2020年八年级上学期数学期中考试试卷(II )卷
- 格式:doc
- 大小:486.50 KB
- 文档页数:16
2020年秋绵阳外国语学校人教版初中八年级数学上册期中试题(附答案)一、选择题(每小题3分,共30分)1.(2020独家原创试题)2020年的春节,对于所有人来说真的不一般.为了打好疫情攻坚战,医护人员在岗位上同时间赛跑,与病魔较量,而我们每个人都能为打赢这场仗贡献一份力量.勤洗手,戴口罩,少聚会,积极配合防控工作,照顾好自己和家人,还有,说出一句简单的:中国加油,武汉加油.在“中国加油”这4个汉字中,不可以看作轴对称图形的个数为 ()A.1B.2C.3D.42.(2019山东济宁邹城期中)如图,将△ABC的三个顶点坐标的横坐标都乘-1,并保持纵坐标不变,则所得图形与原图形的关系是 ()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位3.已知等腰三角形的周长为17 cm,一边长为4 cm,则它的腰长为 ()A.4 cmB.6.5 cmC.6.5 cm或9 cmD.4 cm或6.5 cm4.如图,已知∠1=∠2,下列添加的条件不能使△ADC≌△CBA的是 () A.AB∥DCB.AB=CDC.AD=BCD.∠B=∠D5.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是 ()A.AE=3CEB.AE=2CEC.AE=BDD.BC=2CE6.如图,在△ABC中,AB=AC,D为BC边上一点,E点在AC边上,AD=AE,若∠BAD=24°,则∠EDC= () A.24° B.20° C.15° D.12°7.如图,正五边形ABCDE中,直线l过点B,且l⊥ED,下列说法:①l是线段AC的垂直平分线;②∠BAC=36°;③正五边形ABCDE有五条对称轴.其中说法正确的是 ()A.①②B.①③C.②③D.①②③8.如图,等腰△ABC中,AB=AC,∠A=36°.用尺规作图作出线段BD,则下列结论错误的是 ()A.AD=BDB.∠DBC=36°C.S△ABD=S△BCDD.△BCD的周长=AB+BC9.如图,在四边形ABCD中,BC∥AD,CD⊥AD,P是CD边上的动点,要使PA+PB的值最小,则点P应满足的条件是 ()A.PB=PAB.PC=PDC.∠APB=90°D.∠BPC=∠APD10.如图,已知△ABC和△CDE都是等边三角形,且A、C、E三点共线.AD 与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②∠AOB=60°;③AP=BQ;④△PCQ是等边三角形;⑤PQ∥AE. 其中正确结论的个数是 ()A.5B.4C.3D.2二、填空题(每小题3分,共24分)11.(2019四川资阳中考)若正多边形的一个外角是60°,则这个正多边形的内角和是 .12.图①是一张Rt△ABC纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形,如图9②,那么在Rt△ABC中,BC=6,则AB= .13.如图,∠A=∠D,要使△ABC≌△DBC,还需要补充一个条件: (填一个即可).14.如图,在直角坐标系中,AD是Rt△OAB的角平分线,已知点D的坐标是(0,-4),AB的长是12,则△ABD的面积为 .15.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k.若k=2,则该等腰三角形的顶角为度.16.如图,已知△ABC关于直线y=1对称,C到AB的距离为2,AB的长为6,则点A、点B的坐标分别为 .17.(2019江苏南通中考)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=度.18.在△ABC中,AH是BC边上的高,若CH-BH=AB,∠ABH=70°,则∠BAC= .三、解答题(共66分)19.(6分)如图,学校要在两条小路OM和ON之间的S区域修建一处“英语角”,按照设计要求,英语角C到两栋教学楼A、B的距离必须相等,到两条小路的距离也必须相等,则英语角C应修建在什么位置?请在图上标出它的位置.(尺规作图,保留痕迹)20.(6分)如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标(直接写答案):A1 ;B1 ;C1 ;(3)△A1B1C1的面积为 ;(4)在y轴上画出点P,使PB+PC最小.21.(2019四川眉山中考)(7分)如图,在四边形ABCD中,AB∥DC,点E是CD 的中点,AE=BE.求证:∠D=∠C.22.(7分)如图,在△ABC中,AB=AC,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F,D是BC边上的中点,连接AD.(1)若∠BAD=55°,求∠C的度数;(2)猜想FB与FE的数量关系,并证明你的猜想.23.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD 于E,BF∥AC交CE的延长线于F.(1)求证:△ACD≌△CBF;(2)连接DF,求证:AB垂直平分DF.24.(10分)定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图①,△ABC中,AB=AC,∠A=36°,求证:△ABC是倍角三角形;(2)如图②,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA 到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.25.(10分)数学课上,王老师出示了下面的题目:在△ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,试确定线段AE与DB的大小关系.小明与同桌小聪讨论后,进行了如下解答.(1)特殊情况,探索结论:在等边三角形ABC中,当点E为AB的中点时,点D在CB的延长线上,且ED=EC,如图①,确定线段AE与DB的大小关系,请你直接写出结论 ;(2)特例启发,解答题目:王老师给出的题目中,AE与DB的大小关系是 .理由如下:如图②,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)26.(12分)如图,已知△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP 是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?(2)若点Q以②的运动速度从点C出发,点P以原来的运动速度从点B 同时出发,都逆时针沿△ABC的三边运动,求多长时间点P与点Q第一次在△ABC的哪条边上相遇参考答案1.答案 C“中国加油”这4个汉字中,不可以看作轴对称图形的汉字有“国”“加”“油”,共三个,故选C.2.答案 B将△ABC的三个顶点坐标的横坐标都乘-1,纵坐标不变,则横坐标互为相反数,纵坐标相等,所得图形与原图形关于y轴对称,故选B.3.答案 B若4 cm是腰长,则底边长为20-4-4=12(cm),∵4+4<12,不能组成三角形,∴舍去;若4 cm是底边长,则腰长为17-42 =6.5(cm).故它的腰长为6.5 cm.故选 B.4.答案 B A.由AB∥CD,可得∠DCA=∠CAB,又因为∠1=∠2,AC=AC,故能判定△ADC≌△CBA,故选项A不符合题意;B.由AB=CD,∠1=∠2,AC=AC,不能判定△ADC≌△CBA,故选项B符合题意;C.由AD=BC,∠1=∠2,AC=AC,能判定△ADC≌△CBA,故选项C不符合题意;D.由∠D=∠B,∠1=∠2,AC=AC,能判定△ADC≌△CBA,故选项D不符合题意.故选B.5.答案 B连接BE,∵DE垂直平分AB,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°.在Rt△BCE中,BE=2CE,∴AE=2CE,故选B.6.答案 D∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=∠B+24°,∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC,∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∴∠C+∠EDC=∠ADC-∠EDC=∠B+24°-∠EDC,解得∠EDC=12°.故选D7.答案 D∵正五边形ABCDE中,直线l过点B,且l⊥ED,∴l是线段AC的垂直平分线,∠BAC=36°,∴①②正确;正五边形ABCDE有五条对称轴,③正确.故选D.8.答案 C∵等腰△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,由作图痕迹可知BD平分∠ABC,∴∠A=∠ABD=∠DBC=36°,∴AD=BD,故A,B结论正确;∵AD≠CD,∴S△ABD=S△BCD错误,故C结论错误;△BCD的周长=BC+CD+BD=BC+AC=BC+AB,故D结论正确.故选C.9.答案 D如图所示,作点A关于CD的对称点A',连接A'B,交CD于点P,连接AP,则PA+PB的最小值为A'B的长,点P即为所求.∵点A'与点A关于CD对称,∴∠APD=∠A'PD,∵∠BPC=∠A'PD,∴∠BPC=∠APD,故D符合题意.由图可知,选项A和选项B不成立,而C只有在PC=BC时才成立,故选项C不一定成立.故选D.10.答案 A①∵△ABC和△CDE为等边三角形,∴AC=BC,CD=CE,∠BCA=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,①正确.②∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵△DCE是等边三角形,∴∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,②正确.④在△CDP和△CEQ中,∠ADC=∠BEC,CD=CE,∠DCP=∠ECQ,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,△PCQ是等边三角形,④正确.⑤∵∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,⑤正确.③同④得△ACP≌△BCQ(ASA),∴AP=BQ,③正确.故选A.11.答案720°解析这个正多边形的边数为360°÷60°=6,则这个正多边形的内角和为(6-2)×180°=720°.12.答案 12解析由题意得AB=2BC=12.13.答案∠ABC=∠DBC或∠ACB=∠DCB解析∵∠A=∠D,BC=BC,∴当∠ABC=∠DBC或∠ACB=∠DCB时,△ABC≌△DBC(AAS),∴还需要补充一个条件为∠ABC=∠DBC或∠ACB=∠DCB.14.答案24解析如图,作DE⊥AB于E,∵点D的坐标是(0,-4),∴OD=4,∵AD是Rt△OAB的角平分线,∴DE=OD=4,∴S△ABD= 12×12×4=24.15.答案 90解析∵k=2,∴设该等腰三角形的顶角=2α,则底角=α,∴α+α+2α=180°,∴α=45°,∴该等腰三角形的顶角为90°.16.答案 (2,-2),(2,4)解析由题意可得点A、B的连线与直线y=1垂直,且两点到直线y=1的距离相等,∵AB=6,∴A、B两点的纵坐标分别为-2和4,又∵C到AB的距离为2,∴A、B两点的横坐标都为2.∴A、B两点的坐标分别为(2,-2),(2,4).17. 答案 70解析 在Rt △ABE 与Rt △CBF 中, ,,AE CF AB BC =⎧⎨=⎩∴Rt △ABE ≌Rt △CBF (HL).∴∠BAE =∠BCF =25°.∵AB =BC ,∠ABC =90°,∴∠ACB =45°,∴∠ACF =25°+45°=70°.18. 答案 75°或35°解析 当∠ABC 为锐角时,过点A 作AD =AB ,交BC 于点D ,如图1所示. ∵AB =AD ,∴∠ADB =∠ABH =70°,BH =DH . ∵CH -BH =AB ,∴AB +BH =CH , 又∵CH =CD +DH ,∴CD =AB =AD ,∴∠C = ∠ADB =35°, ∴∠BAC =180°-∠ABH -∠C =75°.当∠ABC 为钝角时,作AH ⊥BC ,交CB 的延长线于H , 如图2所示.∵CH -BH =AB ,∴AB +BH =CH ,又∵BH +BC =CH ,∴AB =BC ,∴∠BAC =∠ACB = 12 ∠ABH =35°. 故∠BAC =75°或35°.图1图219.解析如图所示,点C即为英语角应修建的位置.20.解析(1)△A1B1C1如图所示.(2)(3,2);(4,-3);(1,-1).(3)△A1B1C1的面积=3×5- 12×2×3- 12×1×5- 12×2×3=6.5.故填6.5.(4)如图所示,P点即为所求.21. 证明∵AE=BE,∴∠EAB=∠EBA, ∵AB∥DC,∴∠DEA=∠EAB,∠CEB=∠EBA,∴∠DEA=∠CEB,∵点E 是CD 的中点,∴DE =CE . 在△ADE 和△BCE 中, ,,,DE CE DEA CEB AE BE =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△BCE (SAS), ∴∠D =∠C .22. 解析 (1)∵AB =AC , ∴∠C =∠ABC , ∵BD =CD ,AB =AC , ∴AD ⊥BC , ∴∠ADB =90°, ∵∠BAD =55°,∴∠C =∠ABC =90°-55°=35°. (2)FB =FE .证明:∵BE 平分∠ABC ,∴∠ABE =∠CBE = 12∠ABC , ∵EF ∥BC , ∴∠FEB =∠CBE , ∴∠FBE =∠FEB , ∴FB =FE .23. 证明 (1)∵BF ∥AC ,∴∠ACB +∠CBF =180°, 又∵∠ACB =90°,∴∠CBF =90°,又∵CE ⊥AD ,∴∠CAE +∠ACF =∠ACF +∠ECD =90°, ∴∠CAE =∠ECD ,即∠DAC =∠FCB . 在Rt △ACD 和Rt △CBF 中, 90?,,,ACD CBF AC BC DAC FCB ∠=∠=⎧⎪=⎨⎪∠=∠⎩∴△ACD ≌△CBF . (2)由(1)得CD =BF ,∵D 为BC 的中点,∴CD =BD ,∴BF =BD . ∵△ABC 为等腰直角三角形, ∴∠CBA =45°,∵∠CBF =90°,∴∠FBA =45°,∴∠CBA =∠FBA , ∴BA 平分∠CBF .根据等腰三角形“三线合一”的性质得AB 垂直平分DF 24. 解析 (1)证明:∵AB=AC,∴∠B=∠C, ∵∠A+∠B+∠C=180°,∠A=36°, ∴∠B=∠C=72°,∴∠C=2∠A,即△ABC 是倍角三角形. (2)△ADC 是倍角三角形.证明:∵AD 平分∠BAE,∴∠BAD=∠EAD, ∵AB=AE,AD=AD,∴△ABD ≌△AED(SAS), ∴∠ADE=∠ADB,BD=DE. 又∵AB +AC =BD , ∴AE +AC =BD ,即CE =BD . ∴CE =DE .∴∠C =∠BDE =2∠ADC . ∴△ADC 是倍角三角形. 25. 解析 (1)AE =DB .(2)AE =DB .补充的过程如下: ∵△ABC 为等边三角形,∴∠AFE =∠ACB =∠ABC =60°,△AEF 为等边三角形, ∴∠EFC =∠EBD =120°,EF =AE ,∵ED =EC ,∴∠EDB =∠ECB ,∠ECB =∠FEC , ∴∠EDB =∠FEC .在△BDE 和△FEC 中, ,,,EBD EFC EDB FEC ED EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△FEC (AAS),∴BD =EF ,∴AE =BD 26. 解析 (1)①全等.