EP 0
Cm
h
mg 1 2 hm2 v1 2I11 21 2I22 2
不打滑:有 vR1 1R2 2
考虑到: I11 2m 1R1 2 I21 2m 2R2 2
得 v2
mgh
m1 m2 2m
解二:应用牛顿第二定律和转动定律
A: T1R1I11
(1)
m1, R1
A
T O 1
1
T1 m2, R2
解:在剪断的瞬间:
Fix0, FiymgT
acy
mg T m
(质心运动定理)
T
L 2
1 12
mL2
(转动定理)
acy
L
2
解得:
a
cy
3 4
g
F
1 4
mg
例12.如图,知A: m,l,质量均匀,开始时水平静止
B:m , , A竖直时被碰,然后
滑行距离S.
m
A
l
O
求 :碰后A的质心可达高度h.
第7章 刚体力学习题课
例2.均匀细棒 oA 可绕通过其一端 o 而与棒垂直
的水平固定光滑轴转动,如图所示.今使棒从水
平位置由静止开始自由下落,在棒摆动到竖直位
置的过程中,下列情况哪一种说法是正确的?
( A)
(A) 角速度从小到大,角加速度从大到小.
(B) 角速度从小到大,角加速度从小到大.
(C) 角速度从大到小,角
aR
I 1 MR2 2
(4)
m2
M,R
T1 m1
m1g T 2
m1
M,R
T1
m2
T2
联立方程,求解得:a Nhomakorabeam1g