【教学设计】 利用两边夹角判定三角形全等
- 格式:doc
- 大小:145.50 KB
- 文档页数:4
角角边判定三角形全等-人教版八年级数学上册教案
一、教学目标
1.掌握角角边全等的定义;
2.掌握角角边全等的判定方法;
3.能够运用角角边全等的方法解决实际问题。
二、教学内容
1.什么是角角边全等;
2.角角边全等的判定方法;
3.解决实际问题。
三、教学重点
1.掌握角角边全等的定义;
2.掌握角角边全等的判定方法。
四、教学难点
能够运用角角边全等的方法解决实际问题。
五、教学方法
讲授、示范、练习。
六、教学过程
1. 导入新知
通过展示一个等腰三角形和一个一般三角形:
/|
/ |
/__|
/|
/ |\\
/__|_\\
引导学生讨论它们之间的不同。
然后问学生,如何证明这两个三角形是相等的?引入角角边全等定理。
2. 角角边全等的定义
引入角角边全等的定义,并让学生用自己的话说出来。
3. 角角边全等的判定方法
讲解角角边全等的判定方法:
1.如果两个三角形的两个角分别相等,且它们的夹边也相等,那么这两个三角形就全等。
2.如果两个三角形的两个角和一边分别相等,另一边也相等,那么这两个三角形也全等。
4. 解决实际问题
通过一些实际问题的解答,让学生学会如何使用角角边全等定理。
七、教学总结
通过本节课的学习,学生们掌握了角角边全等的定义,掌握了角角边全等的判定方法,并且学会了如何使用角角边全等定理解决实际问题。
八、作业
1.完成课后练习;
2.准备下一节课的内容。
第2课时用“SAS ”判定三角形全等教学步骤师生活动教学目标课题12.2第2课时用“SAS ”判定三角形全等授课人素养目标1.掌握基本事实:两边及其夹角分别相等的两个三角形全等,经历探索“SAS ”的过程,培养学生观察、归纳及动手能力,发展学生的几何直观感知能力与推理能力.2.能用尺规作图:已知两边及其夹角作三角形,培养学生分析与作图能力.教学重点“SAS ”的探索及运用,尺规作图:已知两边及其夹角作三角形.教学难点“SAS ”的探究过程.教学活动教学步骤师生活动活动一:创设情境,新课导入设计意图设置悬念引起学生思考,为接下来探究三角形全等的判定条件——“SAS”做铺垫.【情境引入】小红到小明家去玩,发现小明正拿着一只玻璃容器苦思冥想,原来他想测量一下它的内径是多少,但是无法将刻度尺伸进去直接测量.小红帮他想出一个办法:把两根长度相等的小木条AB ,CD 的中点连在一起,木条可以绕中点O 自由转动,如下图所示,这样只要测量A ,C 之间的距离,就可以知道玻璃容器的内径.你想知道为什么吗?经过这节课的学习你就会知道答案了.【教学建议】此问题实际求证BD =AC,学生可联想到利用全等三角形的性质,而已有两边和夹角分别相等,自然过渡到探讨“SAS”是否可行,顺利衔接新课.这个问题中涉及了转化思想与数学建模思想.活动二:动手操作,探究新知设计意图以“两边一角分别相等”能否保证两个三角形全等切入主题,经历探索三角形全等的判定条件——“SAS”的过程,学会尺规作图:已知两边及其夹角作三角形的方法,并运用“SAS”解题,经历“SSA”无法判定两个三角形全等的探索过程.探究点用“SAS”判定三角形全等在上节课中我们知道用三个条件探索三角形全等共有四种情况——三边分别相等、两边一角分别相等、两角一边分别相等、三角分别相等,并探索了用“SSS”判定三角形全等的过程.这节课我们将继续探索“两边一角分别相等”能否证明两个三角形全等.问题“两边一角分别相等”有几种可能性呢?请举例.答:有两种可能性,如图所示.我们分情况进行讨论.探究先任意画出一个△ABC.再画出一个△A ′B ′C ′,使A ′B ′=AB ,A ′C ′=AC ,∠A ′=∠A(即两边和它们的夹角分别相等).把画好的△A ′B ′C ′剪下来,放到△ABC 上,它们全等吗?【教学建议】“探究”中讨论的是两边一角分别相等中的两边及其夹角分别相等的情形.这里对“SAS”的处理与“SSS”类似,先通过作图实验操作,让学生充分经历探究满足两边及其夹角分别相等的两个三角形是否全等的过程,然后总结规律,直接以基本事实的方式给出“SAS”的判定方法.需注意已知两边及其夹角作三角形也是课标要求的重要作图,需要学生掌握作图步骤,作图过程中利用了上节课学到的作一个角等于已知角的基本作图.设计意图问题4揭示图形语言与文字语言之间的联系,使学生经历从现实世界抽象出几何模型的过程,认识三角形的各个基本要素.如图给出了画△A′B′C′的方法.你是这样画的吗?答:上述画法是先画一个角,再画夹这个角的两边.