temperature operating range (-40˚C to +85˚C)nAvailable in SOIC and TSSOP packageConnection DiagramFunctional DiagramENABLESINPUTS OUTPUT EN EN*R IN+−R IN−R OUT HL or OpenV ID ≥0.1V H V ID ≤−0.1V L Full Fail-safe OPEN/SHORT or TerminatedHAll other combinations of ENABLE inputs X ZTRI-STATE ®is a registered trademark of National Semiconductor Corporation.Dual-in-LineDS100888-1Order Number DS90LV048ATM,DS90LV048ATMTCSee NS Package Number M16A,MTC16July 1999DS90LV048A 3V LVDS Quad CMOS Differential Line Receiver©1999National Semiconductor Corporation Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Supply Voltage(V CC)−0.3V to+4V Input Voltage(R IN+,R IN−)−0.3V to3.9V Enable Input Voltage(EN,EN*)−0.3V to(V CC+0.3V) Output Voltage(R OUT)−0.3V to(V CC+0.3V) Maximum Package Power Dissipation+25˚CM Package1025mW MTC Package866mW Derate M Package8.2mW/˚C above+25˚C Derate MTC Package 6.9mW/˚C above+25˚C Storage Temperature Range−65˚C to+150˚C Lead Temperature Range Soldering(4sec.)+260˚C Maximum Junction Temperature+150˚C ESD Rating(Note10)(HBM,1.5kΩ,100pF)≥10kV (EIAJ,0Ω,200pF)≥1200VRecommended Operating ConditionsMin Typ Max Units Supply Voltage(V CC)+3.0+3.3+3.6V Receiver Input Voltage GND+3.0V Operating Free AirTemperature(T A)−4025+85˚CElectrical CharacteristicsOver Supply Voltage and Operating Temperature ranges,unless otherwise specified.(Notes2,3)Symbol Parameter Conditions Pin Min Typ Max Units V TH Differential Input High Threshold V CM=+1.2V,0.05V,2.95V(Note13)R IN+,+100mV V TL Differential Input Low Threshold R IN−−100mV VCMR Common-Mode Voltage Range VID=200mV pk to pk(Note5)0.1 2.3V I IN Input Current V IN=+2.8V V CC=3.6V or0V−10±5+10µAV IN=0V−10±1+10µAV IN=+3.6V V CC=0V-20±1+20µA V OH Output High Voltage I OH=−0.4mA,V ID=+200mV R OUT 2.7 3.3VI OH=−0.4mA,Input terminated 2.7 3.3VI OH=−0.4mA,Input shorted 2.7 3.3V V OL Output Low Voltage I OL=2mA,V ID=−200mV0.050.25V I OS Output Short Circuit Current Enabled,V OUT=0V(Note11)−15−47−100mA I OZ Output TRI-STATE Current Disabled,V OUT=0V or V CC−10±1+10µAV IH Input High Voltage EN,EN*2.0V CC VV IL Input Low Voltage GND0.8V I I Input Current V IN=0V or V CC,Other Input=V CC orGND−10±5+10µA V CL Input Clamp Voltage I CL=−18mA−1.5−0.8V I CC No Load Supply CurrentReceivers EnabledEN=V CC,Inputs Open V CC915mA I CCZ No Load Supply Current EN=GND,Inputs Open15mAReceivers DisabledSwitching CharacteristicsOver Supply Voltage and Operating Temperature ranges,unless otherwise specified.(Notes3,4,7,8)Symbol Parameter Conditions Min Typ Max Units t PHLD Differential Propagation Delay High to Low C L=15pF 1.2 2.0 2.7ns t PLHD Differential Propagation Delay Low to High V ID=200mV 1.2 1.9 2.7ns t SKD1Differential Pulse Skew|t PHLD−t PLHD|(Note6)(Figure1and Figure2)00.10.4ns t SKD2Differential Channel-to-Channel Skew;same device(Note7)00.150.5ns t SKD3Differential Part to Part Skew(Note8) 1.0ns t SKD4Differential Part to Part Skew(Note9) 1.5ns t TLH Rise Time0.5 1.0ns t THL Fall Time0.35 1.0ns 2Switching Characteristics(Continued)Over Supply Voltage and Operating Temperature ranges,unless otherwise specified.(Notes3,4,7,8)Symbol Parameter Conditions Min Typ Max Units t PHZ Disable Time High to Z R L=2kΩ814nst PLZ Disable Time Low to Z C L=15pF814nst PZH Enable Time Z to High(Figure3and Figure4)914nst PZL Enable Time Z to Low914nsf MAX Maximum Operating Frequency(Note14)All Channels Switching200250MHzNote1:“Absolute Maximum Ratings”are those values beyond which the safety of the device cannot be guaranteed.They are not meant to imply that the devices should be operated at these limits.The table of“Electrical Characteristics”specifies conditions of device operation.Note2:Current into device pins is defined as positive.Current out of device pins is defined as negative.All voltages are referenced to ground unless otherwise speci-fied.Note3:All typicals are given for:V CC=+3.3V,T A=+25˚C.Note4:Generator waveform for all tests unless otherwise specified:f=1MHz,Z O=50Ω,t r and t f(0%to100%)≤3ns for R IN.Note5:The VCMR range is reduced for larger VID.Example:if VID=400mV,the VCMR is0.2V to2.2V.The fail-safe condition with inputs shorted is not supported over the common-mode range of0V to2.4V,but is supported only with inputs shorted and no external common-mode voltage applied.A VID up to V CC−0V may be applied to the R IN+/R IN−inputs with the Common-Mode voltage set to V CC/2.Propagation delay and Differential Pulse skew decrease when VID is increased from 200mV to400mV.Skew specifications apply for200mV≤VID≤800mV over the common-mode range.Note6:t SKD1is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel Note7:t SKD2,Channel-to-Channel