通信原理基础实验
- 格式:doc
- 大小:5.48 MB
- 文档页数:43
一、实验目的1. 理解通信原理的基本概念和原理。
2. 掌握通信系统的基本组成和各部分的功能。
3. 熟悉通信信号的基本处理方法。
4. 培养实验操作能力和分析问题、解决问题的能力。
二、实验内容1. 通信系统基本组成实验2. 通信信号调制与解调实验3. 通信信道传输特性实验4. 通信系统误码率实验三、实验仪器1. 通信原理实验箱2. 双踪示波器3. 数字信号发生器4. 信号分析仪四、实验原理1. 通信系统基本组成实验:了解通信系统的基本组成,包括信源、信道、信宿和变换器等。
2. 通信信号调制与解调实验:掌握模拟调制、数字调制的基本原理,以及相应的调制和解调方法。
3. 通信信道传输特性实验:了解通信信道的传输特性,包括频率响应、时延特性和噪声特性等。
4. 通信系统误码率实验:掌握通信系统误码率的计算方法,以及影响误码率的因素。
五、实验步骤1. 通信系统基本组成实验(1)观察实验箱各模块的功能和连接方式;(2)按照实验指导书的要求,连接实验电路;(3)进行实验操作,观察实验现象,记录实验数据。
2. 通信信号调制与解调实验(1)按照实验指导书的要求,设置调制参数和解调参数;(2)进行调制和解调实验,观察实验现象,记录实验数据;(3)分析实验结果,验证调制和解调的正确性。
3. 通信信道传输特性实验(1)设置不同的信道参数,观察信道对信号的影响;(2)分析信道传输特性,记录实验数据;(3)计算信道传输特性指标,如信噪比、误码率等。
4. 通信系统误码率实验(1)设置不同的误码率,观察误码率对通信系统的影响;(2)分析误码率与信道、调制、解调等因素的关系,记录实验数据;(3)计算通信系统误码率,验证实验结果。
六、实验结果与分析1. 通信系统基本组成实验实验结果显示,通信系统由信源、信道、信宿和变换器等部分组成,各部分之间通过信号传输实现信息交流。
2. 通信信号调制与解调实验实验结果显示,调制和解调过程可以有效地将信息信号转换为适合信道传输的形式,并恢复出原始信息。
一、实验名称通信原理实验二、实验目的1. 理解通信系统的基本组成和基本工作原理。
2. 掌握模拟通信和数字通信的基本技术。
3. 熟悉调制、解调、编码、解码等基本过程。
4. 培养实际操作能力和实验技能。
三、实验器材1. 通信原理实验箱2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机四、实验原理通信原理实验主要包括模拟通信和数字通信两部分。
1. 模拟通信:模拟通信是指将声音、图像等模拟信号通过调制、解调、放大、滤波等过程,在信道中传输的通信方式。
模拟通信的基本原理是:将模拟信号转换为适合在信道中传输的信号,通过信道传输后,再将信号还原为原来的模拟信号。
2. 数字通信:数字通信是指将声音、图像等模拟信号通过采样、量化、编码等过程,转换为数字信号,在信道中传输的通信方式。
数字通信的基本原理是:将模拟信号转换为数字信号,在信道中传输后,再将数字信号还原为原来的模拟信号。
五、实验内容1. 模拟通信实验(1)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。
(2)放大与滤波实验:通过实验箱,观察放大和滤波过程中的波形变化,了解放大和滤波的基本原理。
2. 数字通信实验(1)编码与解码实验:通过实验箱,观察编码和解码过程中的波形变化,了解编码和解码的基本原理。
(2)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。
六、实验步骤1. 模拟通信实验(1)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。
(2)放大与滤波实验:连接实验箱,设置放大和滤波参数,观察波形变化,记录实验数据。
2. 数字通信实验(1)编码与解码实验:连接实验箱,设置编码和解码参数,观察波形变化,记录实验数据。
(2)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。