也可以采用先画一边,然后画角,再画另一边的方法,步骤如下:(1)作A′B′=AB;(2)作∠B′A′E=∠A;(3)在射线A′E 上截取A′C′=AC;(4)连接B′C′.探究的结果反映了什么规律?由探究可以得到以下基本事实,用它可以判定两个三角形全等:也就是说,三角形的两条边的长度和它们的夹角的大小确定了,这个三角形的形状、大小就确定了.例(教材P 38例2)如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离.为什么?分析:如果能证明△ABC ≌△DEC ,就可以得出AB =DE.由题意可知,△ABC 和△DEC 具备“边角边”的条件.∴△ABC≌△DEC (SAS)∴AB=DE.追问:想一想,∠1=∠2的根据是什么?AB=DE 的根据是什么?答:∠1=∠2的根据是对顶角相等,AB=DE 的根据是全等三角形的对应边相等.从例题可以看出:因为全等三角形的对应边相等,对应角相等,所以证明线段相等或角相等时,常常通过证明它们是全等三角形的对应边或对应角来解决.思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?图中的△ABC 与△ABD 满足两边和其中一边的对角分别相等,即AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.【教学建议】例题从实际背景中引申出几何问题——证明两条线段相等.可引导学生观察思考,要证的线段是两个三角形中的两条边,如果能证明两个三角形全等,那么就能利用全等三角形的性质得到线段相等.于是通过例题可以达到三个教学目的,一是让学生学会运用“SAS”解题;二是让学生更透彻地认识到证线段相等或角相等可以利用判定三角形全等的手段(之前的学习中已经提到过);三是启发学生联想,以另外的实际背景对活动一中的问题进行解释.【教学建议】“思考”以做实验的方式探讨两边和其中一边的对角分别相等能否保证两个三角形全等.教学中也可以画出如左栏图所示的图形,让学生直观地发现结论.这个过程也再次让学生体会到要判断一个命题是假命题,只要举出一个反例.最后是对“两边一角分别相等”能否保证两个三角形全等进行总结性描述.教学步骤师生活动°=30°.ABC≌△ECD(SAS).+∠ACD=90°,【作业布置】1.教材P43~45习题12.2第3,10,13题.2.《创优作业》主体本部分相应课时训练.板书设计第2课时用“SAS ”判定三角形全等1.基本事实:两边和它们的夹角分别相等的两个三角形全等(“边角边”或“SAS ”).2.尺规作图:已知两边及其夹角作三角形.3.实际应用:用“SAS ”判定三角形全等.教学反思本节课是探索三角形全等条件的第2课时,是在学习了“SSS ”之后展开的.它不仅是下节课探索其他判定三角形全等条件的基础,又为后面探索直角三角形全等的条件提供了很好的模式和方法.因此,本节课的知识具有承前启后的作用,占有相当重要的地位.同时,本节课具有较强的操作性和直观性,有利于学生从直观上积累感性认识,促进学生对新知识的理解和掌握.解题大招一用“SAS ”判定三角形全等的实际应用在实际生活中,常常通过说明两个三角形全等,得出对应边相等,对应角相等,从而解决一些实际问题,如把不能直接测量的长度(或角度)“转移”到可以直接测量的位置测量.例1如图是雨伞在开合过程中某时刻的截面图,D ,E 分别是伞骨AB ,AC 的中点,DM ,EM 是连接弹簧M 和伞骨的支架,且DM =EM ,在弹簧向上滑动的过程中,∠AMD =∠AME ,试说明AB =AC.解:在△ADM 和△AEM =EM ,AMD =∠AME ,=AM ,∴△ADM ≌△AEM(SAS ),∴AD =AE.∵D ,E 分别是AB ,AC 的中点,∴AD =12AB ,AE =12AC ,∴AB =AC.解题大招二用倍长中线法构造全等三角形当出现中线,而现有图形中不存在两个全等三角形时,常通过倍长中线法将中线延长一倍,根据“SAS ”构造全等三角形,再利用对应边相等去寻求线段间的数量关系.例2在数学课上,老师出示了这样一个问题:“如图①,在△ABC 中,AC =8,BC =5,D 为AB 边的中点,求AB 边上的中线CD 的取值范围.”经过小组合作交流,找到了解决方法——“倍长中线法”.请按照图②所示的思维框图,完成求解过程.解:如图①,延长CD 至点E ,使DE =CD ,连接AE ,则CE =2CD.∵D 为AB 边的中点,∴AD =BD.