理由如下:当点P 与点Q 运动1秒时,BP=CQ=3厘米. ∵AB=12厘米,D 为AB 的中点, ∴BD=6厘米.又∵PC=BC-BP=9-3=6(厘米),∴PC=BD. ∵AB=AC,∴∠B=∠C. 在△BPD 与△CQP 中,,,,BP CQ B C BD PC =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP (SAS).②若点Q 与点P 的运动速度不相等, 要使△BPD ≌△CPQ ,只能BP =CP =4.5厘米, BD =CQ =6厘米.∴点P 的运动时间t = 3BP = 4.53=1.5(秒),此时v Q = CQt = 61.5=4(厘米/秒).(2)因为v Q >v P ,所以只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程.设经过x秒后P与Q第一次相遇,依题意得4x=3x+2×12,解得x=24.此时点P运动了24×3=72(厘米).又∵△ABC的周长为33厘米,72=33×2+6,∴点P、Q在BC边上相遇,故经过了24秒,点P与点Q第一次在BC边上相遇.期中综合检测题(附答案)一.选择题1.在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.2.若三角形的两边a、b的长分别为3和5,则其第三边c的取值范围是()A.2<c<5 B.3<c<8 C.2<c<8 D.2≤c≤83.下列图形中具有稳定性的是()A.等腰三角形B.长方形C.正方形D.平行四边形4.下列各图中,正确画出AC边上的高的是()A.B.C.D.5.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°6.如图,已知△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是()A.AC=CE B.∠BAC=∠ECD C.∠ACB=∠ECD D.∠B=∠D7.如图,在△ABC和△A′B′C中,△ABC≌△A′B′C,AA′∥BC,∠ACB=α,∠BCB'=β,则α,β满足关系()A.α+β=90°B.α+2β=180°C.2α+β=180°D.α+β=180°8.点P(m,﹣2)与点P1(﹣4,n)关于x轴对称,则m,n的值分别为()A.m=4,n=﹣2 B.m=﹣4,n=2 C.m=﹣4,n=﹣2 D.m=4,n=29.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确10.如图,以正方形ABCD的一边AD为边向外作等边三角形ADE,则∠BED等于()A.30°B.37.5°C.45°D.50°11.如图,在△ABC中,AD交边BC于点D.设△ABC的重心为M,若点M在线段AD上,则下列结论正确的是()A.∠BAD=∠CADB.AM=DMC.△ABD的周长等于△ACD的周长D.△ABD的面积等于△ACD的面积12.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕点P旋转时,下列结论错误的有()①EF=AP;②△EPF为等腰直角三角形;③AE=CF;④A.1个B.2个C.3个D.4个二.填空题13.一个多边形的每一个外角为30°,那么这个多边形的边数为.14.如图,直线l1⊥l2,在某平面直角坐标系中,x轴∥11,y轴∥l2,点A的坐标为(﹣1,2),点B的坐标为(2,﹣1),那么点C在第象限.15.如图,已知∠AOB=60°,点P在边OA上,OP=20,点M点N在边OB上,PM=PN.若MN =4,则OM等于.16.已知△ABC中,AH⊥BC,垂足为H,若AB+BH=CH,∠ABH=80°,则∠BAC=.17.如图,在△ABC中,BI、CI分别平分∠ABC、∠ACB,若∠BIC=125°,则∠A=°.18.如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线.点P是EF上的动点,则|PA ﹣PB|的最大值为.三.解答题19.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.20.如图,一艘轮船以每小时40海里的速度沿正北方向航行,在A处测得灯塔C在北偏西30°方向上,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向上.当轮船到达灯塔C的正东方向D处时,又航行了多少海里.21.已知:如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.(1)若∠DCB=40°,求∠CEF的度数;(2)求证:∠CEF=∠CFE.22.如图,△ABC为等边三角形,∠1=∠2=∠3,求证:△DEF是等边三角形.23.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD 交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).24.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.25.如图,△ABD和△ACE都是等边三角形,BE和CD相交于点F.(1)若CD=6,求BE的长;(2)求证:AF平分∠DFE.参考答案一.选择题1.解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.2.解:根据三角形的三边关系可得5﹣3<c<5+3,解得:2<c<8,故选:C.3.解:等腰三角形,长方形,正方形,平行四边形中只有等腰三角形具有稳定性.故选:A.4.解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.5.解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.6.解:∵△ABC≌△CDE,AB=CD∴∠ACB=∠CED,AC=CE,∠BAC=∠ECD,∠B=∠D∴第三个选项∠ACB=∠ECD是错的.故选:C.7.解:当△ABC绕点C顺时针旋转到△A′B′C的位置,使AA′∥BC,∴∠CAA′=∠ACB=α,AC=A′C,∴∠AA′C=∠A′AC=α;∴∠ACA′=180°﹣∠CAA′﹣∠CA′A=180°﹣2α=β,∴2α+β=180°,故选:C.8.解:∵点P(m,﹣2)与点Q(﹣4,n)关于x轴对称,根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴m=﹣4,n=2,故选:B.9.解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.10.解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△ADE是等边三角形,∴AD=AE,∠DAE=∠AED=60°,∴∠BAE=150°,AB=AE,∴∠AEB=15°,∴∠BED=45°,故选:C.11.解:∵△ABC的重心为M,∴AM=2DM,AD为△ABC的中线,∴BD=CD,∴S△ABD=S△ACD.故选:D.12.解:①、∵在△ABC中,AB=AC,∠BAC=90°,CP=BP,∴∠APC=∠EPF=90°,∠APF=90°﹣∠APE=∠BPE,又AP=BP,∠FAP=∠EBP=45°,∴△FAP≌△EBP,∴PE=PF,不能证明EF=AP,错误;②、由①可知△EPF为等腰直角三角形,正确;③、由△FAP≌△EBP,可知AF=BE,又AC=AB,故AE=CF,正确;④、∵△FAP≌△EBP,∴S四边形AEPF=S△FAP+S△APE=S△EBP+S△APE=S△APB=S△ABC,正确;故选:A.二.填空题13.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.14.解:如图,∵点A的坐标为(﹣1,2),点B的坐标为(2,﹣1),∴点A位于第二象限,点B位于第四象限,∴点C位于第三象限.故答案是:三.15.解:过点P作PD⊥OB于点D,∵∠AOB=60°,PD⊥OB,OP=20,∴DO=10,∵PM=PN,MN=4,PD⊥OB,∴MD=ND=2,∴MO=8.故答案为:8.16.解:当∠ABC为锐角时,过点A作AD=AB,交BC于点D,如图1所示.∵AB=AD,∴∠ADB=∠ABH=80°,BH=DH.∵AB+BH=CH,CH=CD+DH,∴CD=AB=AD,∴∠C=∠ADB=40°,∴∠BAC=180°﹣∠ABH﹣∠C=60°.当∠ABC为钝角时,如图2所示.∵AB+BH=CH,∴AB=BC,∴∠BAC=∠ACB=∠ABH=40°.故答案为:60°或40°.17.解:依题意,在△BIC中,125°+∠IBC+∠ICB=180°.所以∠IBC+∠ICB=55°.在△ABC中,∠A+∠ABC+∠ACB=180°.又2∠IBC=∠ABC,2∠ICB=∠ACB,所以∠A=180°﹣55°×2=70°.故答案是:70°.18.解:如图,延长BA交EF于P′,此时|PA﹣PB|的值最大.∴|PA﹣PB|的最大值=AB=3.故答案为:3.三.解答题19.【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.20.解:∵CD⊥DB,∠CBD=60°,∴∠DCB=30°∴DB=BC,∴BC=2DB,又∵∠BCA=60°﹣30°=30°,∴BC=BA,∴BC=2×40=80(海里),∴DB=40海里,答:当轮船到达灯塔C的正东方向D处时,又航行了40海里21.解:(1)∵CD是高,∠DCB=40°,∴∠B=50°,又∵∠ACB=90°,∴∠BAC=40°,又∵AE是角平分线,∴∠BAE=∠BAC=20°,∴∠CEF=∠B+∠BAE=50°+20°=70°;(2)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BAC=∠B+∠BAC=90°,∴∠ACD=∠B,∵AE平分∠BAC,∴∠BAE=∠CAE,∵∠CFE是△ACF的外角,∠CEF是△ABE的外角,∴∠CFE=∠ACD+∠CAE,∠CEF=∠B+∠BAE,∴∠CFE=∠CEF.22.证明:∵△ABC是等边三角形,∴∠BAC=∠ABC.∵∠1=∠2,∴∠BAC﹣∠1=∠ABC﹣∠2,即∠CAF=∠ABD.在△ABD和△CAF中∴△ABD≌△CAF,∴∠ADB=∠CFA.∴∠FDE=∠DFE.同理可得∠DFE=∠FED.∴∠FDE=∠FED=∠DFE,∴△DEF是等边三角形.23.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.24.证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.25.解:(1)∵△ABD和△ACE都是等边三角形,∴∠DAB=60°,∠CAE=60°,∴∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∵在△ADC与△ABE中,∴△ADC≌△ABE(SAS),∴BE=CD=6.(2)在BE上截取EG=CF,连接AG,由(1)的证明,知△ADC≌△ABE,∴∠AEB=∠ACD,即∠AEG=∠ACF,∵AE=AC,在△AEG与△ACF中,∴△AEG≌△ACF(SAS),∴∠AGE=∠AFC,AG=AF,由∠AGE=∠AFC可得∠AGF=∠AFD,由AG=AF可得∠AGF=∠AFG,∴∠AFD=∠AFG,∴AF平分∠DFE.八年级数学期中试题(附答案)一.选择题(满分36分,每小题3分)1.一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A.4 B.6 C.8 D.102.已知n是正整数,若一个三角形的三边长分别是n+2、n+4、n+8,则n的取值范围是()A.n>﹣1 B.n>0 C.n>2 D.n>33.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是()A.B.C.D.4.下列说法不正确的是()A.一个三角形最多有一个直角B.一个三角形最多有一个钝角C.一个三角形的外角可以是锐角D.直角三角形的外角可以是锐角5.如图所示,已知△ABC中,∠A=80°,若沿图中虚线剪去∠A,则∠1+∠2等于()A.90°B.135°C.260°D.315°6.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°7.如图,在△ABC中,AC=4,BC边上的垂直平分线DE分别交BC、AB于点D,若△AEC的周长是11,则AB=()A.28 B.18 C.10 D.78.如图,已知:AC=DF,AC∥FD,AE=DB,判断△ABC≌△DEF的依据是()A.SSS B.SAS C.ASA D.AAS9.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为()A.30°B.15°C.25°D.20°10.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,则∠B=()A.40°B.30°C.25°D.22.5°11.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个12.直角三角形的一个锐角∠A是另一个锐角∠B的3倍,那么∠B的度数是()A.22.5°B.45°C.67.5°D.135°二.填空题(满分40分,每小题5分)13.已知点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2019的值为.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,交BC于点D,若∠ADC=60°,CD=2,则△ABC周长等于.15.若一个正多边形的内角和比四边形的内角和多360°,则这个正多边形的每个内角的度数为.16.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于点D,BE⊥AD于点E.若∠DBE=28°,则∠CAB=.17.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=3,DE=5,则线段EC的长为.18.如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B的度数为.19.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB 上的动点,则BM+MN的最小值是.20.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“”.三.解答题21.(10分)如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.(1)由图观察易知点A(0,2)关于直线l的对称点A′坐标为(2,0),请在图中分别标明点B(5,3),C(﹣2,﹣5)关于直线l的对称点B′,C′的位置,并写出它们的坐标:B′、C′;(2)结合图形观察以上三组点的坐标,你发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′坐标为.22.(10分)如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H(1)求∠APB度数;(2)求证:△ABP≌△FBP;(3)求证:AH+BD=AB.23.(10分)如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60cm和40cm 两部分,求边AC和AB的长.(提示:设CD=xcm)24.(10分)已知:在△ABC中,AB=AC,∠A=60°,求:∠B、∠C的度数,△ABC是什么三角形?25.