七、实验结果与分析1. 模拟通信实验(1)调制与解调实验:实验结果显示,调制过程将模拟信号转换为适合在信道中传输的信号,解调过程将传输的信号还原为原来的模拟信号。
通信原理实验大全引言:通信原理是指利用一定的物理媒介将信息从发送者传递到接收者的过程。
通信原理实验是通信原理课程中的重要内容,通过实验可以加深对通信原理的理解,掌握通信原理的基本原理和技术。
本文将介绍几个通信原理实验的具体步骤和实验原理。
实验一:模拟调制与解调技术实验目的:熟悉模拟调制与解调技术的基本原理和方法,掌握AM,FM,PM的调制与解调过程。
实验步骤:1.使用函数发生器产生载波信号。
2.使用调制信号(如语音信号)对载波进行调制。
3.对调制后的信号进行解调,获得原始信号。
4.分析解调后的信号与原始信号的相似性。
实验原理:模拟调制是将载波信号与调制信号进行相互作用,在载波上叠加调制信号的变化。
调制信号可以是模拟信号,如语音信号,也可以是数字信号。
调制后的信号通过传输媒介传递到接收端,接收端通过解调技术将信号还原为原始信号。
实验二:数字调制与解调技术实验目的:熟悉数字调制与解调技术的基本原理和方法,掌握ASK,FSK,PSK等数字调制与解调过程。
实验步骤:1.使用函数发生器产生数字信号。
2.将数字信号进行调制,如ASK调制、FSK调制、PSK调制等。
3.对调制后的信号进行解调,获得原始数字信号。
4.分析解调后的信号与原始数字信号的相似性。
实验原理:数字调制是将数字信号转换为模拟信号的过程,通过将数字信号与载波进行相互作用,改变载波的一些特性来实现信号传输。
数值调制通常使用正弦波作为载波信号。
解调则是将调制信号还原为原始数字信号的过程。
实验三:信道编码和解码技术实验目的:熟悉信道编码和解码技术的基本原理和方法,掌握卷积码、纠错码等编码与解码过程。
实验步骤:1.使用编码器将原始信息进行编码。
2.对编码后的信息添加噪声进行模拟信道传输。
3.使用解码器对接收到的编码信息进行解码。
4.比较解码后的信息与原始信息的相似性。
实验原理:信道编码是为了提高信道传输的可靠性和容错性,通过在原始信息中添加冗余数据,使得在传输中出现的错误可以被检测和纠正。
一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。
三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。
2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。
3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。
4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。
目录目录 (1)前言 (2)拨码器开关设置一览表 (3)第一部分基础实验 (6)实验1 模拟信号源实验 (6)实验2 CPLD可编程逻辑器件实验 (9)实验3 接收滤波放大器实验 (13)第二部分原理实验 (15)实验1 抽样定理及其应用实验 (15)实验2 PCM编译码系统实验 (20)实验3 ADPCM编译码系统实验 (24)实验4 CVSD编译码系统实验 (28)实验5 FSK(ASK)调制解调实验 (34)实验6 PSK(DPSK)调制解调实验 (39)实验7 数字同步技术实验 (45)实验8 眼图观察测量实验 (49)实验9 数字频率合成实验 (53)实验10 基带信号的常见码型变换实验 (59)实验11 AMI/HDB3编译码实验 (64)实验12 码分复用解复用实验 (68)实验13 汉明码编译码及纠错能力验证实验 (72)实验14 汉明、交织码编译码及纠错能力验证实验 (76)实验15 循环码编译码及纠错能力验证实验 (79)实验16 线路成形与频分复用实验 (83)实验17 码分复用解复用实验 (87)前言本通信原理实验平台由实验平台底板和实验模块组成,根据教学大纲对通信原理课程性质的定位,为广大院校师生提供了良好的教学实验条件。
我们在多年积累的教学经验和学校使用反馈意见的基础上,保留了前几款实验箱的特色实验,扩展了实验模块的功能,加强了模块间的系统性实验,大大增加了实验内容;同时为了配合实验室设备管理,我们在各模块电路板上加有有机玻璃保护罩。