又∠ADE =∠BDC ,DE =DC ,∴△ADE ≌△BDC(SAS ),∴AE =BC =5.在△ACE 中,AC -AE <CE <AC +AE ,∴8-5<2CD <8+5,∴1.5<CD <6.5.解题大招三利用“SAS ”证三角形全等的“手拉手”模型例3两个大小不同的等腰直角三角板如图①放置,图②是由它抽象出的几何图形,B ,C ,E 三点在同一直线上,连接CD.(1)求证:△ABE ≌△ACD ;(2)试猜想CD 与BE 的位置关系,并证明你的结论.(1)证明:∵△ABC 和△ADE 都是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD.在△ABE 和△ACD =AC ,BAE =∠CAD ,=AD ,∴△ABE ≌△ACD(SAS ).(2)解:CD ⊥BE.证明如下:∵△ABE ≌△ACD ,∴∠B =∠ACD.∵∠BAC =90°,∴∠B +∠ACB =90°,∴∠ACD +∠ACB =90°,即∠BCD =90°,∴CD ⊥BE.培优点用“SAS ”判定三角形全等解决动点问题例如图①,在△ABC 中,∠A =∠B ,AC =BC =20cm ,AB =16cm ,D 为AC 的中点.(1)如果点P 在线段AB 上以6cm /s 的速度由点A 向点B 运动,同时,点Q 在线段BC 上由点B 向点C运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△APD 与△BQP 是否全等?说明理由.②若点Q 的运动速度与点P 的运动速度不相等,设运动时间为t s ,当t 为何值时,△APD 与△BQP 全等?求出此时点Q 的运动速度.(2)如图②,若点Q 以②中的运动速度从点B 出发,点P 以原来的运动速度从点A 同时出发,都按逆时针方向沿△ABC 的三边运动,经过多长时间,点P 与点Q 第一次在△ABC 的哪条边上相遇?解:(1)①△APD 与△BQP 全等.理由:经过1s 后,AP =BQ =6cm .∵AC =20cm ,D 为AC 的中点,∴AD =12AC =10cm .又BP =AB -AP =16-6=10(cm ),∴AD =BP.又∠A =∠B ,∴△APD ≌△BQP(SAS ).②因为v P ≠v Q ,所以AP≠BQ.又∠A=∠B,所以要使△APD与△BQP全等,只能AP=BP=12AB=8cm,BQ=AD=10cm,∴6t=8,解得t=43,∴点Q的运动速度为10÷43=7.5(cm/s).所以当t为43时,△APD与△BQP全等,此时点Q的运动速度为7.5cm/s.(2)因为v Q>v P,所以只能是点Q追上点P,即点Q比点P多走BC+AC的路程.设经过x s后点P与点Q第一次相遇,依题意得7.5x-6x=20+20,解得x=803,此时P运动了803×6=160(cm).又△ABC的周长为AB+BC+AC=16+20+20=56(cm),且160=56×2+48,所以点P,Q第一次是在AC边上相遇,即经过803s,点P与点Q第一次在△ABC的AC边上相遇.。
利用两边夹角判定三角形全等【知识与技能】掌握证明三角形全等的“边角边”定理.【过程与方法】1.经历探索三角形全等条件的过程,培养学生观察\,分析图形的能力及动手能力.2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.【情感态度】通过对问题的共同探讨,培养学生的协作精神.【教学重点】应用“边角边”证明两个三角形全等,进而得出线段或角相等.【教学难点】指导学生分析问题,寻找判定三角形全等的条件.一、情境导入,初步认识问题1 教材探究3:已知任意△ABC,画△A′B′C′,使AB=A′B′,A′C′=AC,∠A′=∠A.【教学说明】要求学生规范地用作图工具画图,纠正学生的错误做法,并让学生剪出画好的△ABC,△A′B′C′,把它们放在一起,观察出现的结果,引导学生间交流结论.教师讲课前,先让学生完成“自主预习”.问题2 请各学习小组间交流,并总结出规律.二、思考探究,获取新知根据学生交流情况,教师作出如下归纳总结.1.两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.2.其中的角必须是两条相等的对应边的夹角,边必须是夹相等角的两条对应边.例1 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?【教学说明】让学生思考后,书写推理过程,教师引导分析.要想证AB=DE,只需要证△ABC≌△DEC.