(10分)如图,在△ABC中,∠ACB=110°,∠B>∠A,D,E为边AB上的两个点,且BD=BC,AE=AC.(1)若∠A=30°,求∠DCE的度数;(2)∠DCE的度数会随着∠A度数的变化而变化吗?请说明理由.26.(10分)已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.27.(14分)已知,如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.(1)求证:DB=DE;(2)若点F是BE的中点,连接DF,且CF=2,求等边三角形△ABC的边长.参考答案一.选择题1.解:多边形的边数为:360÷45=8.故选:C.2.解:∵三角形的三边长分别是n+2、n+4、n+8,∴n+2+n+4>n+8,解得n>2.故选:C.3.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意.故选:C.4.解:A、∵三角形的内角和等于180°,∴一个三角形最多有一个直角,故本选项说法正确,不符合题意;B、∵三角形的内角和等于180°,∴一个三角形最多有一个钝角,故本选项说法正确,不符合题意;C、∵钝角三角形有一个角是钝角,这个钝角的邻补角是锐角,∴一个三角形的外角可以是锐角,故本选项说法正确,不符合题意;D、∵直角三角形有一个直角,两个锐角,∴直角三角形的外角是直角或者钝角,不可以是锐角,故本选项说法错误,符合题意.故选:D.5.解:∵∠A=80°,∴∠B+∠C=100°,∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=260°.故选:C.6.解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.7.解:∵DE是BC的中垂线,∴BE=EC,则AB=EB+AE=CE+EA,又∵△ACE的周长为11,故AB=11﹣4=7,故选:D.8.解:∵AC∥FD,∴∠CAD=∠ADF,∵AE=DB,∴ED=AB,∵AC=DF,∴△ABC≌△DEF(SAS),故选:B.9.解:证明:∵AD⊥BC,∴∠BDF=∠ADC,又∵∠BFD=∠AFE,∴∠CAD=∠FBD,在△BDF和△ADC中,∴△BDF≌△ADC(AAS)∴∠DBF=∠CAD=25°,∵DB=DA,∠ADB=90°,∴∠ABD=45°,∴∠ABE=∠ABD﹣∠DBF=20°故选:D.10.解:∵在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,∴CD=ED.在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴∠ADC=∠ADE(全等三角形的对应角相等).∵∠ADC+∠ADE+∠EDB=180°,DE平分∠ADB,∴∠ADC=∠ADE=∠EDB=60°.∴∠B+∠EDB=90°,∴∠B=30°.故选:B.11.解:∵在△ABC 中,∠A =36°,∠C =72°∴∠ABC =∠C ==72°,△ABC 是等腰三角形,∴∠DBC =36°,∴∠ABD =∠DBC =36°,∴BD 平分∠ABC ,∴∠ABD =∠DBC =36°,∵DE ∥BC ,∴∠EDB =∠DBC =36°,∴∠ABD =∠EDB =∠A ,∴AD =BD ,EB =ED ,即△ABD 和△EBD 是等腰三角形,∵∠BDC =180°﹣∠DBC ﹣∠C =72°,∴∠BDC =∠C ,∴BD =BC ,即△BCD 是等腰三角形,∵DE ∥BC ,∴∠AED =∠ABC ,∠ADE =∠C ,∴∠AED =∠ADE ,∴AE =AD ,即△AED 是等腰三角形.∴图中共有5个等腰三角形.故选:C .12.解:设∠B =x °,则∠A =3x °,由直角三角形的性质可得∠A +∠B =90°,∴x +3x =90,解得x =22.5,∴∠B =22.5°,故选:A .二.填空13.解:∵点P 1(a ﹣1,5)和P 2(2,b ﹣1)关于x 轴对称,∴a ﹣1=2,b ﹣1=﹣5,解得:a =3,b =﹣4,∴(a +b )2019=﹣1.故答案是:﹣1.14.解:∵∠C=90°,∠ADC=60°,∴∠CAD=30°,∵AD平分∠CAB,∴∠CAB=60°,∠B=30°,∵CD=2,∴AC=2,∴AB=2AC=2×2=4,∴BC==6,∴△ABC的周长为:AC+AB+BC=2+4+6=6+6,故答案为:6+6.15.解:设这个正多边形为n边形,根据题意,得(n﹣2)×180°=360°+360°.解得n=6.所以正六边形每个内角的度数为120°.故答案为120°16.解:∵BE⊥AE,∴∠E=∠C=90°,∵∠ADC=∠BDE,∴∠CAD=∠DBE=28°,∵AE平分∠CAB,∴∠CAB=2∠CAD=56°,故答案为56°.17.解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,∴∠DFB=∠FBC,∠CFE=∠BCF,∴∠DFB=∠DBF,∠CFE=∠ECF,∴BD=DF=3,FE=CE,∴CE=DE﹣DF=5﹣3=2.故答案为:2.18.解:∵OA=OC,∴∠ACO=∠A=36°,∵BC∥AO,∴∠BCA=∠A=36°,∴∠BCO=72°,∵OB=OC,∴∠B=∠OCB=72°.故答案为:72°.19.解:如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值.∵AD是∠BAC的平分线,∴M′H=MN,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=5,∠BAC=45°,∴BH=AB•sin45°=5×=5.∴BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为:5.20.解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案为:HL.三.解答21.解:(1)如图,B′(3,5)、C′(﹣5,﹣2);(2)P′(b,a).故答案为(3,5),(﹣5,﹣2);P′(b,a).22.解:(1)∵AD平分∠BAC,BE平分∠ABC,∴∠PAB+∠PBA=(∠ABC+∠BAC)=45°,∴∠APB=180°﹣45°=135°;(2)∵∠APB=135°,∴∠DPB=45°,∵PF⊥AD,∴∠BPF=135°,在△ABP和△FBP中,,∴△ABP≌△FBP(ASA);(3)∵△ABP≌△FBP,∴∠F=∠BAD,AP=PF,AB=BF,∵∠BAD=∠CAD,∴∠F=∠CAD,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴AH=DF,∵BF=DF+BD,∴AB=AH+BD.23.解:∵AD是BC边上的中线,AC=2BC,∴BD=CD,设BD=CD=x,AB=y,则AC=4x,∵AC>AB,∴AC+CD=60,AB+BD=40,即4x+x=60,x+y=40,解得:x=12,y=28,即AC=4x=48cm,AB=28cm.24.解:∵在△ABC中,AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠B=∠C=60°.25.解:(1)设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=110°﹣∠ACE=110°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=110°﹣x﹣y+x=110°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(110°﹣y)+(x+y)=180°,解得x=35°,∴∠DCE=35°;(2)由(1)知,∠DCE的度数不会随着∠A度数的变化而变化.26.证明:如图,过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,∵BE平分∠ABC,点P在BE上,∴PD=PM,同理,PM=PN,∴PD=PN,∴点P在∠A的平分线上.27.(1)证明:∵△ABC是等边三角形∴∠ABC=∠ACB=60°又∵BD是中线∴BD平分∠ABC∴∠DBC=∠ABC=30°∵CE=CD∴∠E=∠CDE又∵∠ACB=∠E+∠CDE∴∠E=∠CDE=30°∴∠DBC=∠E∴DB=DE(2)解:由(1)可知DB=DE又∵点F是BE的中点∴DF⊥BE∵∠ACB=60°∴∠CDF=180°﹣90°﹣60°=30°又∵△CDF为直角三角形∴CF=CD,∴CD=4∵BD是中线∴AC=2CD=8即等边三角形△ABC的边长为8.。
西安市2020版八年级上学期期中数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七下·乐亭期末) 已知三角形三边长分别为5、a、9,则数a可能是()A . 4B . 6C . 14D . 152. (2分) (2016八上·赫章期中) 下列结果错误的有()A . =2B . 的算术平方根是4C . 12 的算术平方根是D . (﹣π)2的算术平方根是π3. (2分) (2016八上·赫章期中) 下列说法正确的是()A . 无理数包括正无理数、0和负无理数B . 是有理数C . 无理数是带根号的数D . 无理数是无限不循环小数4. (2分) (2016八上·赫章期中) 一个三角形的三边长分别是20,25,15,那么这个三角形最大边上的高为()A . 9B . 12C . 12.5D . 205. (2分) (2016八上·赫章期中) 估算的大小在哪两个数之间()A . 10到11之间B . 14到15之间C . 5到6之间D . 20到21之间6. (2分) (2016八上·赫章期中) 以下列哪组数为边,可以得到直角三角形的是()B . 8,15,17C . 6,8,14D . 10,12,137. (2分)油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是()A . Q=0.2tB . Q=20﹣0.2tC . t=0.2QD . t=20﹣0.2Q8. (2分) (2016八上·赫章期中) 已知 A,B点的坐标分别是(﹣2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A点在第二象限,B点在第一象限;④A、B之间的距离为4.中正确的有()A . 1个B . 2个C . 3个D . 4个9. (2分) (2016八上·赫章期中) 实数a、b在数轴上对应点的位置如图,则|a﹣b|﹣的结果是()A . 2a﹣bB . b﹣2aC . bD . ﹣b10. (2分) (2016八上·赫章期中) 已知一次函数y=mx+n﹣2的图象如图所示,则m、n的取值范围是()A . m>0,n<2B . m>0,n>2C . m<0,n<2二、填空题 (共5题;共5分)11. (1分)根据题意可知,下列判断中所依据的命题或定理是________.如图,若∠1=∠4,则AB∥CD;若∠2=∠3,则AD∥BC.12. (1分)如图所示,经过B(2,0)、C(6,0)两点的⊙H与y轴的负半轴相切于点A,双曲线y= 经过圆心H,则反比例函数的解析式为________.13. (1分) (2019九下·温州模拟) 如图 1 是台湾某品牌手工蛋卷的外包装盒,其截面图如图 2 所示,盒子上方是一段圆弧(弧 MN ).D,E 为手提带的固定点, DE 与弧MN 所在的圆相切,DE=2.手提带自然下垂时,最低点为C,且呈抛物线形,抛物线与弧MN 交于点 F,G.若△CDE 是等腰直角三角形,且点 C,F 到盒子底部 AB 的距离分别为 1,,则弧MN 所在的圆的半径为________.14. (1分)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A有________个.15. (1分) (2020八下·沧县月考) 如果直线 y=-2x+k 与两坐标轴所围成的三角形面积是 9,则 k的值为________.三、解答题 (共6题;共62分)16. (15分) (2017七上·利川期中) 观察下列各式:13+23= ×4×9= ×22×3213+23+33=36= ×9×16= ×32×4213+23+33+43=100= ×16×25= ×42×52(1)计算:13+23+33+43+…+103的值;(2)猜想:13+23+33+43+…+n3的值.(3)计算:513+523+533+…+993+1003的值.17. (5分) (2019七上·江门期中) 老师给学生出了一道题:当x=2018,y=-2019时,求2x3-6x3y+4x2y +3x3+6x3y-4x2y-5x3的值.题目出完后,小刚说:“老师给的条件x=2018,y=-2019是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?18. (10分) (2016八上·赫章期中) 解答题。
2020年八年级数学上期中试卷含答案一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个 B.3个 C.2个 D.1个2.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A.7710⨯﹣B.80.710⨯﹣C.8710⨯﹣D.9710⨯﹣3.从甲地到乙地有两条路:一条是全长750km的普通公路,另一条是全长600km高速公路.某客车从甲地出发去乙地,若走高速公路,则平均速度是走普通公路的平均速度的2倍,所需时间比走普通公路所需时间少5小时.设客车在普通公路上行驶的平均速度是x km/h,则下列等式正确的是()A.600x+5=7502xB.600x-5=7502xC.6002x+5=750xD.6002x-5=750x4.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°5.如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是( )A.△ABC≌△CDE B.CE=AC C.AB⊥CD D.E为BC的中点6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A .132°B .134°C .136°D .138° 7.具备下列条件的△ABC 中,不是直角三角形的是( ) A .∠A+∠B=∠CB .∠A=12∠B=13∠C C .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C8.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处9.如图,在ABC ∆中,64A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;……;1n A BC -∠与1n A CD -∠的平分线交于点n A ,要使n A ∠的度数为整数,则n 的最大值为( )A .4B .5C .6D .710.已知A =﹣4x 2,B 是多项式,在计算B+A 时,小马虎同学把B+A 看成了B•A ,结果得32x 5﹣16x 4,则B+A 为( )A .﹣8x 3+4x 2B .﹣8x 3+8x 2C .﹣8x 3D .8x 3 11.下列各式中,从左到右的变形是因式分解的是( ) A .()()2224a a a +-=-B .()ab ac d a b c d ++=++C .()2293x x -=-D .22()a b ab ab a b -=-12.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( )①△CDF≌△EBC;②△CEF 是等边三角形;③∠CDF=∠EAF;④CE∥DFA .1B .2C .3D .4二、填空题13.