Skew is defined as the difference between the propagation delay of one channel and that of the others on the same chip with any event on the inputs.Note8:t SKD3,part to part skew,is the differential channel-to-channel skew of any event between devices.This specification applies to devices at the same V CC, and within5˚C of each other within the operating temperature range.Note9:t SKD4,part to part skew,is the differential channel-to-channel skew of any event between devices.This specification applies to devices over recommended operating temperature and voltage ranges,and across process distribution.t SKD4is defined as|Max−Min|differential propagation delay.Note10:ESD Rating:HBM(1.5kΩ,100pF)≥10kVEIAJ(0Ω,200pF)≥1200VNote11:Output short circuit current(I OS)is specified as magnitude only,minus sign indicates direction only.Only one output should be shorted at a time,do not exceed maximum junction temperature specification.Note12:C L includes probe and jig capacitance.Note13:V CC is always higher than R IN+and R IN−voltage.R IN−and R IN+are allowed to have a voltage range−0.2V to V CC−VID/2.However,to be compliant with AC specifications,the common voltage range is0.1V to2.3VNote14:f MAX generator input conditions:t r=t f<1ns(0%to100%),50%duty cycle,differential(1.05V to1.35V peak to peak).Output criteria:60/40%duty cycle, V OL(max0.4V),V OH(min2.7V),Load=15pF(stray plus probes).Parameter Measurement InformationDS100888-3FIGURE1.Receiver Propagation Delay and Transition Time Test CircuitDS100888-4FIGURE2.Receiver Propagation Delay and Transition Time Waveforms3Parameter Measurement Information(Continued)Typical ApplicationApplications InformationGeneral application guidelines and hints for LVDS drivers and receivers may be found in the following application notes:LVDS Owner’s Manual (lit #550062-001),AN808,AN977,AN971,AN916,AN805,AN903.LVDS drivers and receivers are intended to be primarily used in an uncomplicated point-to-point configuration as is shown in Figure 5.This configuration provides a clean signaling en-vironment for the fast edge rates of the drivers.The receiver is connected to the driver through a balanced media which may be a standard twisted pair cable,a parallel pair cable,or simply PCB traces.Typically,the characteristic impedance ofthe media is in the range of 100Ω.A termination resistor of 100Ω(selected to match the media),and is located as close to the receiver input pins as possible.The termination resis-tor converts the driver output (current mode)into a voltage that is detected by the receiver.Other configurations are possible such as a multi-receiver configuration,but the ef-fects of a mid-stream connector(s),cable stub(s),and other impedance discontinuities as well as ground shifting,noise margin limits,and total termination loading must be taken into account.DS100888-5C L includes load and test jig capacitance.S 1=V CC for t PZL and t PLZ measurements.S 1=GND for t PZH and t PHZ measurements.FIGURE 3.Receiver TRI-STATE Delay Test CircuitDS100888-6FIGURE 4.Receiver TRI-STATE Delay WaveformsBalanced SystemDS100888-7FIGURE 5.Point-to-Point Application4Applications Information(Continued)The DS90LV048A differential line receiver is capable of de-tecting signals as low as100mV,over a±1V common-mode range centered around+1.2V.This is related to the driver off-set voltage which is typically+1.2V.The driven signal is cen-tered around this voltage and may shift±1V around this cen-ter point.The±1V shifting may be the result of a ground potential difference between the driver’s ground referenceand the receiver’s ground reference,the common-mode ef-fects of coupled noise,or a combination of the two.The ACparameters of both receiver input pins are optimized for arecommended operating input voltage range of0V to+2.4V(measured from each pin to ground).The device will operatefor receiver input voltages up to V CC,but exceeding V CC willturn on the ESD protection circuitry which will clamp the busvoltages.The DS90LV048A has a flow-through pinout that allows foreasy PCB layout.The LVDS signals on one side of the de-vice easily allows for matching electrical lengths of the differ-ential pair trace lines between the driver and the receiver aswell as allowing the trace lines to be close together to couplenoise as common-mode.Noise isolation is achieved with theLVDS signals on one side of the device and the TTL signalson the other side.Power Decoupling Recommendations:Bypass capacitors must be used on power e highfrequency ceramic(surface mount is recommended)0.1µFand0.001µF capacitors in parallel at the power supply pinwith the smallest value capacitor closest to the