而证这两个三角形全等,已有条件 ,还需条件 .证明:在△ABC和△DEC中,∴△ABC≌△DEC(SAS).∴AB=DE.【归纳结论】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来得到答案.例2 如图,已知AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.【教学说明】由学生依题意寻找条件,涉及三角形边的条件有AB=AC,AD=AE,但∠BAC=∠DAE只是对应边夹角的一部分,怎么办?以此引导学生思考,理清解题思路.证明:∵∠BAC=∠DAE(已知),∴∠BAC+CAD=∠DAE+CAD,即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC(已知),∠BAD=∠CAE(已证),AD=AE(已知),∴△ABD≌△ACE.【归纳结论】用来证明三角形全等的边、角条件,必须是这两个三角形的边、角,而不是其中的一部分,如∠BAC=∠DAE不能直接用于证△ABD与△ACE的全等.三、运用新知,深化理解1.如图,已知∠1=∠2,如果用SAS证明△ABC≌△BAD,还需要添加的条件是.2.如图,已知OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°3.如图,已知AB∥DE,AB=DE,BE=CF,如果∠B=50°,∠A=70°,则∠F=( ).A.70°B.65°C.60°D.55°4.如图,点B,D,C,F在一条直线上,且BC=FD,AB=EF.(1)请你添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是 .(2)添加了条件后,证明△ABC≌△EFD.5.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE.(2)若∠D=50°,求∠B的度数.【教学说明】引导学生应用“SAS”解答上述习题,巩固对“SAS”的认识和提升应用能力.可让学生在黑板上写出4\,5题的过程,强化学生书写证明过程的能力.在完成上述习题的解答后,请学生探究:“两边及其中一边的对角对应相等的两个三角形是否全等?”,指导学生画图分析、共同讨论,形成结论.教师出示下列材料帮助学生探究:如图,在△ABC和△ABD中,∠B=∠B,AB=AB,AC=AD,由图可知,△ABC与△ABD 并不全等.完成上述题目后,引导学生做本课时创优作业“课堂自主演练”中的题.【答案】1.AC=BD 2.A 3.C4.(1)∠B=∠F或AB∥EF或AC=ED.(2)当∠B=∠F时,在△ABC和△EFD中,AB=EF,∠B=∠F,BC=FD,∴△ABC≌△EFD(SAS).其它证明略.5.(1)∵点C是线段AB的中点,∴AC=BC,又∵CD平分∠ACE,CE平分∠BCD,∴∠1=∠2,∠2=∠3,∴∠1=∠3.在△ACD和△BCE中,CD=CE,∠1=∠3,AC=BC,∴△ACD≌△BCE(SAS).(2)∵∠1+∠2+∠3=180,∴∠1=∠2=∠3=60.∵△ACD≌△BCE,∴∠E=∠D=50°.∴∠B=180°-∠E-∠3=70°.四、师生互动,课堂小结先归纳“SAS”,并强调:“两边及其中一边的对角对应相等的两个三角形不一定全等”.再提出问题供同学思考\,交流\,探讨.1.判定三角形全等的方法有哪些?2.证明线段相等\,角相等的常见方法有哪些?1.布置作业:从教材“习题12.2”中选取.2.完成练习册中本课时的练习.本节课的引入,可采用探究的方式,引导学生通过操作、观察、探索、交流、发现思索的过程,得出判定三角形全等的“SAS”条件,同时利用一个联系生活实际的问题——测量池塘两端的距离,对得到的知识加以运用,最后再通过实际图形让学生认识到“两边及其中一边的对角对应相等”的条件不能判定两个三角形全等.。
三角形全等的判定方法教学设计1.教学内容解析:(1)《(义务教育)数学课程标准(2011版)》(以下简称“《标准》”)对于本节课的课程内容要求为掌握基本事实:两边及其夹角分别相等的两个三角形全等。
本节课的重点是通过对两边及一角对应相等,两个三角形是否全等进行探索,渗透数学的分类思想。
同时注重学生的几何直观的培养,学生能够熟练掌握并应用“边角边”这一判定方法。
(2)《标准》中要求学生在知识技能上掌握这一判定方法,并且能够利用其进行基本的证明。
同时在启发学生进行分析的同时进一步发展学生的几何直观,体会数学的分类思想。