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是_____cm .14.使1 2x +有意义的x 取值范围是_____;若分式3 3x x --的值为零,则x =_____;分式2211 x x x x-+,的最简公分母是_____. 15.使分式的值为0,这时x=_____.16.分解因式:2x 2﹣8=_____________17.某工厂储存350吨煤,按原计划用了3天后,由于改进了炉灶和烧煤技术,每天能节约2吨煤,使储存的煤比原计划多用15天.若设改进技术前每天烧x 吨煤,则可列出方程________.18.如图所示,已知△ABC 的周长是20,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,则△ABC 的面积是 .19.如图,AD 是ABC ∆的角平分线,DF AB ⊥,垂足为F ,DE DG =,ADG ∆和EFD ∆的面积分别为50和4.5,则AED ∆的面积为_________.20.已知13a a +=,则221+=a a_____________________; 三、解答题21.解分式方程:23211x x x +=+- 22.已知等腰三角形一腰上的中线将三角形的周长分为9cm 和15cm 两部分,求这个等腰三角形的底边长和腰长.23.已知:如图,AB =AC ,点D 是BC 的中点,AB 平分∠DAE ,AE ⊥BE ,垂足为E . 求证:AD =AE .24.解分式方程(1)2101x x -=+. (2)2216124x x x --=+- 25.解分式方程:22111x x x +=--【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A 选项既是轴对称图形,也是中心对称图形;B 选项中该图形是轴对称图形不是中心对称图形;C 选项中既是中心对称图形又是轴对称图形;D 选项中是中心对称图形又是轴对称图形.故选B .考点: 1.轴对称图形;2.中心对称图形.2.D解析:D【解析】【分析】由科学记数法知90.000000007710-=⨯;解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.3.C解析:C【解析】【分析】分别表示出客车在普通公路和高速公路上行驶的时间,即可得到方程.【详解】 根据题意:客车在普通公路上行驶的时间是750x 小时,在高速公路上行驶的时间是6002x 小时,由所需时间比走普通公路所需时间少5小时可列方程:6002x +5=750x, 故选:C.【点睛】 此题考查分式方程的实际应用,正确理解题意找到等量关系是解题的关键.4.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.5.D解析:D【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=o Q ,90B DCE ∴∠+∠=o ,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.6.B解析:B【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案.解:过E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA ,∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.D解析:D【解析】【分析】根据三角形内角和为180°,直接进行解答.【详解】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形, D选项中∠A=2∠B=3∠C,即3∠C +32∠C +∠C =180°,∠C =36011,三个角没有90°角,故不是直角三角形.“点睛”本题考查三角形内角和定理以及直角的判定条件,熟知三角形内角和是180°是解答此题的关键.8.D解析:D【解析】【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【详解】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4处,∴可供选择的地址有4处.故选:D【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.9.C解析:C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,然后整理得到∠A1=12∠A,由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∴∠A1=12∠A=12×64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∵n=6.故选C.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.10.C解析:C【解析】【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:-4x2•B=32x5-16x4,∴B=-8x3+4x2∴A+B=-8x3+4x2+(-4x2)=-8x3故选C.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.11.D解析:D【解析】【分析】根据因式分解的意义对四个选项进行逐一分析即可.【详解】解:A、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;B、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;C、等式右边应该是(x+3)(x-3),故不符合题意,故本选项错误.D 、等式右边是几个因式积的形式,故是分解因式,故本选项正确;故选D.【点睛】本题考查了因式分解的意义,解题的关键是掌握把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.12.C解析:C【解析】【分析】利用“边角边”证明△CDF 和△EBC 全等,判定①正确;同理求出△CDF 和△EAF 全等,根据全等三角形对应边相等可得CE CF EF ==,判定△ECF 是等边三角形,判定②正确;利用“8字型”判定③正确;若CE DF P ,则C 、F 、A 三点共线,故④错误;即可得出答案.【详解】在ABCD Y 中,ADC ABC ∠∠=,AD BC =,CD AB =,∵ABE ADF V V 、都是等边三角形,∴AD DF =,AB EB =,60DFAADF ABE ∠∠∠︒===, ∴DF BC =,=CD BE ,∴60CDF ADC ∠∠︒=﹣,60EBC ABC ∠∠︒=﹣,∴CDF EBC ∠∠=,在CDF V 和EBC V 中,DF BC CDF EBC CD EB =⎧⎪∠=∠⎨⎪=⎩,∴CDF EBC SAS V V ≌(),故①正确; 在ABCD Y 中,设AE 交CD 于O ,AE 交DF 于K ,如图:∵AB CD ∥,∴60DOA OAB ∠∠︒==,∴DOA DFO ∠∠=,∵OKD AKF ∠∠=,∴ODF OAF ∠∠=,故③正确;在CDF V 和EAF △中,CD EA CDF EAF DF AF =⎧⎪∠=∠⎨⎪=⎩,∴CDF EAF SAS V V ≌(), ∴EF CF =,∵CDF EBC ≌△△,∴CE CF =,∴EC CF EF ==,∴ECF △是等边三角形,故②正确;则60CFE ∠︒=,若CE DF P 时,则60DFE CEF ∠∠︒==,∵60DFA CFE ∠︒∠==,∴180CFE DFE DFA ∠+∠+∠︒=,则C 、F 、A 三点共线已知中没有给出C 、F 、A 三点共线,故④错误;综上所述,正确的结论有①②③.故选:C .【点睛】本题主要考查三角形全等的判定与性质,解题的关键是能通过题目所给的条件以及选用合适的判定三角形全等的方法证明.二、填空题13.15【解析】【分析】题目给出等腰三角形有两条边长为6cm 和3cm 而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】当腰为3cm 时3+3=6不能构成三角形因此这种解析:15【解析】【分析】题目给出等腰三角形有两条边长为6cm 和3cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当腰为3cm 时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm .故填15.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.14.【解析】【分析】(1)令分母不为0即可;(2)令分子为0且分母不为0可得;(3)先对两个分式分母进行因式分解然后观察得出最简公分母【详解】(1)要使有意义则x+2≠0解得:x=2(2)分式的值为零则解析:x -2≠ x -3= 3x -x【解析】【分析】(1)令分母不为0即可;(2)令分子为0,且分母不为0可得;(3)先对两个分式分母进行因式分解,然后观察得出最简公分母.【详解】(1)要使1 2x +有意义 则x+2≠0解得:x=2(2)分式33x x --的值为零则3=0x -,且x -3≠0解得:x=-3(3)∵221111 =(1)(1)x x x x x x x x =--++, ∴两个分式的最简公分母为:x(x-1)(x+1)=3x -x故答案分别为:x=2;x=-3;3x -x【点睛】本题考查分式有意义的条件、分式为0的条件以及最简公分母的求解,注意分式有意义的条件和为0的情况是有所区别的.15.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法16.2(x+2)(x﹣2)【解析】【分析】先提公因式再运用平方差公式【详解】2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2)【点睛】考核知识点:因式分解掌握基本方法是关键解析:2(x+2)(x﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.17.【解析】【分析】设改进技术前每天烧吨煤则改进技术后每天烧(x-2)吨根据储存的煤比原计划多用15天即可列方程求解【详解】解:设改进技术前每天烧吨煤则改进技术后每天烧(x-2)吨根据题意得:故答案为:解析:3503350315 2x xx x---=-【解析】【分析】设改进技术前每天烧x吨煤,则改进技术后每天烧(x-2)吨,根据储存的煤比原计划多用15天,即可列方程求解.【详解】解:设改进技术前每天烧x吨煤,则改进技术后每天烧(x-2)吨,根据题意得:35033503152x xx x---=-,故答案为:35033503152x xx x---=-.【点睛】本题考查了分式方程的应用,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.18.【解析】试题分析:如图连接OA∵OBOC分别平分∠ABC和∠ACB∴点O到ABACBC的距离都相等∵△ABC的周长是20OD⊥BC于D且OD=3∴S△ABC=×20×3=30考点:角平分线的性质解析:【解析】试题分析:如图,连接OA,∵OB 、OC 分别平分∠ABC 和∠ACB ,∴点O 到AB 、AC 、BC 的距离都相等,∵△ABC 的周长是20,OD ⊥BC 于D ,且OD=3,∴S △ABC =12×20×3=30. 考点:角平分线的性质.19.41【解析】【分析】作垂足为M 可得出由此推出从而得出【详解】解:作垂足为M ∵是的角平分线∴∴∴故答案为:41【点睛】本题考查的知识点是与角平分线有关的计算根据角平分线的性质得出是解此题的关键解析:41【解析】【分析】作DM AC ⊥,垂足为M ,可得出,ADF ADM DFE DMG ≅≅V V V V ,由此推出50 4.545.5ADM ADF ADG EFD S S S S ==-=-=V V V V ,从而得出45.5 4.541AED ADF EFD S S S=-=-=V V V . 【详解】解:作DM AC ⊥,垂足为M ,∵AD 是ABC ∆的角平分线,DF AB ⊥,∴,ADF ADM DFE DMG ≅≅V V V V ,∴50 4.545.5ADM ADF ADG EFD S S S S ==-=-=V V V V ,∴45.5 4.541AED ADF EFD S S S=-=-=V V V .故答案为:41.【点睛】本题考查的知识点是与角平分线有关的计算,根据角平分线的性质得出,ADF ADM DFE DMG ≅≅V V V V 是解此题的关键.20.7【解析】【分析】把已知条件平方然后求出所要求式子的值【详解】∵∴∴=9∴=7故答案为7【点睛】此题考查分式的加减法解题关键在于先平方 解析:7【解析】【分析】把已知条件平方,然后求出所要求式子的值.【详解】 ∵13a a+=, ∴219a a ⎛⎫+= ⎪⎝⎭, ∴2212+a a + =9, ∴221+=a a =7. 故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.三、解答题21.x =-5【解析】【分析】本题考查了分式方程的解法,把方程的两边都乘以最简公分母(x +1)( x -1),化为整式方程求解,求出x 的值后不要忘记检验.【详解】解:方程两边同时乘以(x +1)( x -1)得: 2x (x -1)+3(x +1)=2(x +1)( x -1)整理化简,得 x =-5经检验,x =-5是原方程的根∴原方程的解为:x =-5.22.底边长为4cm ,腰长为10cm.【解析】【分析】根据题意画出图形,设△ABC 的腰长为xcm ,则AD =DC =12xcm ,然后根据AB+AD=9和AB+AD=15两种情况分别求出底边和腰长,最后根据三角形的三边关系进行判定是否能够构成三角形,从而得出答案.【详解】如图,△ABC 是等腰三角形,AB =AC ,BD 是AC 边上的中线.设△ABC 的腰长为xcm ,则AD =DC =12xcm. 分下面两种情况解:①AB +AD =x +12x =9, ∴x =6. ∵三角形的周长为9+15=24(cm), ∴三边长分别为6cm ,6cm ,12cm. 6+6=12, 不符合三角形的三边关系,舍去;②AB +AD =x +12x =15, ∴x =10. ∵三角形的周长为24cm , ∴三边长分别为10cm ,10cm ,4cm ,符合三边关系.综上所述,这个等腰三角形的底边长为4cm ,腰长为10cm.【点睛】本题主要考查的是等腰三角形的性质以及分类讨论思想的应用,属于中等难度的题型.学会分类讨论是解决这个问题的关键.23.见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB 即可.试题解析:∵AB=AC,点D 是BC 的中点,∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB 平分∠DAE,∴∠BAD=∠BAE.在△ADB 和△AEB 中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.24.(1)x=-2;(2)无解【解析】【分析】【详解】(1)去分母得:2(1)0x x +-=,解此整式方程得:2x =-,检验:当2x =-时,(1)0x x +≠,∴原方程的解为:2x =-.(2)去分母得:22(2)164x x --=-,解此整式方程得:2x =-,检验:当2x =-时,(2)(2)0x x +-=,∴2x =-是原方程的增根,∴原方程无解.【点睛】解分式方程时需注意两点:(1)解分式方程的基本思路是“去分母,化分式方程为整式方程”;(2)求得对应的整式方程的解后,需检验,再作结论.25.x=-3【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:方程左右两边同时乘以(x-1)²得:2+2x=x-1,解得:x=-3,经检验x=-3是原分式方程的解.点睛:此题考查了解分式方程,熟练掌握运算法则是解本题的关键.。
