7-条件平差
- 格式:ppt
- 大小:1.06 MB
- 文档页数:67
条件平差习题一、重点内容及难点1. 水准网条件平差● 条件方程列法 ● 权的确定方法2. 边角网条件平差● 条件方程个数确定方法● 条件方程类型:图形条件 极条件 边条件 方位角条件 基线条件3. 条件方程线性化11112ˆ()()()()()()()ˆˆˆˆnn i i ni f f f f f Lf L V V V f L V L L L L =∂∂∂∂=++++=+∂∂∂∂∑● 极条件方程及线性化● 符合三角网条件方程4. 理解条件平差的函数模型和随机模型● 明确必要起算数据、必要观测数据、多余起算数据和多余观测数据的概念; ● 条件平差的出发点:观测值的平差值之间应该存在的函数关系式; ● 随机模型的含义和作用二、公式汇编及条件平差计算步骤1. 根据实际问题,确定出总观测值的个数n 、必要观测值的个数t及多余观测个数r = n – t ,2. 列出条件平差值方程,对其线性化进一步列出改正数条件方程平差值条件方程 ˆ()0F L=改正数条件方程 0=+W AV3. 据具体情况确定观测值的权阵;)(21n p p p diag P =4. 组成法方程式,求出联系数;W NK =1K N W -=-5. 算出观测值改正数和观测值的平差值Lˆ; 1T V P A K -= V L L+=ˆ 6. 检查平差计算的正确性,将平差值L ˆ代入平差值条件方程式,检验平差值是否满足应有的条件关系式;0)ˆ(=LF 7. 计算单位权方差和单位权中误差;rPV V T =20ˆσ8. 列出平差值函数关系式,计算平差值函数及其精度。
对平差值函数全微分,应用广义传播律计算平差值函数的协因数,进一步计算出平差值函数的方差、协方差。
12ˆˆˆˆ(,,,)nf L L L ϕ= ˆˆˆˆTLL Q fQ f ϕϕ= 2ˆˆˆˆ0ˆD Q ϕϕϕϕσ=三、思考题:1.发现误差的必要条件是什么?2. 几何模型的必要元素与什么有关?为什么?3. 测量平差的函数模型和随机模型分别表示哪些量之间的什么关系?4. 什么叫必要起算数据?各类控制网的必要起算数据是如何确定的?5. 条件平差中求解的未知量是什么?能否由条件方程直接求得改正数?6.设某一平差问题的观测个数为n ,必要观测数为t ,若按条件平差法进行平差,其条件方程,法方程及改正数方程的个数各为多少?7. 通常用什么公式将非线性函数模型转化为线性函数模型? 8. 在条件平差中,能否根据已列出的法方程计算单位权方差? 9. 条件平差中的精度评定主要是解决哪些方面的问题?四、计算题5.1 有水准网如下图P1点位已知点Hp1=50.002米,P2、P3、P4,为待定点,观测六条线路的线路长度和高差为:S1= 1.0km h1=1.576m,S2=1.5 km h2=2.215m,S3=1.5 km h3=-3.800m,S4=1.0 km h4=0.871m,S5=2.0 km h5=-2.438m,S6= 2.0 km h6=-1.350m。
§9.1 条件平差原理在条件观测平差中,以n 个观测值的平差值1ˆ⨯n L 作为未知数,列出v 个未知数的条件式,在min =PV V T 情况下,用条件极值的方法求出一组v 值,进而求出平差值。
9.1.1基础方程和它的解设某平差问题,有n 个带有相互独立的正态随机误差的观测值 ,其相应的权阵为 , 它是对角阵,改正数为 ,平差值为 。
当有r 个多余观测时,则平差值 应满足r 个平差值条件方程为:⎪⎪⎭⎪⎪⎬⎫=++++=++++=++++0ˆˆˆ0ˆˆˆ0ˆˆˆ221122112211οοοr L r L r L r b L b L b L b a L a L a L a n n n n n n (9-1) 式中i a 、i b 、…i r (i =1、2、…n )——为条件方程的系数;0a 、0b 、…0r ——为条件方程的常项数以ii i v L L +=ˆ(i =1、2、…n )代入(9-1)得条件方程(9-2)式中a w 、b w 、……r w 为条件方程的闭合差,或称为条件方程的不符值,即(9-3) 令⎪⎪⎪⎪⎪⎭⎫⎝⎛=⨯n n n n r r r r b b b a a a A212121⎪⎪⎭⎪⎪⎬⎫++⋅⋅⋅++=++⋅⋅⋅++=++++=022110221102211r L r L r L r w b L b L b L b w a L a L a L a w n n n n n b n n a ⎪⎪⎭⎪⎪⎬⎫=++⋅⋅⋅++=++⋅⋅⋅++=++⋅⋅⋅++000221122112211r n n b n n a n n w v r v r v r w v b v b v b w v a v a v a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯n n L L L L 211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯n n L L L L ˆˆˆˆ2111⨯n L nn P ⨯1⨯n V 1ˆ⨯n L 1ˆ⨯n L则(9-1)及(9-2)上两式的矩阵表达式为0ˆ0=+A LA (9-4) 0=+W AV (9-5)上改正数条件方程式中V 的解不是唯一的解,根据最小二乘原理,在V 的无穷多组解中,取PV V T = 最小的一组解是唯一的,V 的这一组解,可用拉格朗日乘数法解出。