在运用数学表述解决问题的过程中,认识数学具有严谨的特点。
(3)本节课是在学生学习了“边边边”判定方法后进行的。
由于只给边的条件太单一,有的时候会涉及到角的条件,从而引导学生思考如果将三条边中其中一条边撤换成一个角对应相等,会有几种不同的情况,是否都能判断两个三角形全等,从而引入本节课的内容。
在这个过程中,学生感受并学会独立思考如何研究一个问题。
本节课的最后引导学生发现两边及其中一边的对角对应相等无法证明两个三角形全等。
在课后布置的作业中学生尝试去寻找其成立的特殊情况,为之后学习“斜边直角边”直角三角形特殊的判定方法做一个铺垫。
2.教学目标设置:(1)知识与技能:掌握基本事实“两边及其夹角分别相等的两个三角形全等”,并会利用这一基本事实进行证明。
(2)过程与方法:通过分析两边及一角的位置关系,感受数学的分类思想;通过合情推理以及逻辑推理相结合的方法,掌握这一基本事实;通过分析实际例子,感受数学的几何直观,慢慢掌握逻辑推理证明过程。
(3)情感态度价值观:培养探究数学问题的兴趣,激发对于数学研究的好奇心。
在探索过程中,体会小组互助合作的乐趣3.学生学情分析:学生处于八年级上学期。
在知识储备方面,学生已经学过了“边边边”判断两个三角形全等的方法,并且知道判断两个三角形全等至少需要三个条件。
在思想方法方面,学生在第一节课中就体会了数学的分类思想,对于三角形的边角知道如何进行分类。
三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的条件。
2. 引导学生学习“边角边”判定定理,并能运用该定理判断三角形是否全等。
3. 培养学生的观察能力、思考能力和动手操作能力。
二、教学内容1. 三角形全等的概念2. “边角边”判定定理3. 运用“边角边”判定定理判断三角形全等三、教学重点与难点1. 教学重点:三角形全等的概念,“边角边”判定定理及其运用。
2. 教学难点:三角形全等的判断过程,运用“边角边”判定定理时的思路。
四、教学方法1. 采用问题驱动法,引导学生探究三角形全等的条件。
2. 运用案例分析法,让学生通过观察、操作、思考,掌握“边角边”判定定理。
3. 采用小组合作学习法,培养学生的团队协作能力和沟通能力。
五、教学过程1. 导入:通过复习三角形的基本概念,引导学生思考三角形全等的条件。
2. 新课:介绍三角形全等的概念,讲解“边角边”判定定理。
3. 案例分析:展示三角形全等的实例,让学生运用“边角边”判定定理进行判断。
4. 课堂练习:设计相关练习题,让学生巩固所学知识。
5. 总结:对本节课的内容进行总结,强调三角形全等的判断方法。
6. 作业布置:布置相关作业,巩固所学知识。
教学反思:本节课通过问题驱动法和案例分析法,引导学生探究三角形全等的条件,并运用“边角边”判定定理进行判断。
在教学过程中,注意调动学生的积极性,培养学生的观察能力、思考能力和动手操作能力。
采用小组合作学习法,培养学生的团队协作能力和沟通能力。
通过课堂练习和作业布置,巩固所学知识。
在教学反思中,要关注学生的掌握情况,针对性地进行教学调整。
六、教学拓展1. 引导学生思考:除了“边角边”判定定理,还有哪些判定三角形全等的方法?2. 介绍其他判定三角形全等的方法:a. 角角边(AAS)判定定理b. 角边角(ASA)判定定理c. 边边边(SSS)判定定理3. 分析各种判定方法的适用范围和条件。
教学过程设计
O
A
D
B
C
2.已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF .
求证:△ABE ≌△CDF .
四、小结归纳
1.用“边角边”来判定两个三角形全等;
2.用三角形全等来证明线段的相等或角的相等。
五、作业设计
1.习题11.2第3、4题;
2.下面四个三角形中,全等的两个三角形是( ) A .①与② B .①与③ C .①与④ D .②与③
3.已知:如图,AB ∥DE ,AB =DE ,且BE =CF ,若∠B =35°,∠A =75°,则∠F =( )
A .70°
B .65°
C .60°
D .55°
4.如图,已知,AB =AD ,AC =AE ,∠BAD =∠CAE ,
过程,之后由同学互相释疑解惑。
学生归纳本节内容,归纳已学过的证明三角形全等的方法有哪些?
的理解。
巩固证明三角形全等的书写格式。
系统归纳本节知识点,提高归
纳问题的能力。
求证:BC=DE
5.如图,AC、BD交于点O,且互相平分,则该图中
共有几对全等三角形?为什么?