八年级数学上学期期中试卷一、选择题1.下列说法正确的是()A.1的立方根是﹣1 B. =±2C.的平方根是3 D.0的平方根是02.下列运算正确的是()A.a2•a3=a6B.(a3)3=a9C.(2a2)2=2a4D.a8÷a2=a43.在实数,0,,,0.1010010001…(两个1之间依次多一个0),,中无理数有()A.2个B.3个C.4个D.5个4.若改动多项式3a2+12ab+b2中某一项,使它变成完全平方式,则改动的方法是()A.只能改动第一项B.只能改动第二项C.只能改动第三项D.可以改动三项中任意一项5.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+16.下列命题不正确的是()A.立方根等于它本身的实数是0和±1B.所有无理数的绝对值都是正数C.等腰三角形的两边长是6和9,则它的周长是21或24D.腰长相等,且有一个角是45°的两个等腰三角形全等7.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于点R,PS⊥AC于点S,则下列三个结论:①AS=AR;②QP∥AR;③△APR≌△QPS中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确8.如图,一种电子游戏,电子屏幕上有一正方形ABCD,点P沿直线AB从右向左移动,当出现:点P与正方形四个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()A.7个B.8个C.9个D.10个二、填空题9.1的算术平方根是,﹣= .10.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:.11.若与互为相反数,则x+y的平方根是.12.已知﹣5x2与一个整式的积是25x2+15x3y﹣20x4,则这个整式是.13.计算:()2014×1.52013÷(﹣1)2014= .14.已知5+小数部分为m,11﹣为小数部分为n,则m+n= .15.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作EF∥BC,交AB于E,交AC于点F,若△AEF的周长为16,则AB+AC的值为.16.32x=2,3y=5,则求34x﹣2y= .17.如图所示,AB=AC,AD=AE,∠BAC=∠DA E,∠1=25°,∠2=30°,则∠3= .18.如图所示,点B、C、E在同一直线上,△ABC与△CDE都是等边三角形,则下列所有正确的结论序号为①△ACE≌△BCD,②BG=AF,③△DCG≌△ECF,④△ADB≌△CEA,⑤DE=DG,⑥∠AOB=60°.三、解答题19.把下列多项式分解因式(1)2xy2﹣8x(2)4a2﹣3b(4a﹣3b)20.计算或化简(1)(﹣a2b)3÷(﹣a2b)2×a3b2(2)(2+1)×(22+1)×(24+1)×(28+1)×(216+1)×(232+1)21.先化简再求值,(ab+1)(ab﹣2)+(a﹣2b)2+(a+2b)(﹣2b﹣a),其中a=,b=﹣.22.如图,两个正方形边长分别为a、b,如果a+b=17,ab=60,求阴影部分的面积.23.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)参考上面的方法解决下列问题:(1)a2+2ab+ac+bc+b2= ;(2)△ABC三边a、b、c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.24.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE 相等的线段,并证明.25.将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直线顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C、A1B1交于点D、E,AC与A1B1交于点F.(1)求证:BD=B1F;(2)当旋转角等于30°时,AB与A1B1垂直吗?并说明理由;(3)根据图1直接判断命题“直角三角形中30°角所对的边等于斜边的一半”的真假(填真命题或假命题);将图2中三角板ABC绕点C顺时针旋转至图3的位置,当AB∥CB1时,请直接写出A1D与CD的数量关系:参考答案与试题解析一、选择题1.下列说法正确的是()A.1的立方根是﹣1 B. =±2C.的平方根是3 D.0的平方根是0【解答】解:A、1的立方根是1,故选项错误;B、=2,故选项错误;C、=9,9的平方根是±3,故选项错误;D、0的平方根是0,故选项正确.故选:D.2.下列运算正确的是()A.a2•a3=a6B.(a3)3=a9C.(2a2)2=2a4D.a8÷a2=a4【解答】解:A、应为a2•a3=a5,故本选项错误;B、(a3)3=a9,正确;C、应为(2a2)2=4a4,故本选项错误;D、应为a8÷a2=a6,故本选项错误.故选:B.3.在实数,0,,,0.1010010001…(两个1之间依次多一个0),,中无理数有()A.2个B.3个C.4个D.5个【解答】解: =0.5, =2,无理数有:,0.1010010001…,,共3个.故选:B.4.若改动多项式3a2+12ab+b2中某一项,使它变成完全平方式,则改动的方法是()A.只能改动第一项B.只能改动第二项C.只能改动第三项D.可以改动三项中任意一项【解答】解:若改动多项式3a2+12ab+b2中某一项,使它变成完全平方式,则改动的方法是只能改动第三项,故选:C.5.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.6.下列命题不正确的是()A.立方根等于它本身的实数是0和±1B.所有无理数的绝对值都是正数C.等腰三角形的两边长是6和9,则它的周长是21或24D.腰长相等,且有一个角是45°的两个等腰三角形全等【解答】解:A、立方根等于它本身的实数是0和±1,所以A选项为真命题;B、所有无理数的绝对值都是正数,所以B选项为真命题;C、等腰三角形的两边长是6和9,则它的周长是21或24,所以C选项为真命题;D、腰长相等,且有一个角是45°的两个等腰三角形不一定全等,所以D选项为假命题.故选:D.7.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于点R,PS⊥AC于点S,则下列三个结论:①AS=AR;②QP∥AR;③△APR≌△QPS中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确【解答】解:如图,在Rt△APR和Rt△APS中,,∴Rt△APR≌Rt△APS(HL),∴AR=AS,①③正确;∠BAP=∠PAS,∵AQ=PQ,∴∠PAQ=∠APQ,∴∠BAP=∠APQ,∴QP∥AB,②正确,故选:A.8.如图,一种电子游戏,电子屏幕上有一正方形ABCD,点P沿直线AB从右向左移动,当出现:点P与正方形四个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()A.7个B.8个C.9个D.10个【解答】解:当BC=BP时,△BCP为等腰三角形;当P与B重合时,△APC为等腰三角形;当P运动到AB边的中点时,PD=PC,此时△PCD为等腰三角形;当P与A重合时,△PBD为等腰三角形;当PA=AD时,△PAD为等腰三角形;当AP=AC时,△APC是等腰三角形,这时有2个;当BD=BP时,△BDP 是等腰三角形,这时有2个;综上,直线AB上会发出警报的点P有9个.故选:C.二、填空题9.1的算术平方根是,﹣= .【解答】解:1的算术平方根是,﹣=﹣=.故答案为:,.10.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.【解答】解:把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:如果两条直线垂直于同一条直线,那么这两条直线平行.11.若与互为相反数,则x+y的平方根是±1 .【解答】解:∵与互为相反数,∴3x﹣7+3y+4=0,3x+3y=3,x+y=1,即x+y的平方根是±1,故答案为:±1.12.已知﹣5x2与一个整式的积是25x2+15x3y﹣20x4,则这个整式是﹣5﹣3xy+4x2.【解答】解:∵﹣5x2与一个整式的积是25x2+15x3y﹣20x4,∴(25x2+15x3y﹣20x4)÷(﹣5x2)=﹣5﹣3xy+4x2.故答案为:﹣5﹣3xy+4x2.13.计算:()2014×1.52013÷(﹣1)2014= .【解答】解:()2014×1.52013÷(﹣1)2014=(×)2013×÷1=1×÷1=,故答案为:.14.已知5+小数部分为m,11﹣为小数部分为n,则m+n= 1 .【解答】解:∵4<7<9,∴2<<3,∴7<5+<8,8<11﹣<9,∴m=5+﹣7=﹣2,n=11﹣﹣8=3﹣,∴m+n=﹣2+3﹣=1.故答案为:1.15.如图,在△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作EF∥BC,交AB于E,交AC于点F,若△AEF的周长为16,则AB+AC的值为16 .【解答】解:∵EF∥B C,∴∠BOE=∠OBC,∠COF=∠OCB,∵在△ABC中,∠ABC和∠ACB的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EBO=∠BOE,∠FCO=∠COF,∴BE=OE,CF=OF,∴△AEF的周长为:AE+EF+AF=AE+OE+OF+AF=AE+BE+CF+AF=AB+AC,∵△AEF的周长为16,∴AB+BC=16,故答案为16.16.32x=2,3y=5,则求34x﹣2y= .【解答】解:原式==,当32x=2,3y=5时,原式==.故答案为:.17.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 55°.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.18.如图所示,点B、C、E在同一直线上,△AB C与△CDE都是等边三角形,则下列所有正确的结论序号为①②③⑥①△ACE≌△BCD,②BG=AF,③△DCG≌△ECF,④△ADB≌△CEA,⑤DE=DG,⑥∠AOB=60°.【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,故①成立;∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,∴BG=AF.故②成立;∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故③成立;∵△BCD≌△ACE,∴∠CDB=∠CEA,∵△ABC和△CDE都是等边三角形,∴∠BCA=∠ECD=60°,∴∠ACD=60°,∴∠BCD=120°,∴∠DBC+∠BDC=60°,∴∠DBC+∠AEC=60°.∵∠AOB=∠DBC+∠AEC,∴∠AOB=60°.故⑥成立;在△ADB和△CEA中,只有AB=AC,BD=AE,两边对应相等不能得到两三角形全等;故④不成立;若DE=DG,则DC=DG,∵∠ACD=60°,∴△DCG为等边三角形,故⑤不成立.∴正确的有①②③⑥.故答案为①②③⑥.三、解答题19.把下列多项式分解因式(1)2xy2﹣8x(2)4a2﹣3b(4a﹣3b)【解答】解:(1)原式=2x(y2﹣4)=2x(y+2)(y﹣2);(2)原式=4a2﹣12ab+9b2=(2a﹣3b)2.20.计算或化简(1)(﹣a2b)3÷(﹣a2b)2×a3b2(2)(2+1)×(22+1)×(24+1)×(28+1)×(216+1)×(232+1)【解答】解:(1)(﹣a2b)3÷(﹣a2b)2×a3b2=﹣a6b3÷a4b2×a3b2=﹣a2b×a3b2=﹣2a5b3(2)(2+1)×(22+1)×(24+1)×(28+1)×(216+1)×(232+1)=(2﹣1)(2+1)×(22+1)×(24+1)×(28+1)×(216+1)×(232+1)=(22﹣1)×(22+1)×(24+1)×(28+1)×(216+1)×(232+1)=(24﹣1)×(24+1)×(28+1)×(216+1)×(232+1)=(28﹣1)×(28+1)×(216+1)×(232+1)=(216﹣1)×(216+1)×(232+1)=(232﹣1)×(232+1)=264﹣121.先化简再求值,(ab+1)(ab﹣2)+(a﹣2b)2+(a+2b)(﹣2b﹣a),其中a=,b=﹣.【解答】解:原式=a2b2﹣ab﹣2+a2+4b2﹣4ab﹣2ab﹣a2﹣4b2﹣2ab,=a2b2﹣9ab﹣2,当a=,b=﹣时,原式=×+9××﹣2=+﹣2=﹣2=.22.如图,两个正方形边长分别为a、b,如果a+b=17,ab=60,求阴影部分的面积.【解答】解:∵a+b=17,ab=60,∴S阴影=S正方形ABCD+S正方形EFGC﹣S△ABD﹣S△BGF=a2+b2﹣a2﹣(a+b)•b=a2+b2﹣a2﹣ab﹣b2=a2+b2﹣ab=(a2+b2﹣ab)= [(a+b)2﹣3ab]=×(172﹣3×60)=.23.阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)参考上面的方法解决下列问题:(1)a2+2ab+ac+bc+b2= (a+b)(a+b+c);(2)△ABC三边a、b、c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.【解答】解:(1)原式=(a+b)2+c(a+b)=(a+b)(a+b+c);故答案为:(a+b)(a+b+c);(2)a2﹣ab﹣ac+bc=0,整理得:a(a﹣b)﹣c(a﹣b)=0,即(a﹣b)(a﹣c)=0,解得:a=b或a=c,则△ABC为等腰三角形.24.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE 相等的线段,并证明.【解答】(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.25.将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直线顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C、A1B1交于点D、E,AC与A1B1交于点F.(1)求证:BD=B1F;(2)当旋转角等于30°时,AB与A1B1垂直吗?并说明理由;(3)根据图1直接判断命题“直角三角形中30°角所对的边等于斜边的一半”的真假真命题(填真命题或假命题);将图2中三角板ABC绕点C顺时针旋转至图3的位置,当AB ∥CB1时,请直接写出A1D与CD的数量关系:A1D=CD【解答】解:(1)由题意知,BC=BC1,∠B=∠B1,∠ACB=∠A1CB1=90°,由旋转知,∠A1CB=∠A CB1,在△BCD和△B1CF中,,∴△BCD≌△B1CF,∴BD=B1F;(2)AB与A1B1垂直,理由:∵旋转角为30°,∴∠ACA1=30°,∴∠B1CF=90°﹣30°=60°,∵∠B1=60°,∴∠B1FC=180°﹣∠B1﹣∠ACB1=60°,∴∠AFE=60°,∵∠A=30°,∴∠AEF=180°﹣∠A﹣∠AFE=90°,∴AB⊥A1B1;(3)由题意知,∠BAC=∠B1AC=30°,∠B=∠B1,∴△ABA1是等边三角形,∴BB1=AB,∵BB1=B C+B1C=2BC,∴BC=AB,∴直角三角形中30°角所对的边等于斜边的一半,故答案为:真命题;∵AB∥CB1,∴∠ACB1=∠A=30°,∴∠ACD=90°﹣30°=60°,∴∠ADC=180°﹣∠A﹣∠ACD=90°,在Rt△ACD中,∠A=30°,∴CD=AC(直角三角形中30°角所对的边等于斜边的一半),∵AC=A1C,∴CD=A1C,∵A1D+CD=A1C,∴A1D=CD,故答案为:A1D=CD.。