平差知识点总结(总10页) -CAL-FENGHAI.-(YICAI)-CompanY One 1-CAL-本页仅作为文档封面,使甬请直接删除测量平差知识点观测误差包括:粗差、系统误差、偶然误差。
粗差:即粗大误差,或者说是一种大量级的误观测差,是由观测过程中的差错造成的。
发现粗差的方法:进行必要的重复测量或多余观测,采用必要而又严格的检核、验算等,发现后舍弃或重测。
系统误差:在相同条件下进行一系列观测,如果误差在大小、符号表现出一致性,或者在观测过程中按一定的规律变化,或者为一常数,这种误差称为系统误差。
消除或削弱的方法:采取合理的操作程序(正、倒镜,中间法,对向观测等);用公式改正,即加改正裁(如钢尺量距时的尺长误差等)。
偶然误差:在相同条件下进行一系列观测,如果误差在大小、符号上表现出偶然性,即就单个误差而言,该误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律,这种误差称为偶然误差,或者随机误差。
采臥措施:处理带仔偶然误差的观测值,就是木课程的内容,也叫做测量平差。
偶然谋差又称随机误差,有以I、•四个特性:1)一定观测条件下,误差绝对值有一泄限值(有限性);2)绝对•值较小的课差比绝对值较人的课差出现概率人(渐降性):3)绝对值相等的正负误差出现概率相同(对称性);4)偶然谋差的数学期望为零(抵偿性)。
衡量精度的指标有五个,分别眉中矗、平均矗、或然i灵差、极限i灵差以及相对中谋差。
其中中矗和极限误差以及相对中保差是工程測量中常用的指标。
5、相对谋差颠差、屮促差、极限促差等指标,对于菜些观测结果,有时还•侮全表达观测结果的好坏,例如,分别丈1000m及500⑴的两段距离,它们的中课差均为±2cn】,虽然两者■的中误差相同,但就M位长度而言,两者精度并彳、相同。
显然询耆的郴对蒂度比后者耍高。
一般:而言,一些与长度有关的观测俺或其函数值,单纯用中误苣还不能区分出蒂度的高低,所以常用相对课差。
第一章绪论第二、三章全书的基础知识第四章介绍测量平差理论第五、六、七、八章 4种平差方法第九章各种平差方法的总结第十章讨论点位精度第十一章统计假设检验的知识第十二章近代平差概论根据本科教学大纲的要求,重点讲解第二章~第八章以及第十章的内容。
二、如何学好测量平差1. 要有扎实的数学基础。
只有牢固地把握了高等数学,线性代数和概率与数理统计等课程的知识才能学好测量平差,因此课前要做到预习,对与以上三门课程有关内容进行温习,只有如此才能听懂这一节课。
2. 听课时弄清解决问题的思路,掌握公式推导的方法以及得到的结论,培养独立思考问题和解决问题的能力。
3. 课后及时复习并完成一定数量的习题(准备A、B两个练习本),从而巩固课堂所学的理论知识。
第一章绪论本章要紧说明观测误差的产生和分类,测量平差法研究的内容和本课程的任务。
第二章误差散布与精度指标全章共分5节,是本课程的重点内容之一。
重点:偶然误差的规律性,精度的含义以及衡量精度的指标。
难点:精度、准确度、精确度和不确定度等概念。
要求:弄懂精度等概念;深刻理解偶然误差的统计规律;牢固掌握衡量精度的几个指标。
第三章协方差传播律及权全章共分7节,是本课程的重点内容之一。
重点:协方差传播律,权与定权的常用方法,以及协因数传播律。
难点:权,权阵,协因数和协因数阵等重要概念的定义,定权的常用方法公式应用的条件,以及广义传播律(协方差传播律和协因数传播律)应用于观测值的非线性函数情况下的精度评定问题。
要求:通过本章的学习,弄清协因数阵,权阵中的对角元素与观测值的权之间的关系;能牢固地掌握广义传播律和定权的常用方法的全部公式,并能熟练地应用到测量实践中去,解决各类精度评定问题。
第四章平差数学模型与最小二乘原理全章共分5节。
重点:测量平差的基本概念,四种基本平差方法的数学模型和最小二乘原理。
难点:函数模型的线性化,随机模型。
要求:牢固掌握本章的重点内容;深刻理解最小二乘原理中“最小”的含义;关于较简单的平差问题,能熟练地写出其数学模型。
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
测量平差公式测量平差这玩意儿,在咱们的学习里那可真是个有点头疼但又特别重要的存在。
先来说说啥是测量平差。
简单讲,就是咱们在测量的时候,不可能做到百分百准确,总会有点误差。
那咋办呢?这时候测量平差公式就派上用场啦。
它能帮咱们把这些不太准的数据变得更靠谱,更接近真实值。
就拿我之前带学生出去搞实地测量的事儿来说吧。
那是一个阳光明媚的周末,我带着一群充满好奇和热情的学生来到了学校附近的一块小空地。
我们的任务是测量这块地的面积。
同学们拿着尺子、全站仪,那叫一个兴奋,都迫不及待地想大展身手。
一开始,大家都信心满满,觉得这不是啥难事。
可真操作起来,问题就来了。
有的同学测量的数据和其他人差了不少,这可把大家给急坏了。
这时候,我就跟他们说:“别慌,咱们这就用上测量平差公式来解决问题。
”测量平差公式里有个最小二乘法,这可是个关键的部分。
它的原理就是让咱们测量得到的数据和真实值之间的误差平方和达到最小。
比如说,我们测量了一个长度好几次,得到了几个不同的值,像10.1 米、10.2 米、9.9 米。
这时候用最小二乘法就能算出一个更接近真实长度的值。
还有条件平差公式,它适用于有多余观测的情况。