整个实验平台,突出体现理论知识的系统性和教学内容的稳定性,使学生能够掌握分析研究通信系统各种部件的基本方法,强调培养学生理论联系实际和研究、开发、创新的能力。
本实验平台要求示波器最低配置为20M双踪模拟示波器,示波器的幅度档一般设置在2V档,探头1X无衰减。
测量时黑色的接地夹子应先接地。
一般情况下,本实验平台上元器件的标号都是按照模块划分的。
通信原理实验实验报告实验名称:通信原理实验实验目的:1. 理解基本的通信原理和通信系统的工作原理;2. 掌握各种调制解调技术以及通信信号的传输方式;3. 熟悉通信系统的基本参数和性能指标。
实验设备和器材:1. 信号发生器2. 采样示波器3. 调制解调器4. 麦克风和扬声器5. 示波器6. 功率分贝计7. 电缆和连接线等实验原理:通信原理主要涉及调制解调、传输媒介、信道编码和解码等方面的内容。
本次实验主要内容为调幅、调频和数字调制解调技术的验证,以及传输信号质量的评估和性能测量。
实验步骤:1. 调幅实验:将信号发生器产生的正弦波信号调幅到载波上,并使用示波器观察调幅波形,记录幅度调制度;2. 调频实验:使用信号发生器产生调制信号,将其调频到载波上,并使用示波器观察调频波形,记录调频的范围和带宽;3. 数字调制实验:使用调制解调器进行数字信号调制解调实验,并观察解调的信号质量,记录解调信号的正确性和误码率;4. 信号质量评估:使用功率分贝计测量信号传输过程中的信噪比和失真程度,并记录测量结果;5. 性能测量:采用示波器和其他测量设备对通信系统的带宽、传输速率等性能指标进行测量,记录测量结果。
实验结果:1. 对于调幅实验,观察到正弦波信号成功调幅到载波上,并记录幅度调制度为X%;2. 对于调频实验,观察到调制信号成功调频到载波上,并记录调频的范围为X Hz,带宽为X Hz;3. 对于数字调制实验,观察到解调后的信号正确性良好,误码率为X%;4. 信号质量评估测量结果显示信噪比为X dB,失真程度为X%;5. 性能测量结果显示通信系统的带宽为X Hz,传输速率为X bps。
实验总结:通过本次实验,我们深入了解了通信原理中的调制解调技术和信号传输方式,并且成功进行了调幅、调频和数字调制解调实验。
通过信号质量评估和性能测量,我们对通信系统的性能指标有了更深入的了解。
在实验过程中,我们还发现了一些问题和改进的空间,例如在数字调制实验中,我们可以进一步优化解调算法,提高解调的正确性。
第1篇一、实验目的1. 理解通信系统的基本原理和组成。
2. 掌握通信系统中的调制、解调、编码、解码等基本技术。
3. 熟悉实验仪器的使用方法,提高动手能力。
4. 通过实验,验证通信原理理论知识。
二、实验原理通信原理实验主要涉及以下内容:1. 调制与解调:调制是将信息信号转换为适合传输的信号,解调是将接收到的信号还原为原始信息信号。
2. 编码与解码:编码是将信息信号转换为数字信号,解码是将数字信号还原为原始信息信号。
3. 信号传输:信号在传输过程中可能受到噪声干扰,需要采取抗干扰措施。
三、实验仪器与设备1. 实验箱:包括信号发生器、调制解调器、编码解码器等。
2. 信号源:提供调制、解调所需的信号。
3. 传输线路:模拟信号传输过程中的衰减、反射、干扰等现象。
四、实验内容与步骤1. 调制实验(1)设置调制器参数,如调制方式、调制频率等。
(2)将信号源信号输入调制器,观察调制后的信号波形。
(3)调整解调器参数,如解调方式、解调频率等。
(4)将调制信号输入解调器,观察解调后的信号波形。
2. 解调实验(1)设置解调器参数,如解调方式、解调频率等。
(2)将调制信号输入解调器,观察解调后的信号波形。
(3)调整调制器参数,如调制方式、调制频率等。
(4)将解调信号输入调制器,观察调制后的信号波形。
3. 编码与解码实验(1)设置编码器参数,如编码方式、编码长度等。
(2)将信息信号输入编码器,观察编码后的数字信号。
(3)设置解码器参数,如解码方式、解码长度等。
(4)将编码信号输入解码器,观察解码后的信息信号。
4. 信号传输实验(1)设置传输线路参数,如衰减、反射等。
(2)将信号源信号输入传输线路,观察传输过程中的信号变化。
(3)调整传输线路参数,如衰减、反射等。