板书设计
课题 11.2 三角形全等的判定——“边角边”“边角边”定理:例题分析
教学反思。
人教版数学八年级上册12.2.3《“角边角”判定三角形全等》教学设计一. 教材分析《角边角(AAS)判定三角形全等》是人教版八年级上册数学的一个重要内容。
这部分内容是在学生已经掌握了三角形全等的判定方法SSS、SAS、ASA的基础上进行学习的。
通过学习AAS判定三角形全等,能够使学生更全面地了解三角形全等的判定方法,提高他们解决几何问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了三角形全等的判定方法SSS、SAS、ASA,能够理解并运用这些方法解决一些简单的几何问题。
但是,对于AAS判定三角形全等,他们可能还比较陌生,需要通过实例分析和练习来逐步理解和掌握。
三. 教学目标1.让学生理解并掌握AAS判定三角形全等的方法。
2.培养学生运用AAS判定三角形全等解决实际问题的能力。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.重点:理解并掌握AAS判定三角形全等的方法。
2.难点:如何运用AAS判定三角形全等解决实际问题。
五. 教学方法1.采用案例分析法,通过具体的实例让学生理解和掌握AAS判定三角形全等的方法。
2.采用小组合作学习法,让学生在小组内讨论和分析问题,培养他们的团队协作能力。
3.采用练习法,让学生通过多做练习,巩固所学知识,提高解决问题的能力。
六. 教学准备1.准备相关的实例和练习题,用于讲解和练习AAS判定三角形全等。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过提问方式复习三角形全等的判定方法SSS、SAS、ASA,引导学生思考:这些方法是否能够解决所有的三角形全等问题?引出本节课的内容——AAS判定三角形全等。
2.呈现(10分钟)呈现一个具体的实例,让学生观察和分析,引导学生运用已知的三角形全等判定方法进行尝试。
通过讨论和分析,得出AAS判定三角形全等的方法。
3.操练(10分钟)让学生分组进行练习,每组提供一些相关的题目,让学生运用AAS判定三角形全等的方法进行解答。
三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。
难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。
用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
第十四章全等三角形14.2 三角形全等的判定第1课时两边及其夹角分别相等的两个三角形一、教学目标1.理解并掌握判定两个三角形全等“边角边”判定定理;2.在探究“边角边”判定定理的过程中,能进行有条理的思考;3.通过学习以上内容,培养严谨的分析能力,体会几何学的应用价值.二、教学重点及难点重点:掌握三角形全等的“SAS”判定,能运用“SAS”判定定理证明简单的三角形全等问题;难点:准确找到适合运用“边角边”来证明全等的两个三角形.三、教学用具多媒体课件.四、相关资料无.五、教学过程【情景引入】教师展示如图三角形,并提出下面的问题.插入图形“被弄脏的三角形”小红在作业本上画的三角形被墨迹污染了,他想画一个与原来完全一样的三角形,他该怎么办?请大家帮助小红想一个办法,并说明你的理由.学生讨论回答.回顾:上节课我们学习了全等三角形的有关性质是什么?(全等三角形的对应边相等.对应角相等)。
请同学们想一想:要画一个三角形和小红的三角形全等,需要几个条件?只知道一个条件(一角或一边)行吗?两个条件呢?三个条件呢?从今天开始,我们就一起来逐一学习学习三角形全等的条件.设计意图:回顾上节课所学的知识,由三角形全等的条件引出本节课的知识:判定三角形全等,激发兴趣,增强学生的学习热情.【合作探究】教师将学生分成组布置任务,小组讨论得出结果再向全班汇报,并根据实际情况分别给各组打分.问题:三角形有几个基本元素?至少要给定其中的几个元素,才能够确定一个三角形的形状和大小呢?仔细阅读课本,最后向老师汇报结论.学生交流,回答.教师聆听后开始带领学生学习新知.【探究新知】(教师需要在黑板上进行演示.)1.首先如果只给定一个元素,例如给定一条边或者一个角,我们会发现可以画很多不同的三角形.2.若给定两个元素①两条边长为4厘米、5厘米.②一条边长为4厘米,一个角为45°.③两个角分别为45°.①② ③我们同样不难得出结论,给定两个条件仍不能确定一个三角形的形状和大小.3.如果给定三个元素:三个角、两边一角、两角一边、三条边呢?我们一起来逐个探究4.研究两边一角的情况C1已知∆ABC⑴⑵求作:∆A′B′C′,A′B′=AB,∠B′=∠B,B′C′=BC作法:①作∠MB′N=∠B②在B′M上截取B′A′=BA,在B1N上截取B′C′=BC,③连接A′C′则∆A′B′C′(图⑵)就是所求作的三角形.