可编辑修改精选全文完整版2020年八年级数学上期中试卷及答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .72.已知一个等腰三角形一内角的度数为80,则这个等腰三角形顶角的度数为( )A .100B .80C .50或80D .20或80 3.下列关于x 的方程中,是分式方程的是( ).A .132x =B .12x =C .2354x x ++=D .3x -2y =14.下列分式中,最简分式是( )A .B .C .D .5.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 6.分式可变形为( ) A . B . C . D .7.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是( )A .7B .8C .6D .5 8.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A .40ºB .50ºC .60ºD .70º9.下列各式能用平方差公式计算的是( )A .(3a+b)(a-b)B .(3a+b)(-3a-b)C .(-3a-b)(-3a+b)D .(-3a+b)(3a-b) 10.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1)11.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( ) A .3 B .2 C .1D .1- 12.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .7二、填空题13.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是_____cm .14.当x =_____时,分式293x x -+的值为零. 15.关于x 的分式方程22kx 3x 1x 1x 1+=--+会产生增根,则k =_____. 16.已知关于 x 的方程2x m x --= 2的解是非负数,则 m 的取值范围是_________. 17.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________. 18.如图,已知△ABC 的周长为27cm ,AC =9cm ,BC 边上中线AD =6cm ,△ABD 周长为19cm ,AB=__________19.如图所示,AB ∥CD ,∠ABE=66°,∠D=54°,则∠E 的度数为_____度.20.如图,AD 是ABC ∆的角平分线,DF AB ⊥,垂足为F ,DE DG =,ADG ∆和EFD ∆的面积分别为50和4.5,则AED ∆的面积为_________.三、解答题21.如图,某校准备在校内一块四边形ABCD 草坪内栽上一颗银杏树,要求银杏树的位置点P 到边AB ,BC 的距离相等,并且点P 到点A ,D 的距离也相等,请用尺规作图作出银杏树的位置点P (不写作法,保留作图痕迹).22.先化简,再求值:222444211x x x x x x x ⎛⎫-++++-÷ ⎪--⎝⎭,其中x 满足2430x x -+=. 23.解方程:.24.如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E .(1)若BC =5,求△ADE 的周长.(2)若∠BAD +∠CAE =60°,求∠BAC 的度数.25.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等. (1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.D解析:D【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】()1若等腰三角形一个底角为80,顶角为180808020--=;()2等腰三角形的顶角为80.因此这个等腰三角形的顶角的度数为20或80.故选D.【点睛】.解答此类题目的关键是要注意分类讨本题考查等腰三角形的性质及三角形的内角和定理论,不要漏解.3.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.4.A解析:A【解析】【分析】根据最简分式的定义:分子和分母中不含公分母的分式,叫做最简分式,对四个选项中的分式一一判断即可得出答案.【详解】解:A.,分式的分子与分母不含公因式,是最简分式; B.,分式的分子与分母含公因式2,不是最简分式; C.,分式的分子与分母含公因式x -2,不是最简分式; D.,分式的分子与分母含公因式a ,不是最简分式,故选A.【点睛】本题考查了最简分式的概念.对每个分式的分子和分母分别进行因式分解是解题的关键. 5.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=,90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.6.B解析:B【解析】【分析】根据分式的基本性质进行变形即可.【详解】=.故选B.【点睛】此题主要考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.7.B解析:B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.8.D解析:D【解析】【分析】依据平行线的性质,即可得到∠1=∠DFG=40°,再根据三角形外角性质,即可得到∠2的度数.【详解】∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选D.本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.9.C解析:C【解析】【分析】利用平方差公式的逆运算判断即可.【详解】解:平方差公式逆运算为:()()22a b a b a b +-=- 观察四个选项中,只有C 选项符合条件.故选C.【点睛】此题重点考查学生对平方差公式的理解,掌握平方差公式的逆运算是解题的关键.10.B解析:B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.11.A解析:A【解析】【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可.由题意得:22(3)(1)3x x x ---+=242x x -+,∵2410x x --=,∴241x x -=,∴原式=242x x -+=1+2=3.故选:A.【点睛】本题主要考查了整式的化简求值,整体代入是解题关键. 12.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B .【点睛】本题考查的知识点为:从n 边形的一个顶点出发,可把n 边形分成(n-2)个三角形.二、填空题13.15【解析】【分析】题目给出等腰三角形有两条边长为6cm 和3cm 而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】当腰为3cm 时3+3=6不能构成三角形因此这种解析:15【解析】【分析】题目给出等腰三角形有两条边长为6cm 和3cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当腰为3cm 时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm .故填15.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.14.3【解析】【分析】分式的值为零的条件:分子为0分母不为0据此即可求出x 的值【详解】∵分式的值为零∴x2-9=0且x+3≠0解得:x=3故答案为:3【点睛】本题考查了分式的值为零的条件若分式的值为零需解析:3【分析】分式的值为零的条件:分子为0,分母不为0,据此即可求出x 的值.【详解】 ∵分式293x x -+的值为零, ∴x 2-9=0,且x+3≠0,解得:x=3,故答案为:3【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出k 的值【详解】方程两边都乘(x+1)(x ﹣1)得2(x+1)+kx =3(x ﹣解析:﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k 的值.【详解】方程两边都乘(x +1)(x ﹣1),得2(x +1)+kx =3(x ﹣1),即(k ﹣1)x =﹣5,∵最简公分母为(x +1)(x ﹣1),∴原方程增根为x =±1, ∴把x =1代入整式方程,得k =﹣4.把x =﹣1代入整式方程,得k =6.综上可知k =﹣4或6.故答案为﹣4或6.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.且【解析】【分析】先求出分式方程的解再根据分式方程的解是非负数以及分式方程的增根列出关于m 的不等式进而即可求解【详解】∵2∴x=4-m∵关于x 的方程2的解是非负数∴4-m≥0即:又∵x≠2∴4- 解析:4m ≤且2m ≠【解析】【分析】先求出分式方程的解,再根据分式方程的解是非负数以及分式方程的增根,列出关于m 的不等式,进而即可求解.【详解】 ∵2x m x --= 2, ∴x=4-m , ∵关于 x 的方程2x m x --= 2的解是非负数, ∴4-m ≥0,即:4m ≤,又∵x ≠2,∴4-m ≠2,即:2m ≠,综上所述:4m ≤且2m ≠.故答案是:4m ≤且2m ≠.【点睛】本题主要考查根据分式方程解的情况求参数,掌握解分式方程的步骤以及分式方程的增根的定义,是解题的关键.17.540°【解析】【分析】【详解】根据多边形的外角和为360°因此可以求出多边形的边数为360°÷72°=5根据多边形的内角和公式(n-2)·180°可得(5-2)×180°=540°考点:多边形的内解析:540°【解析】【分析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和18.cm 【解析】【分析】【详解】∵AD 是BC 边上的中线∴BD=CD∵△ABC 的周长为27cmAC =9cm∴AB+BC=27-9=18cm∴AB+2BD=18cm∵AD=6cm△ABD 周长为19cm∴AB解析:cm .【解析】【分析】【详解】∵AD 是BC 边上的中线,∴BD=CD ,∵△ABC 的周长为27cm ,AC =9cm ,∴AB+BC=27-9=18 cm ,∴AB+2BD=18 cm ,∵AD =6cm ,△ABD 周长为19cm ,∴AB+BD=19-6=13 cm ,∴BD=5 cm ,∴AB=8 cm ,故答案为8 cm .19.12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答解:∵AB∥CD∴∠BFC=∠ABE=66°在△EFD 中利用三角形外角等于不相邻的两个内角的和得到∠E=∠BFC﹣∠D=1解析:12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答.解:∵AB ∥CD ,∴∠BFC=∠ABE=66°,在△EFD 中利用三角形外角等于不相邻的两个内角的和,得到∠E=∠BFC ﹣∠D=12°. 20.41【解析】【分析】作垂足为M 可得出由此推出从而得出【详解】解:作垂足为M ∵是的角平分线∴∴∴故答案为:41【点睛】本题考查的知识点是与角平分线有关的计算根据角平分线的性质得出是解此题的关键解析:41【解析】【分析】作DM AC ⊥,垂足为M ,可得出,ADF ADM DFE DMG ≅≅,由此推出50 4.545.5ADM ADF ADG EFD SS S S ==-=-=,从而得出 45.5 4.541AED ADF EFD S S S =-=-=.【详解】解:作DM AC ⊥,垂足为M ,∵AD 是ABC ∆的角平分线,DF AB ⊥,∴,ADF ADM DFE DMG ≅≅,∴50 4.545.5ADM ADF ADG EFD SS S S ==-=-=, ∴45.5 4.541AED ADF EFD S S S =-=-=.故答案为:41.【点睛】本题考查的知识点是与角平分线有关的计算,根据角平分线的性质得出,ADF ADM DFE DMG ≅≅是解此题的关键.三、解答题21.见解析【解析】分析:首先作出∠ABC 的角平分线进而作出线段AD 的垂直平分线,即可得出其交点P 的位置.详解:如图所示:P 点即为所求.点睛:本题主要考查了应用设计与作图,正确掌握角平分线以及线段垂直平分线的性质是解题的关键.22.12x +;15【解析】【分析】 先算括号里面的,再算除法,最后求出a 的值代入进行计算即可.【详解】 原式()22224321112x x x x x x x x ⎛⎫-+-+--=+⋅ ⎪--+⎝⎭ ()2211122x x x x x +-=⋅=-++.解方程2430x x -+=得3x =或1x =(舍去).代入化简后的式子得原式1125x ==+. 【点睛】 此题考查分式的化简求值,掌握运算法则是解题关键23.无解.【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:去分母得:15x-12=4x+10-3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.考点:解分式方程.24.(1)5;(2)120°【解析】【分析】(1)根据线段垂直平分线的性质得到DA =DB ,EA =EC ,则△ADE 的周长=AD +DE +EA =BC ,即可得出结论;(2)根据等边对等角,把∠BAD +∠CAE =60°转化为∠B +∠C =60°,再根据三角形内角和定理即可得出结论.【详解】(1)∵边AB 、AC 的垂直平分线分别交BC 于D 、E ,∴DA =DB ,EA =EC ,∴△ADE 的周长=AD +DE +AE =DB +DE +EC =BC =5;(2)∵DA =DB ,EA =EC ,∴∠DAB =∠B ,∠EAC =∠C ,∴∠BAD +∠CAE =∠B +∠C =60°,∴∠BAC =180°-(∠B +∠C )=180°-60°=120°.【点睛】本题考查了等腰三角形的判定与性质、线段的垂直平分线的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解答本题的关键. 25.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y本科普书.依题意得550×8+12y≤10000,解得24663y ,∵y为整数,∴y的最大值为466∴至多还能购进466本科普书.。