(4)观察传输线路参数调整对信号传输的影响。
五、实验结果与分析1. 调制实验:调制后的信号波形与原信号波形基本一致,说明调制和解调过程正常。
2. 解调实验:解调后的信号波形与原信号波形基本一致,说明解调过程正常。
实验日期:2023年11月15日实验人员:张三、李四、王五实验目的:1. 理解信号通信的基本原理和过程。
2. 掌握模拟信号和数字信号的传输方法。
3. 学习信号调制与解调的基本方法。
4. 熟悉实验仪器的使用。
实验原理:信号通信是利用信号作为载体,将信息从一个地方传输到另一个地方的过程。
信号通信系统主要由信源、信道、信宿和传输介质组成。
信源产生待传输的信息,信道是信号传输的通道,信宿接收并解调出原始信息,传输介质是信号传输的物理载体。
实验内容:一、模拟信号传输实验1. 实验目的:了解模拟信号传输的基本原理,观察模拟信号的传输过程。
2. 实验器材:信号发生器、示波器、传输线、衰减器等。
3. 实验步骤:a. 将信号发生器输出的正弦波信号作为输入信号。
b. 通过传输线将信号传输到接收端。
c. 使用示波器观察接收端的信号波形,并与输入信号进行比较。
4. 实验结果:接收端的信号波形与输入信号基本一致,说明模拟信号可以成功传输。
二、数字信号传输实验1. 实验目的:了解数字信号传输的基本原理,观察数字信号的传输过程。
2. 实验器材:数字信号发生器、示波器、传输线、编码器、解码器等。
3. 实验步骤:a. 将数字信号发生器输出的数字信号作为输入信号。
b. 通过传输线将信号传输到接收端。
c. 使用编码器将数字信号转换为模拟信号。
d. 使用示波器观察接收端的模拟信号波形。
e. 使用解码器将模拟信号转换为数字信号。
f. 使用示波器观察接收端的数字信号波形,并与输入信号进行比较。
4. 实验结果:接收端的数字信号波形与输入信号基本一致,说明数字信号可以成功传输。
三、信号调制与解调实验1. 实验目的:了解信号调制与解调的基本方法,观察调制与解调过程。
2. 实验器材:调制器、解调器、信号发生器、示波器、传输线等。
3. 实验步骤:a. 将信号发生器输出的信号作为输入信号。
b. 使用调制器将输入信号调制为高频信号。
c. 通过传输线将调制后的信号传输到接收端。
1. 理解并掌握通信系统基本组成及工作原理。
2. 掌握通信系统中信号的传输与调制、解调方法。
3. 学习通信系统性能评估方法及分析方法。
二、实验器材1. 通信原理实验平台2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机及实验软件三、实验内容1. 通信系统基本组成及工作原理(1)观察通信原理实验平台,了解通信系统的基本组成,包括发送端、信道、接收端等。
(2)分析实验平台中各模块的功能,如调制器、解调器、滤波器等。
(3)通过实验验证通信系统的工作原理。
2. 信号的传输与调制、解调方法(1)学习并掌握模拟信号的调制、解调方法,如AM、FM、PM等。
(2)学习并掌握数字信号的调制、解调方法,如2ASK、2FSK、2PSK等。
(3)通过实验验证调制、解调方法的有效性。
3. 通信系统性能评估方法及分析方法(1)学习并掌握通信系统性能评估方法,如误码率、信噪比、调制指数等。
(2)通过实验测量通信系统性能参数,如误码率、信噪比等。
(3)分析实验数据,总结通信系统性能。
1. 观察通信原理实验平台,了解通信系统的基本组成。
2. 设置实验参数,如调制方式、载波频率、调制指数等。
3. 观察并记录实验过程中各模块的输出信号。
4. 利用示波器、信号分析仪等仪器分析实验数据。
5. 计算通信系统性能参数,如误码率、信噪比等。
6. 分析实验结果,总结实验结论。
五、实验结果与分析1. 通过实验验证了通信系统的基本组成及工作原理。
2. 实验结果表明,调制、解调方法对通信系统性能有显著影响。
例如,在相同条件下,2PSK调制比2ASK调制具有更好的误码率性能。
3. 通过实验测量了通信系统性能参数,如误码率、信噪比等。
实验数据表明,在合适的调制方式、载波频率等参数下,通信系统可以达到较好的性能。
4. 分析实验数据,总结实验结论。
实验结果表明,在通信系统中,合理选择调制方式、载波频率等参数,可以提高通信系统性能。