device supplypin.Additional scattered capacitors over the printed circuitboard will improve decoupling.Multiple vias should be usedto connect the decoupling capacitors to the power planes.A10µF(35V)or greater solid tantalum capacitor should beconnected at the power entry point on the printed circuitboard between the supply and ground.PC Board considerations:Use at least4PCB layers(top to bottom);LVDS signals,ground,power,TTL signals.Isolate TTL signals from LVDS signals,otherwise the TTLmay couple onto the LVDS lines.It is best to put TTL andLVDS signals on different layers which are isolated by apower/ground plane(s)Keep drivers and receivers as close to the(LVDS port side)connectors as possible.Differential Traces:Use controlled impedance traces which match the differen-tial impedance of your transmission medium(ie.cable)andtermination resistor.Run the differential pair trace lines asclose together as possible as soon as they leave the IC(stubs should be<10mm long).This will help eliminate re-flections and ensure noise is coupled as common-mode.Infact,we have seen that differential signals which are1mmapart radiate far less noise than traces3mm apart sincemagnetic field cancellation is much better with the closertraces.In addition,noise induced on the differential lines ismuch more likely to appear as common-mode which is re-jected by the receiver.Match electrical lengths between traces to reduce skew.Skew between the signals of a pair means a phase differ-ence between signals which destroys the magnetic field can-cellation benefits of differential signals and EMI will result.(Note the velocity of propagation,v=c/Er where c(thespeed of light)=0.2997mm/ps or0.0118in/ps).Do not relysolely on the autoroute function for differential traces.Care-fully review dimensions to match differential impedance andprovide isolation for the differential lines.Minimize the num-ber or vias and other discontinuities on the line.Avoid90˚turns(these cause impedance discontinuities).Use arcs or45˚bevels.Within a pair of traces,the distance between the two tracesshould be minimized to maintain common-mode rejection ofthe receivers.On the printed circuit board,this distanceshould remain constant to avoid discontinuities in differentialimpedance.Minor violations at connection points are allow-able.Termination:Use a termination resistor which best matches the differen-tial impedance or your transmission line.The resistor shouldbe between90Ωand130Ω.Remember that the currentmode outputs need the termination resistor to generate thedifferential voltage.LVDS will not work without resistor termi-nation.Typically,connecting a single resistor across the pairat the receiver end will suffice.Surface mount1%to2%resistors are best.PCB stubs,component lead,and the distance from the termination to thereceiver inputs should be minimized.The distance betweenthe termination resistor and the receiver should be<10mm(12mm MAX)Probing LVDS Transmission Lines:Always use high impedance(>100kΩ),lowcapacitance(<2pF)scope probes with a wide bandwidth(1GHz)scope.Improper probing will give deceiving results.Cables and Connectors,General Comments:When choosing cable and connectors for LVDS it is impor-tant to remember:Use controlled impedance media.The cables and connec-tors you use should have a matched differential impedanceof about100Ω.They should not introduce major impedancediscontinuities.Balanced cables(e.g.twisted pair)are usually better thanunbalanced cables(ribbon cable,simple coax.)for noise re-duction and signal quality.Balanced cables tend to generateless EMI due to field canceling effects and also tend to pickup electromagnetic radiation a common-mode(not differen-tial mode)noise which is rejected by the receiver.For cable distances<0.5M,most cables can be made towork effectively.For distances0.5M≤d≤10M,CAT3(cat-egory3)twisted pair cable works well,is readily availableand relatively inexpensive.Fail-Safe Feature:The LVDS receiver is a high gain,high speed device thatamplifies a small differential signal(20mV)to CMOS logiclevels.Due to the high gain and tight threshold of the re-ceiver,care should be taken to prevent noise from appearingas a valid signal.The receiver’s internal fail-safe circuitry is designed tosource/sink a small amount of current,providing fail-safeprotection(a stable known state of HIGH output voltage)forfloating,terminated or shorted receiver inputs.1.Open Input Pins.The DS90LV048A is a quad receiverdevice,and if an application requires only1,2or3re-ceivers,the unused channel(s)inputs should be leftOPEN.Do not tie unused receiver inputs to ground orany other voltages.The input is biased by internal highvalue pull up and pull down resistors to set the output toa HIGH state.This internal circuitry will guarantee aHIGH,stable output state for open inputs. 