广东省揭阳市2020年八年级上学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A . AB=2BFB . ∠ACE= ∠ACBC . AE=BED . CD⊥BE2. (2分) (2017八上·江津期中) 如图,王师傅用4根木条钉成一个四边形木架,要使这个木架不变形,他至少要再钉上木条的根数是()A . 3B . 2C . 1D . 03. (2分) (2020七下·江阴期中) 如图,在△ABC中,点D在BC上,点E、F在AB上,点G在DF的延长线上,且∠B=∠DFB,∠G=∠DEG,若∠BEG=29°,则∠BDE的度数为()A . 61°B . 58°C . 65.5°D . 59.5°4. (2分)如图,已知∠A=∠D,∠1=∠2,那么要使△ABC≌△DEF,可添加条件()A . ∠E=∠BB . ED=BCC . AB=EFD . AF=DC5. (2分)如图,△ABC中,点D在线段BC上,且∠BAD=∠C,则下列结论一定正确的是()A . A B2=AC•BDB . AB•AD=BD•BCC . AB2=BC•BDD . AB•AD=BD•CD6. (2分) (2017八下·丰台期末) 矩形ABCD中,对角线AC , BD相交于点O ,如果∠ABO=70°,那么∠AOB 的度数是()A . 40°B . 55°C . 60°D . 70°7. (2分)(2020·无锡模拟) 下列图案中,既是轴对称图形又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个8. (2分)抛物线y=x2+mx+1的顶点在坐标轴上,则m的值()A . 0B . ﹣2C . ±2D . 0,±29. (2分) (2019八下·下陆期末) 如图,在平行四边形中,是边上的中点,是边上的一动点,将沿所在直线翻折得到 ,连接,则的最小值为()A .B .C .D .10. (2分)如图所示,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A . 30°B . 25°C . 20°D . 15°二、填空题 (共5题;共5分)11. (1分) (2018九下·盐都模拟) 如图,在直角坐标系中,点 A、B 的坐标分别为(4,0),(0,2),将线段 AB 向上平移 m个单位得到A′B′,连接OA′.如果△OA′B′是以OB′为腰的等腰三角形,那么 m 的值为________.12. (1分) (2019七下·洛川期末) 已知∠AOB,以点O为圆心,适当的长为半径画弧,交OA于点M,交OB 于点N;分别以点M,N为圆心,大于 MN的长为半径画弧,两弧在∠AOB的内部相交于点C;则射线OC为∠AOB 的平分线.依据是________13. (1分) (2017八上·南宁期中) 如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是________.14. (1分) (2017八上·临颍期中) 如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12 ,则图中阴影部分的面积是________15. (1分) (2017九上·东莞开学考) 如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P 为四边形ABCD边上的任意一点,当∠BPC=30°时,CP的长为________.三、解答题 (共8题;共55分)16. (5分) (2018七下·龙岩期中) 已知,,垂足分别为D、G,且,求证.17. (5分) (2019七下·封开期末) 如图,已知∠1=∠3,CD∥EF,试说明∠1=∠4.请将过程填写完整证明:∵∠1=∠3又∠2=∠3(________)∴∠1=________∴________∥________(________)又∵CD∥EF∴AB∥________∴∠1=∠4(________)18. (5分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.19. (5分) (2019八下·永康期末) 如图,平行四边形ABCD的对角线AC,BD相交于O,过点O的直线EF 分别交AB,CD于E,F,连结DE,BF.求证:四边形DEBF是平行四边形.20. (5分) (2019八上·云安期末) 如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.21. (10分)(2019·江西模拟)(1)我们把邻边之比为:1的矩形叫做标准矩形.如图,已知矩形ABCD,请用尺规作图作出标准矩形ABPQ,使得点P、Q分别在线段BC、AD上.(保留作图痕迹,不要求写作法)(2)若AB=2 ,则(1)中的矩形ABPQ的面积为________.22. (10分)(2019·石家庄模拟) 如图l0,∠BCD=90°,且BC=DC,直线PQ经过点D,设∠PDC=α(45°<a<135°),BA⊥P于点A.将射线CA绕点C按逆时针方向旋转90°,与直线PQ交予点E。
2020年八年级数学上期中试卷(带答案)一、选择题1.若等腰三角形的两条边长分别为2和4,则该等腰三角形的周长为()A.6B.8C.10D.8或102.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°4.如果(x+1)(2x+m)的乘积中不含x的一次项,则m的值为()A.2 B.-2 C.0.5 D.-0.55.如图,在等腰 ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.60°B.55°C.50°D.45°6.如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,那么CD的长是()A.2B.3C.1D.1.57.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.118.已知A=﹣4x2,B是多项式,在计算B+A时,小马虎同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A .﹣8x 3+4x 2B .﹣8x 3+8x 2C .﹣8x 3D .8x 39.如图,在ABC ∆中,4AB =,3AC =,30BAC ∠=︒,将ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,连接1BC ,则1BC 的长为( )A .3B .4C .5D .6 10.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒ 11.2019年5月24日,中国·大同石墨烯+新材料储能产业园正式开工,这是大同市争当能源革命“尖兵”的又一重大举措.石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,石墨烯的理论厚度为0.00000000034米,这个数据用科学记数法可表示为( ) A .90.3410-⨯B .113.410-⨯C .103.410-⨯D .93.410-⨯ 12.若二次三项式2249x mxy y ++是一个完全平方式,则m 的可能值是( )A .6±B .12C .6D .12±二、填空题13.已知射线OM.以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB=________(度)14.使1 2x +有意义的x 取值范围是_____;若分式3 3x x --的值为零,则x =_____;分式2211 x x x x-+,的最简公分母是_____. 15.如果关于x 的分式方程m 2x 1x 22x-=--有增根,那么m 的值为______. 16.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________.17.若226m n -=-,且3m n -=-,则m n + =____.18.若分式15x -有意义,则实数x 的取值范围是_______. 19.已知13a a +=,则221+=a a _____________________; 20.如图,△ABC 中.点D 在BC 边上,BD=AD=AC ,E 为CD 的中点.若∠CAE=16°,则∠B 为_____度.三、解答题21.已知:如图,∠ABC,射线BC 上一点D ,求作:等腰△PBD,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等.(不写作法,保留作图痕迹)22.先化简,再求值:222444211x x x x x x x ⎛⎫-++++-÷ ⎪--⎝⎭,其中x 满足2430x x -+=. 23.已知 a m =2,a n =4,a k =32(a≠0).(1)求a 3m+2n ﹣k 的值;(2)求k ﹣3m ﹣n 的值.24.将下列多项式分解因式:(1)22()2()a b a b c c ++++.(2)24()a a b b -+.(3)22344xy x y y --.(4)()2224116a a +-.25.如图,点O 是线段AB 和线段CD 的中点.(1)求证:△AOD ≌△BOC ;(2)求证:AD ∥BC .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形的三边关系,求出第三边的范围,再范围内取值使得三角形为等腰三角形,再计算周长即可得到答案;【详解】解:∵等腰三角形的两条边长分别为2和4,假设第三边长为x ,则有:4242x -<<+,即:26x <<,又∵三角形为等腰三角形,两条边长分别为2和4,∴4x =,∴三角形的周长为:44210++=,故选C .【点睛】本题主要考查了三角形的三边关系和等腰三角形的性质,掌握三角形两边之差小于第三边、两边之和大于第三边以及等腰三角形的性质是解题的关键.2.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD 是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD 沿AE 折叠,∴△ADE≌△AFE, ∴∠DAE=∠EAF=12∠DAF=15°. 故选C .【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量. 3.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.4.B解析:B【解析】【分析】原式利用多项式乘以多项式法则计算,根据乘积中不含x的一次项,求出m的值即可.【详解】(x+1)(2x+m)=2x2+(m+2)x+m,由乘积中不含x的一次项,得到m+2=0,解得:m=-2,故选:B.【点睛】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.5.C解析:C【解析】【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO 垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.6.A解析:A【解析】【分析】在Rt△AEC中,由于CEAC=12,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【详解】解:在Rt△AEC中,∵CEAC=12,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=12AD=2.故选A.【点睛】本题考查了直角三角形的性质、三角形内角和定理、等边对等角的性质.解题的关键是得出∠1=30°.7.C解析:C【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断.【详解】设第三边长为x,则有7-3<x<7+3,即4<x<10,观察只有C 选项符合,故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键.8.C解析:C【解析】【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:-4x 2•B=32x 5-16x 4,∴B=-8x 3+4x 2∴A+B=-8x 3+4x 2+(-4x 2)=-8x 3故选C .【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.9.C解析:C【解析】【分析】由旋转性质得∠CAC 1=600,AC=AC 1=3,在Rt ⊿ABC 1中,BC 15==.【详解】因为ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,所以∠CAC 1=600,AC=AC 1=3所以∠BAC 1=∠BAC+∠CAC 1=300+600=900,所以,在Rt ⊿ABC 1中,BC 15==故选:C【点睛】考核知识点:旋转性质,勾股定理.运用旋转性质是关键.10.C解析:C【解析】【分析】根据多边形的内角和公式()2180n -•︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】Q 正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,Q 多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选C .【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.11.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】12.D解析:D【解析】【分析】根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】∵2222=(2)223(3)49x xy x m x y y y ±⨯⨯+++,∴12mxy xy =±,解得m=±12. 故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 二、填空题13.60【解析】【分析】首先连接AB 由题意易证得△AOB 是等边三角形根据等边三角形的性质可求得∠AOB 的度数【详解】连接AB 根据题意得:OB=OA=AB∴△AOB 是等边三角形∴∠AOB=60°故答案为:解析:60【解析】【分析】首先连接AB ,由题意易证得△AOB 是等边三角形,根据等边三角形的性质,可求得∠AOB 的度数.【详解】连接AB ,根据题意得:OB =OA =AB ,∴△AOB 是等边三角形,∴∠AOB =60°. 故答案为:60.【点睛】本题考查了等边三角形的判定与性质.此题难度不大,解题的关键是能根据题意得到OB =OA =AB .14.【解析】【分析】(1)令分母不为0即可;(2)令分子为0且分母不为0可得;(3)先对两个分式分母进行因式分解然后观察得出最简公分母【详解】(1)要使有意义则x+2≠0解得:x=2(2)分式的值为零则解析:x -2≠ x -3= 3x -x【解析】【分析】(1)令分母不为0即可;(2)令分子为0,且分母不为0可得;(3)先对两个分式分母进行因式分解,然后观察得出最简公分母.【详解】(1)要使12x +有意义 则x+2≠0解得:x=2(2)分式33x x --的值为零 则3=0x -,且x -3≠0解得:x=-3(3)∵221111 =(1)(1)x x x x x x x x =--++, ∴两个分式的最简公分母为:x(x-1)(x+1)=3x -x故答案分别为:x=2;x=-3;3x -x【点睛】本题考查分式有意义的条件、分式为0的条件以及最简公分母的求解,注意分式有意义的条件和为0的情况是有所区别的.15.-4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值让最简公分母确定可能的增根;然后代入化为整式方程的方程求解即可得到正确的答案【详解】解:去分母方程两边同时乘以 解析:-4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x 20-=,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【详解】 解:m 2x 1x 22x-=--, 去分母,方程两边同时乘以x 2-,得:m 2x x 2+=-,由分母可知,分式方程的增根可能是2,当x 2=时,m 422+=-,m 4=-.故答案为4-.【点睛】考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.540°【解析】【分析】【详解】根据多边形的外角和为360°因此可以求出多边形的边数为360°÷72°=5根据多边形的内角和公式(n-2)·180°可得(5-2)×180°=540°考点:多边形的内解析:540°【解析】【分析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和17.2【解析】【分析】将利用平方差公式变形将m-n=3代入计算即可求出m+n 的值【详解】解:∵m2-n2=(m+n )(m-n )=6且m-n=3∴m+n=2【点睛】此题考查了利用平方差公式因式分解熟练掌握解析:2【解析】【分析】将22m n -利用平方差公式变形,将m-n=3代入计算即可求出m+n 的值。