六、实验总结本次实验通过观察、实验、分析等方法,对通信原理进行了深入学习。
通信原理实验报告(优秀范文5篇)第一篇:通信原理实验报告通信原理实验报告1、实验名称:2、实验目的:3、实验步骤:(详细记录你的实验过程)例如:(1)安装MATLAB6.5软件;(2)学习简单编程,画图plot(x,y)函数等(3)进行抽样定理验证:首先确定余弦波形,设置其幅度?、频率?和相位?等参数,然后画出该波形;进一步,设置采样频率?。
画出抽样后序列;再改变余弦波形的参数和抽样频率的值,改为。
,当抽样频率?>=余弦波形频率2倍时,怎么样?否则的话,怎么样。
具体程序及图形见附录1(或者直接放在这里,写如下。
)(4)通过DSP软件验证抽样定理该软件主要有什么功能,首先点“抽样”,选取各种参数:a, 矩形波,具体参数,出现图形B,余弦波,具体参数,出现图形然后点击“示例”中的。
具体参数,图形。
4、思考题5、实验心得6、附录1有附录1的话有这项,否则无。
第二篇:通信原理实验报告1,必做题目1.1 无线信道特性分析 1.1.1 实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。
1.1.2 实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。
仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0-3-6-9]dB,最大多普勒频移为200Hz。
例如信道设置如下图所示:移动通信系统1.1.3 实验作业1)根据信道参数,计算信道相干带宽和相干时间。
fm=200;t=[0 4e-06 8e-06 1.2e-05];p=[10^0 10^-0.3 10^-0.6 10^-0.9];t2=t.^2;E1=sum(p.*t2)/sum(p);E2=sum(p.*t)/sum(p);rms=sq rt(E1-E2.^2);B=1/(2*pi*rms)T=1/fm2)设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。
目录目录 0第一篇实验类 (1)第一章通信原理基础实验 (2)实验一CPLD可编程数字信号发生器实验 (2)实验二各种模拟信号源实验 (5)实验三抽样定理与PAM调制解调实验 (12)实验四脉冲编码调制PCM与时分复用实验 (15)实验五FSK(ASK)调制解调实验 (23)实验六二相BPSK(DPSK)调制解调实验 (28)附录实验实测波形 (36)第二篇上机类 (42)第一篇实验类第一章通信原理基础实验实验一CPLD可编程数字信号发生器实验一、实验目的1.熟悉各种时钟信号的特点及波形;2.熟悉各种数字信号的特点及波形。
二、实验仪器1.RZ8621D实验箱1台2.20M双踪示波器1台三、实验电路的工作原理(一)、CPLD可编程模块二电路的功能及电路组成图1-1是CPLD可编程模块的电路图。
CPLD可编程模块(芯片位号:U101)用来产生实验系统所需要的各种时钟信号和数字信号。
它由CPLD可编程器件ALTERA公司的EPM240(EPM7128或者是Xilinx公司的XC95108)、下载接口电路(J101)和一块晶振(JZ101)组成。
晶振用来产生16.384MHz 系统内的主时钟。
本实验要求参加实验者了解这些信号的产生方法、工作原理以及测量方法,才可通过CPLD可编程器件的二次开发(本实验箱提供专门的开发模块)生成这些信号,理论联系实践,提高实际操作能力。
(二)、各种信号的功用及波形1.12脚输入16.384MHz主时钟,方波。
由晶振JZ101产生的16.384MHz时钟,经电阻R111,从12脚送入U101进行整形,然后分频、产生各种信号输出。
2.27脚,输出2.048MHz时钟,方波。
3.100脚,输出1.024MHz时钟,方波。
4.6脚,输出64KHz时钟,方波。
5.2脚,输出32KHz时钟,方波。
6.1脚,输出16KHz时钟,方波。
7.33脚,输出32KHz伪随机码。
8.5脚,输出2KHz伪随机码。
9.69脚,输出8KHz的窄脉冲同步信号,供PCM(一)编码模块用(时隙可变)。