5Applications Information(Continued)2.Terminated Input.If the driver is disconnected (cable unplugged),or if the driver is in a TRI-STATE or power-off condition,the receiver output will again be in a HIGH state,even with the end of cable 100Ωtermination resis-tor across the input pins.The unplugged cable can be-come a floating antenna which can pick up noise.If the cable picks up more than 10mV of differential noise,the receiver may see the noise as a valid signal and switch.To insure that any noise is seen as common-mode and not differential,a balanced interconnect should be used.Twisted pair cable will offer better balance than flat rib-bon cable.3.Shorted Inputs.If a fault condition occurs that shortsthe receiver inputs together,thus resulting in a 0V differ-ential input voltage,the receiver output will remain in a HIGH state.Shorted input fail-safe is not supported across the common-mode range of the device (GND to 2.4V).It is only supported with inputs shorted and no ex-ternal common-mode voltage applied.External lower value pull up and pull down resistors (for a stronger bias)may be used to boost fail-safe in the presence of higher noise levels.The pull up and pull down resistors should be in the 5k Ωto 15k Ωrange to minimize loading and waveform distortion to the driver.The common-mode bias point should be set to approximately 1.2V (less than 1.75V)to be compatible with the internal circuitry.Pin DescriptionsPin Description2,3,6,7R IN+Non-inverting receiver input pin 1,4,5,8R IN−Inverting receiver input pin 10,11,14,R OUTReceiver output pin1516ENReceiver enable pin:When EN is low,the receiver is disabled.When EN is high and EN*is low or open,the receiver is enabled.If both EN and EN*are open circuit,then the receiver is disabled.9EN*Receiver enable pin:When EN*is high,the receiver is disabled.When EN*is low or open and EN is high,the receiver isenabled.If both EN and EN*are open circuit,then the receiver is disabled.13V CC Power supply pin,+3.3V ±0.3V 12GNDGround pinOrdering InformationOperating Package Type/Order NumberTemperature Number −40˚C to +85˚C SOP/M16A DS90LV048ATM −40˚C to +85˚CTSSOP/MTC16DS90LV048ATMTC Typical Performance CurvesOutput High Voltage vs Power Supply VoltageDS100888-12Output Low Voltage vs Power Supply VoltageDS100888-13 6Typical Performance Curves(Continued)Output Short Circuit Current vsPower Supply VoltageDS100888-14Output TRI-STATE Current vsPower Supply VoltageDS100888-15Differential Transition Voltage vsPower Supply VoltageDS100888-16Power Supply Currentvs FrequencyDS100888-17Power Supply Current vsAmbient TemperatureDS100888-18Differential Propagation Delay vsPower Supply VoltageDS100888-19 7Typical Performance Curves(Continued)Differential Propagation Delay vs Ambient TemperatureDS100888-20Differential Propagation Delay vs Differential Input VoltageDS100888-21Differential Propagation Delay vs Common-Mode Voltage DS100888-22Differential Skew vs Power Supply VoltageDS100888-23Differential Skew vs Ambient Temperature DS100888-24Transition Time vs Power Supply VoltageDS100888-25 8Typical Performance Curves(Continued)Transition Time vsAmbient TemperatureDS100888-269Physical Dimensions inches(millimeters)unless otherwise noted16-Lead(0.150"Wide)Molded Small Outline Package,JEDECOrder Number DS90LV048ATMNS Package Number M16A10Physical Dimensions inches(millimeters)unless otherwise noted(Continued)LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices orsystems which,(a)are intended for surgical implantinto the body,or(b)support or sustain life,andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling,can be reasonably expected to result in asignificant injury to the user.2.A critical component is any component of a lifesupport device or system whose failure to performcan be reasonably expected to cause the failure ofthe life support device or system,or to affect itssafety or effectiveness.National SemiconductorCorporationAmericasTel:1-800-272-9959Fax:1-800-737-7018Email:support@National SemiconductorEuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National SemiconductorAsia Pacific CustomerResponse GroupTel:65-2544466Fax:65-2504466Email:sea.support@National SemiconductorJapan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-7507 16-Lead(0.100"Wide)Molded Thin Shrink Small Outline Package,JEDECOrder Number DS90LV048ATMTCNS Package Number MTC16DS90LV048A3VLVDSQuadCMOSDifferentialLineReceiver National does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。