请同学们自己画一个三角形试一试,用上面老师教的方法,看能否完全重合?结论:这就是我们今天所要学习的三角形全等判定定理1:两边和它们的夹角对应相等的两个三角形全等.记为“边角边”或“SAS”(S表示边,A表示角)注意强调:边角边中的角要是两边的夹角.本图片是微课的首页截图,本微课资源讲解了全等三角形的判定定理SAS的推导及其应用.若需使用,请插入微课【知识点解析】全等三角形的判定定理SAS.【典型例题】例题:在如图所示的三角形中,已知在AB﹑AC上各取一点E﹑D,使得AE=AD.然后连接BD﹑CE交于点O,∠1=∠2,求证:∠B=∠C.分析:要证明两个角相等,学过的方法有:⑴两直线平行,同位角相等或内错角相等;⑵今天我们学习的利用三角形全等的性质,这道题我们用今天新学得知识来解决.答案:证明:在∆AEO与∆ADO中AE=AD∠1=∠2AO=AO∴∆AEO≅∆ADO (SAS)∴∠AEO=∠ADO(全等三角形对应角相等)又∵∠AEO=∠EOB+∠B, ∠ADO=∠DOC+∠C,∵∠EOB=∠DOC(对顶角相等)∴∠B=∠C.方法总结:在分析问题时要把条件分析透彻,如该题先证明∆AEO≅∆ADO后,推出OD=OE, ∠AEO=∠AOD, ∠EOA=∠DOA,这些结论在进一步证明中不一定全用到,但当分析时对图形中的等量及大小关系有了正确认识,有利于进一步思索【新知应用】课本练习P100页练习1,2,3.【随堂检测】[1]如图所示,A、D、F、B在同一直线上,AD=BF,AE=BC,并且AE∥BC.求证:∆AEF≅∆BCD.分析:由AE∥BC,根据平行线的性质,可得∠A=∠∠B,由AD=BF可得AF=BD,又AE=BC,根据“SAS”即可证得∆AEF≅∆BCD.答案:证明:∵AE∥BC,∴∠A=∠B.∵AD=BF,∴AF=BD.在∆AEF和∆BCD中,∵AE=BC,∠A=∠B,AF=BD,∴∆AEF≅∆BCD(SAS).[2]下列能判断∆ABC≅∆A′B′C′的条件是()A.∠B=135°,∠B′=135°,AB=B′C′,BC=C′A′B.AB=A′B′,BC=B′C′,∠B=∠B′C.AB=A′B′,AC=A′C′,∠B=∠B′=45°D.AB=BC=CA,A′B′=B′C′=C′A′,∠B=∠A′答案:∵∆ABC≅∆A′B′C′,∴确定了两个三角形的对应顶点,A与A′对应,B与B′对应,C与C′对应.选项A中BC=C′A′不是对应边因此不能判定两三角形全等,A错误;选项B 中AB=A′B′,BC=B′C′,∠B=∠B′中,符合判定定理“SAS”,所以可判断∆ABC≅∆A′B′C′,B正确;选项C中它们的对应关系是“SSA”,因此也无法判定两三角形全等,故C错误;选项D中不是对应边相等,因此也无法判定两三角形全等,D错误.故选B.[3]如图,已知A、B两点被一个池塘隔开,无法直接测量,但两点可以到达,现给出一种方案:找两点C、D,使AD∥BC,且AD=BC,量出CD的长即得AB的长.请说明理由.解析:由平行线的性质得到∠DAC=∠BCA,然后通过证∆ADC≅∆CBA(SAS)得到AB=CD.答案:AB=CD;理由如下:如图,∵AD∥BC,∴∠DAC=∠BCA.∵在∆ADC与∆CBA中,AD=CB,∠DAC=∠BCAAC=CA,,∴∆ADC≅∆CBA(SAS),∴AB =CD.方法总结:解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.设计意图:通过学生对SAS判定定理的练习,使教师及时了解学生对知识点的理解情况,以便教师及时对学生进行矫正.六、课堂小结1.边角边定理:两边及其夹角对应相等的两个三角形全等.2.在应用定理时要注意:对应的两边及这两边所夹的角相等.设计意图:将本节课所学的知识点进行集中的梳理,归纳总结出本节课的重点知识.七、板书设计14. 2三角形全等的判定—SAS一、“SAS”两边及其夹角分别相等的两个三角形全等.记为“边角边”或“SAS”注意:边角边中的角要是两边的夹角.。
利用两边夹角判定三角形全等
【知识与技能】
掌握证明三角形全等的“边角边”定理.
【过程与方法】
1.经历探索三角形全等条件的过程,培养学生观察\,分析图形的能力及动手能力.
2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.
【情感态度】
通过对问题的共同探讨,培养学生的协作精神.
【教学重点】
应用“边角边”证明两个三角形全等,进而得出线段或角相等.
【教学难点】
指导学生分析问题,寻找判定三角形全等的条件.
一、情境导入,初步认识
问题1 教材探究3:已知任意△ABC,画△A′B′C′,使AB=A′B′,A′C′=AC,∠A′=∠A.