10.70脚,输出8KHz的窄脉冲同步信号,供PCM(二)编码模块用(时隙可变)。
8KHz的窄脉冲同步信号,可通过编程来改变它们的时序和脉冲宽度,学生可通过薄膜键盘选择,供PCM(一)模块、PCM(二)模块使用电原理示意图见如图1-1所示,由CPLD芯片U101、下载接口电路J101、一块晶振JZ101及外围一些电容电阻组成(有兴趣的同学,可以到网上搜索相关原器件的详细资料)。
注:本实验平台中所有数字信号都是由同一个信号源JZ101分频产生,所以频率相同或者频率成倍数关系的数字信号,都有相对固定的相位关系。
四、实验内容1.熟悉CPLD可编程数字信号发生器各测量点信号波形。
2.查阅CPLD可编程技术的相关资料,了解这些信号产生的方法。
五、实验步骤1.打开电源总开关,电源指示灯亮,系统开始工作。
2.用示波器测出下面所列各测量点波形,并对每一测量点的波形加以分析。
GND为接地点,测量各点波形时示波器探头的地线夹子应先接地。
各测量点波形如图1-2所示,具体说明如下:以下信号均由CPLD可编程器件EPM240芯片编程产生并送往各测量点。
TP301:1024KHz的时钟信号,作为PSK调制模块中产生载频信号用。
TP901:32KHz的时钟信号,作为FSK调制模块中产生载频信号用。
TP602:方波信号,作为抽样定理模块中抽样时钟用。
可由薄膜键盘选择“抽样定理模块”中不同的抽样时钟信号(默认为2KHz方波)。
TP503: 8KHz 的窄脉冲同步信号,可通过薄膜键盘选择不同时隙。
测量时将示波器通道1的探头放在TP509上(固定0时隙和脉冲宽度),将通道2的探头放在TP503上,调整通道1为触发通道,通过薄膜键盘选择“PCM 编译码模块”中不同选项,对比两路波形可以看到8KHz 的窄脉冲同步信号不同的时序关系和脉冲宽度。
TP110: 15位的伪随机序列码,码元速率为32Kb/S ,码型为111100010011010,可对比TP901的32KHz 的时钟信号读出它的码型序列。
该波形用来输岀到PSK 调制等模块单元,作为数字基带信号。
TP905:K901开关1-2连,15位的伪随机序列码,码元速率为2Kb/S ,码型为111100010011010,可对比TP001的2KHz 的时钟信号读出它的码型序列。
该波形用来输岀到FSK 调制模块单元,作为FSK 调制的数字基带信号(默认2KHz PN ),也可通过薄膜键盘选择2KHz 方波。
本实验平台中CPLD 可编程器件EPM240芯片产生的信号还有很多,学生可在以后实验过程中逐步遇到。
图1-2 CPLD 可编程模块产生的部分信号波形示意图五、实验报告要求1.分析各种时钟信号及数字信号产生的方法,叙述其功用。
2.画出各种时钟信号及数字信号的波形。
3.了解CPLD 可编程技术方面的知识。
TP301TP901 TP109TP110 1 1 1 1 0 0 0 1 0 0 1 1 0 1 01024KHz 方波32KHz 方波8Hz 窄脉冲32Kb/S 伪随机实验二各种模拟信号源实验一、实验目的:1.熟悉各种模拟信号的产生方法及其用途;2.观察分析各种模拟信号波形的特点。
二、实验仪器1.RZ8621D实验箱1台2.20M双踪示波器1台3.铆孔线1根4.小平口螺丝刀1只5.电话单机1台(选用)三、电路工作原理模拟信号源电路用来产生实验所需的各种音频信号:同步正弦波信号、非同步简易信号、话音信号、音乐信号,白噪声等。
(一)同步信号源(同步正弦波发生器)1.功用同步信号源用来产生与编码数字信号同步的2KHz正弦波信号,可作为抽样定理PAM、增量调制CVSD编码、PCM编码实验的输入音频信号。
在没有数字存贮示波器的条件下,用它作为编码实验的输入信号,可在普通示波器上观察到稳定的编码数字信号波形。
2.电路原理图2-1为同步正弦信号发生器的电路图。
它由2KHz方波信号产生器(图2-1中SC2K表示)、低通滤波器和输出放大电路三部分组成。
2KHz方波信号(SC2K)由CPLD可编程器件U101内的逻辑电路通过编程产生。
TP001为其测量点。
U001A 及周边的阻容网络组成一个截止频率为ωL的低通滤波器,用以滤除各次谐波,只输出一个2KHz正弦波,TP002“同步输出”铜铆孔为其输出点。
