28 2019/12/12
为了讨论方便, 把不含任何元素的集合 称为空集, 记作. 把空集作为任一集 合A的子集, 即对任一集合A, A.
如果AB且BA, 则称集合A,B相等, 记 作A=B
书上印错
29 2019/12/12
二, 并集 由至少属于集合A或集合B二者之一的所 有元素所组成的集合称为集合A与集合B 的并集, 记作AB.
25 2019/12/12
集合之间的关系与集合的运算
26 2019/12/12
一, 子集 如果属于集合A的任一元素都属于集合B, 则称集合A是集合B的子集, 记作AB(或 BA), 读作A含于B(或B包含A).
B
A
27 2019/12/12
例如, 由所有偶数组成的集合是由所有 整数组成的集合的子集; 区间(1,2)是区 间(1,4)的子集. 特别地, 一个集合A是它 自己的一个子集. 显然, 当AB且BC时, AC.
y 1
O
1
x
34 2019/12/12
如果AB=, 即A,B无公共元素, 就称集 合A与集合B互不相交. 例如, 由所有正数组成的集合与由所有 负数组成的集合互不相交; 区间(1,2)与 区间(2,3)互不相交.
35 2019/12/12
集合的并与交满足如下的分配率: (AB)C=(AC)(BC).
C
A
B
36 2019/12/12
证 下列诸关系式是相互等价的: e(AB)C, eAB且eC, eAC或eBC, e(AC)(BC).
从而上述分配律成立.
37 2019/12/12
集合的并及交可以从两个推广到有限多 个或可数多个集合上去, 诸集合A1,A2,... 的并集A1A2...就是由至少属于A1,A2,... 中一个的所有元素组成的集合; 诸集合 A1,A2,...的交集A1A2...就是由同时属 于A1,A2,...的所有元素组成的集合. 分配 律对于有限个或可数多个集合的并集也 成立,即 (A1A2...)C=(A1C)(A2C)...