【教学说明】要求学生规范地用作图工具画图,纠正学生的错误做法,并让学生剪出画好的△ABC,△A′B′C′,把它们放在一起,观察出现的结果,引导学生间交流结论.教师讲课前,先让学生完成“自主预习”.
问题2 请各学习小组间交流,并总结出规律.
二、思考探究,获取新知
根据学生交流情况,教师作出如下归纳总结.
1.两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.
2.其中的角必须是两条相等的对应边的夹角,边必须是夹相等角的两条对应边.
例1 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?
【教学说明】让学生思考后,书写推理过程,教师引导分析.
要想证AB=DE,只需要证△ABC≌△DEC.而证这两个三角形全等,已有条件 ,还需条件 .
证明:在△ABC和△DEC中,
∴△ABC≌△DEC(SAS).∴AB=DE.
【归纳结论】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来得到答案.
例2 如图,已知AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.
【教学说明】由学生依题意寻找条件,涉及三角形边的条件有AB=AC,AD=AE,但∠BAC=∠DAE只是对应边夹角的一部分,怎么办?以此引导学生思考,理清解题思路.
证明:∵∠BAC=∠DAE(已知),
∴∠BAC+CAD=∠DAE+CAD,
即∠BAD=∠CAE.
在△ABD与△ACE中,
AB=AC(已知),
∠BAD=∠CAE(已证),
AD=AE(已知),
∴△ABD≌△ACE.
【归纳结论】用来证明三角形全等的边、角条件,必须是这两个三角形的边、角,而不是其中的一部分,如∠BAC=∠DAE不能直接用于证△ABD与△ACE的全等.
三、运用新知,深化理解
1.如图,已知∠1=∠2,如果用SAS证明△ABC≌△BAD,还需要添加的条件是.
2.如图,已知OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).
A.60°
B.50°
C.45°
D.30°
3.如图,已知AB∥DE,AB=DE,BE=CF,如果∠B=50°,∠A=70°,则∠F=( ).
A.70°
B.65°
C.60°
D.55°
4.如图,点B,D,C,F在一条直线上,且BC=FD,AB=EF.
(1)请你添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是 .(2)添加了条件后,证明△ABC≌△EFD.
5.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.
(1)求证:△ACD≌△BCE.
(2)若∠D=50°,求∠B的度数.
【教学说明】引导学生应用“SAS”解答上述习题,巩固对“SAS”的认识和提升应用能力.可让学生在黑板上写出4\,5题的过程,强化学生书写证明过程的能力.
在完成上述习题的解答后,请学生探究:“两边及其中一边的对角对应相等的两个三角形是否全等?”,指导学生画图分析、共同讨论,形成结论.
教师出示下列材料帮助学生探究:
如图,在△ABC和△ABD中,∠B=∠B,AB=AB,AC=AD,由图可知,△ABC与△ABD 并不全等.
完成上述题目后,引导学生做本课时创优作业“课堂自主演练”中的题.
【答案】1.AC=BD 2.A 3.C
4.(1)∠B=∠F或AB∥EF或AC=ED.
(2)当∠B=∠F时,在△ABC和△EFD中,
AB=EF,
∠B=∠F,
BC=FD,
∴△ABC≌△EFD(SAS).其它证明略.
5.(1)∵点C是线段AB的中点,∴AC=BC,
又∵CD平分∠ACE,CE平分∠BCD,
∴∠1=∠2,∠2=∠3,∴∠1=∠3.
在△ACD和△BCE中,
CD=CE,
∠1=∠3,
AC=BC,
∴△ACD≌△BCE(SAS).
(2)∵∠1+∠2+∠3=180,∴∠1=∠2=∠3=60.
∵△ACD≌△BCE,∴∠E=∠D=50°.∴∠B=180°-∠E-∠3=70°.
四、师生互动,课堂小结
先归纳“SAS”,并强调:“两边及其中一边的对角对应相等的两个三角形不一定全等”.
再提出问题供同学思考\,交流\,探讨.
1.判定三角形全等的方法有哪些?
2.证明线段相等\,角相等的常见方法有哪些?
1.布置作业:从教材“习题1
2.2”中选取.
2.完成练习册中本课时的练习.
本节课的引入,可采用探究的方式,引导学生通过操作、观察、探索、交流、发现思索的过程,得出判定三角形全等的“SAS”条件,同时利用一个联系生活实际的问题——测量池塘两端的距离,对得到的知识加以运用,最后再通过实际图形让学生认识到“两边及其中一边的对角对应相等”的条件不能判定两个三角形全等.。