2K正弦波通过铜铆孔输出可供PAM、PCM、CVSD(∆M)模块使用。
W001用来改变输出同步正弦波的幅度。
(二)非同步信号源1.功用非同步信号源是一个简易信号发生器,它可产生频率为0.3~4KHz频率可调的正弦波信号、三角波信号和方波信号,输出幅度为0~10V(一般使用范围0~4V)连续可调(注:可改变某些器件参数调整频率、幅度的输出范围)。
可利用它定性地观察通信话路的频率特性,同时用做PAM、PCM、CVSD(∆M)模块的音频信号源,信号波形见图2-7所示。
2.工作原理非同步信号源的电路图如图2-2所示。
它由集成函数发生器ICL8038(或者XR2206,这里不做介绍)和一些外围电路组成。
ICL8038是大规模集成电路,它的内部电路主要有矩形波、三角波或正弦波发生器电路,正弦波由管脚2输出,三角波由管脚3输出,矩形波管脚9输出。
管脚8为频率调节(简称调频)电压输入端。
振荡频率与调频电压成正比,其线性度约为0.5%(详细用法可到网上查找)。
一般情况下,正弦波信号(频率在0.3~3.4KHz间)易于观察和分析,且完全满足本平台通信原理实验的需要,所以我们建议使用正弦波输出作为非同步信号源。
信号形式可由K002选择输出,调节W003可使其振荡频率1.功用音乐信号产生电路用来产生音乐信号送往音频终端电路,以检查话音信道的开通情况及通话质量。
2.工作原理音乐信号产生电路见图2-3。
音乐信号由U004音乐片厚膜集成电路产生。
该片的1脚为电源端,2脚为控制端,3脚为输出端,4脚为公共地端。
V CC经R018、D003向U004的1脚提供3.3V电源电压,当2脚通过SW001接触开关触发输入控制电压+3.3V时,音乐片即有音乐信号从第3脚输出,经TP005“音乐输出”铜铆孔送往各实验模块。
(四)外加模拟信号输入电路在一些特殊情况下,简易正弦波信号形式不能满足实验要求,就要用外加信号源提供所需信号。
例如要定量地测试通信话路的频率特性时需要使用频率、电平与输出阻抗都很稳定的频率范围很宽的音频测试信号,这就需要外接音频信号产生器或函数信号发生器。
外加模拟信号输入电路为它们提供了连接到实验的接口电路。
外加模拟信号加入S02接口,转接后由P01铜铆孔“外加模拟输出”输出送往各实验模块。
(五) 模拟电话输入电路图2-4是专用电话集成电路组成的电话模块电路。
J01是电话机的水晶头接口,D001为摘机检测显示,U003是PBL38710/1专用电话集成电路。
它的工作原理是:当对电话机的送话器讲话时,该话音信号从PBL38710/1的TIPX和RINGX引脚输入,经U003内部话音信号传输处理后从第19引脚(VTX)输出。
由VTX引脚来的模拟电话输出信号经“电话模拟发”TP004T铜铆孔送出,可作为语音信号输出用当接收对方的话音时,送入U003第16引脚(RSN)的对方模拟电话输入信号可由“电话模拟收”TP004R铜铆孔送入。
有时输入信号需要先经过右下脚的“音频功放”,再由TP007处通过铆孔线连接送入铜铆孔TP004R(功放电原理图,如图2-5)。
(六) 音频功放电路如图2-5,U005为NE555芯片。
在接收端,各种信号经过连接线接入TP006“输入”后,进入功放电路。
信号幅度可由W005进行调节,最后由扬声器输出,其测量铆孔为TP107。
图2-2 非同步正弦波信号发生器电路图2.熟悉上述各种信号的产生方法,并了解信号流程。
五、实验步骤1.打开实验箱右侧电源开关,电源指示灯亮。
2.用示波器测量TP001、TP002、TP003、TP004T、TP004R、TP005等各点波形。
3.将各模拟信号由相应铜铆孔输出,通过连接线接入TP006铜铆孔,此时模拟信号可由喇叭输出(K001的1-2连通),学生可直观地感受各模拟信号间的差别4.模拟信号源模块有关器件接口介绍TP002:同步正弦波输出,频率2KHZ,幅度可调(一般峰峰值2V)。
TP003:非同步信号输出,一般使用范围0.3~3.4KHZ,幅度可调(一般峰峰值2V)。
TP005:音乐信号输出,SW001触发后产生。
TP004T:模拟电话信号发。
TP004R:模拟电话信号收。
TP006:功放输入。
TP007:功放放大后输出。
TP108:高斯白噪声。