B ′C ′D ′O ′A ′O D C B A 第7题图 (第8题图) 2019-2020年八年级上学期第二次阶段考试(期中)数学试卷一、选择题:(每题3分,共24分)1、下列图形中,既是轴对称图形又是中心对称图形的是 ( )A 、 直角三角形B 、线段C 、 角D 、等腰梯形2、下列结论中错误的是 ( )A 、全等三角形对应边上的高相等B 、全等三角形对应边上的中线相等C 、两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等D 、两个直角三角形中,两个锐角相等,则这两个三角形全等3、到三角形三个顶点距离相等的是 ( )A 、三边高线的交点B 、三条中线的交点C 、三条垂直平分线的交点D 、三条内角平分线的交点 4、下列四组线段,以a 、b 、c 为三角形的三边,能组成直角三角形的是 ( )A 、B 、C 、D 、5、下列说法正确的是 ( )A 、-8是64的平方根,即B 、8是的算术平方根,即C 、±5是25的平方根,即± D、±5是25的平方根,即6、炮兵向敌方阵地开炮前需要确定 ( )A 、与敌方阵地的距离B 、与敌方阵地的方向角C 、与敌方阵地的距离和方向角D 、敌方阵地的人数7、请仔细观察用直尺和圆规作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 ( )A 、SASB 、ASAC 、AASD 、SSS(第14题图) 8、如图,在△ABC 中,AD 和BE 是高,∠ABE =45°,点F 是AB 的中点,AD 与FEBE 分别交于点G 、H ,∠CBE=∠BAD .下列结论:①FD=FE ;②AH=2CD ;③BC•AD=AE 2;④S △ABC =4S △ADF .其中正确的有 ( )A 、1个B 、2 个C 、3 个D 、4个二、填空题:(每小题3分,共10×3=30分)9、在、、、、(每两个5之间的8依次增加)、、中,无理数有 个。
2020年初二数学上期中试卷附答案一、选择题1.若等腰三角形的两条边长分别为2和4,则该等腰三角形的周长为( )A .6B .8C .10D .8或102.如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A .1个B .2个C .3个D .4个 3.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF=600,那么∠DAE 等于( )A .45°B .30 °C .15°D .60°4.如图,在ABC ∆中,90A ∠=o ,30C ∠=o ,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .8 5.具备下列条件的△ABC 中,不是直角三角形的是( ) A .∠A+∠B=∠CB .∠A=12∠B=13∠C C .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C6.一个多边形的每个内角均为108º,则这个多边形是( )A .七边形B .六边形C .五边形D .四边形7.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x 套运动服,根据题意可列方程为A .()16040018x 120%x ++=B .()16040016018x 120%x-++=C .16040016018x 20%x-+= D .()40040016018x 120%x -++= 8.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A .1 B .2C .8D .11 9.若二次三项式2249x mxy y ++是一个完全平方式,则m 的可能值是( )A .6±B .12C .6D .12±10.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .B .C .D .11.如图,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .△AA 1P 是等腰三角形B .MN 垂直平分AA 1,CC 1C .△ABC 与△A 1B 1C 1面积相等D .直线AB 、A 1B 的交点不一定在MN 上12.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE =CD ,则△ADE 的形状是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状二、填空题13.已知等腰三角形的两边长分别为3和5,则它的周长是____________14.若(42)(3)x m x -+的乘积中不含x 的一次项,则常数m =_________.15.使1 2x +有意义的x 取值范围是_____;若分式3 3x x --的值为零,则x =_____;分式2211 x x x x-+,的最简公分母是_____. 16.已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__.17.关于x 的分式方程22kx 3x 1x 1x 1+=--+会产生增根,则k =_____. 18.因式分解:a 3﹣2a 2b+ab 2=_____. 19.若实数,满足,则______.20.若2x+5y ﹣3=0,则4x •32y 的值为________.三、解答题21.如图,已知△ABC 中,AB =AC =12厘米,BC =9厘米,AD =BD =6厘米.(1)如果点P 在线段BC 上以3厘米秒的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,1秒钟时,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,点P 运动到BC 的中点时,如果△BPD ≌△CPQ ,此时点Q 的运动速度为多少.(2)若点Q 以(1)②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?22.因式分解:(1)2a 2﹣4a ;(2)()()229m n m n --+.23.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.(1)该商家购进的第一批衬衫是多少件;(2)若两批衬衫都按每件150元的价格销售,则两批衬衫全部售完后的利润是多少元.24.列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m 3,求该市今年居民用水的价格.25.已知:如图,//AD BC ,DB 平分ADC ∠,CE 平分BCD ∠,交AB 于点E ,BD 于点O ,求证:点O 到EB 与ED 的距离相等.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据三角形的三边关系,求出第三边的范围,再范围内取值使得三角形为等腰三角形,再计算周长即可得到答案;【详解】解:∵等腰三角形的两条边长分别为2和4,假设第三边长为x ,则有:4242x -<<+,即:26x <<,又∵三角形为等腰三角形,两条边长分别为2和4,∴4x =,∴三角形的周长为:44210++=,故选C .【点睛】本题主要考查了三角形的三边关系和等腰三角形的性质,掌握三角形两边之差小于第三边、两边之和大于第三边以及等腰三角形的性质是解题的关键.2.C解析:C【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.4.C解析:C【解析】【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.5.D解析:D【解析】【分析】根据三角形内角和为180°,直接进行解答.【详解】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形, D选项中∠A=2∠B=3∠C,即3∠C +32∠C +∠C =180°,∠C =36011,三个角没有90°角,故不是直角三角形.“点睛”本题考查三角形内角和定理以及直角的判定条件,熟知三角形内角和是180°是解答此题的关键.6.C解析:C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.7.B解析:B【解析】试题分析:由设原计划每天加工x 套运动服,得采用新技术前用的时间可表示为:160x天,采用新技术后所用的时间可表示为:()400160120%x -+天。
2020年八年级上学期数学期中考试试卷(II )卷
一、单选题 (共6题;共12分)
1. (2分)下列平面图形,既是中心对称图形,又是轴对称图形的是()
A . 等腰三角形
B . 正五边形
C . 平行四边形
D . 矩形
2. (2分)一个多边形的内角和是720°,这个多边形的边数是()
A . 4
B . 5
C . 6
D . 7
3. (2分)以下列各组线段为边,能组成三角形的是()
A . 2cm,3cm,5cm
B . 5cm,6cm,10cm
C . 1cm,1cm,3cm
D . 3cm,4cm,9cm
4. (2分)▱ABCD的对角线AC的长为10 cm,∠CAB=30°,AB的长为6 cm,则▱ABCD的面积为()
A . 60 cm2
B . 30 cm2
C . 20 cm2
D . 16 cm2
5. (2分)如图,△ABC≌△DEF,∠A=50°,∠E=100°,则∠F的度数是()
A .
B .
C .
D .
6. (2分)若等腰三角形的底角为15°,则一腰上的高是腰长的()
A .
B .
C . 1倍
D . 2倍
二、填空题 (共8题;共8分)
7. (1分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是________.
8. (1分)如图,已知∠ABD=∠CBD,若以“SAS”为依据判定△ABD≌△CBD,还需添加的一个条件是________.
9. (1分)如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管________根.
10. (1分)如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为________°
11. (1分)点A(-5,-6)与点B(5,-6)关于________对称.
12. (1分)计算: ________.
13. (1分)已知:在平行四边形ABCD中,AB=8cm,AD=13cm,∠ABC的平分线交AD 于点E,交CD的延长线于点F,则DF=________cm.
14. (1分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是BC边上的点,CD= 3,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,PE+PB
的最小值 ________
三、解答题 (共12题;共94分)
15. (5分)先化简再求值:当5m-3n=-2时,求代数式2(m-n)+4(2m-n)+2的值.
16. (5分)如图,已知∠1=∠2,∠3=∠4,∠5=∠A,试说明:BE∥CF.
完善下面的解答过程,并填写理由或数学式:
解:
∵∠3=∠4(已知)
∴AE∥()
∴∠EDC=∠5()
∵∠5=∠A(已知)
∴∠EDC=________()
∴DC∥AB()
∴∠5+∠ABC=180°()
即∠5+∠2+∠3=180°
∵∠1=∠2(已知)
∴∠5+∠1+∠3=180°()
即∠BCF+∠3=180°
∴BE∥CF().
17. (5分)如图,点A、B、C、D在一条直线上,CE与BF交于点G ,∠A=∠1,CE∥DF ,求证:∠E=∠F
18. (5分)如图,已知△ABC中,∠ABC和∠ACB的平分线BD、CE相交于点O,且∠A=60°,求∠BOC的度数.
19. (5分)已知,如图:A、E、F、B在一条直线上,AE=BF ,∠C=∠D ,∠A=∠B ,求证:△ACF≌△BDE .
20. (2分)如图所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A 为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于 EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点
D.则∠ADC的度数为________.
21. (10分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求∠F的度数;
(2)若CD=2,求DF的长.
22. (10分)如图,已知D为△ABC的边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°.
(1)求∠B的度数.
(2)求∠ACD的度数.
23. (11分)如图,已知,,.
(1)作关于x轴对称的;
(2)的面积 ________ 边上的高 ________;
(3)在x轴上有一点P,使最小,此时的最小值 ________.
24. (6分)在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.
(1)如图①,连结CD,AE,求证:CD=AE;
(2)如图②,若AB=1,BC=2,求DE的长;
(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2 ,试求∠DEB的度数.
25. (15分)如图,在平面直角坐标系中,A(a,b),B(c,0),|a-3|+(2b-c)2+ =0.
(1)求点A,B的坐标;
(2)如图,点C为x轴正半轴上一点,且OC=OA,点D为OC的中点,连AC,AD,请探索AD+CD与 AC之间的大小关系,并说明理由;
(3)如图,过点A作AE⊥y轴于E,F为x轴负半轴上一动点(不与(-3,0)重合),G在EF延长线上,以EG为一边作∠GEN=45°,过A作AM⊥x轴,交EN于点M,连FM,当点F在x轴负半轴上移动时,式子的值是否发生变化?若变化,求出变化的范围;若不变化,请求出其值并说明理由.
26. (15分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在
BC边上,且BE=BD,连结AE、DE、DC.
(1)求证:△ABE≌△CBD;
(2)若∠CAE=30°,求∠BDC的度数.
参考答案一、单选题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共8题;共8分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
三、解答题 (共12题;共94分) 15-1、
16-1、
17-1、
18-1、
19-1、20-1、
21-1、21-2、
22-1、22-2、
23-1、23-2、23-3、
24-1、
24-2、
24-3、25-1、
25-2、25-3、
26-1、26-2、。