就像咱们测量一个三角形的三个内角,正常来说内角和应该是 180 度,但咱们测量出来可能不是正好180 度,这时候条件平差公式就能帮忙调整这些数据。
间接平差公式也很有用。
假如我们不是直接测量想要的量,而是通过测量一些相关的量来推算,那间接平差公式就能发挥作用啦。
回到咱们那次实地测量,同学们在我的指导下,运用测量平差公式,对测量的数据进行处理。
大家发现,原本那些乱七八糟的数据,经过公式的处理,变得有条有理,最后得出的土地面积也更准确了。
在学习测量平差公式的过程中,大家可别被那些复杂的符号和公式给吓住。
其实啊,只要多做几道题,多实际操作操作,就能慢慢掌握其中的窍门。
比如说,每次做完一道题,都想想这个公式为啥要这么用,它解决了啥问题。
而且,现在科技这么发达,很多测量工具都自带平差功能了。
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
一、水准网条件平差示例 范例:有一水准网(如图8-3所示),已知点A ,B 的高程为: HA=50.000m , HB=40.000 m ,观测高差及路线长度见表8-1。
试用条件平差求:(1) 各观测高差的平差值;(2) 平差后P 1到P 2点间高差的中误差。
图8-3【解】1)、求条件方程个数;由图易知:n=7,t=3,条件式r=4。
故应列4个平差值条件方程,三个闭合环,一个附和路线2)、列平差值条件方程; 所列4个平差值条件方程为:⎪⎪⎭⎪⎪⎬⎫=-+-=--=-+=+-0ˆˆ0ˆˆˆ0ˆˆˆ0ˆˆˆ31643765521BA H H h h h h h h h h h h h 3)、转换成改正数条件方程;以ii i V L L +=ˆ代入上式可得: ⎪⎪⎭⎪⎪⎬⎫=-+-+-=--+--=-++-+=+-++-00003131643643765765521521B A H H h h v v h h h v v v h h h v v v h h h v v v 化简可得:⎪⎪⎭⎪⎪⎬⎫=--=+--=+-+=++-0403070731643765521mm mm mm mm v v v v v v v v v v v 可知条件方程系数阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----000101010110011100000010011⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=2101001000210000210000010000001称对P ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=2010010002000020000010000001称对Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----=320125100141101300100110001101001100000110010002010102200211000000100114)、组成法方程; 先求权阵P ;以1km 观测高差为单位权观测高差,则: 11=P ,12=P ,213=P ,214=P ,15=P ,16=P ,217=P ,而各观测高差两两相互独立,所以权阵为:,则协因数阵为:则,法方程的系数阵Naa 为:⎥⎥⎦⎤⎢⎢⎣⎡-----⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----==-=00010101011001110000001001120100100020000200000100000010001010101100111000000100111TT AQA T A AP aa N 称对所以,法方程为:043773212510014110134321=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----k k k k 5)、解算法方程,求出联系数K⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡34831.213483.002247.177528.2437758427.025843.012360.023596.025843.032584.011236.012360.012360.011236.031461.014607.023596.012360.014608.046067.04377320125100141101314321k k k k 6)、求V 及高差平差值Lˆ 所以4210.212.118.3213.0214.418.214.0ˆ22222220⨯+⨯-+⨯-+⨯-+⨯-+⨯+⨯-==)()()()()(r PV V T σ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==045.2157.1798.3270.0427.4775.2427.034831.213483.002247.177528.2002001100011020022000001100134831.213483.002247.177528.200001010101100111000000100112010010002000020000010000001m m T K T QA V 称对mmmm v v v v v v v h h h h h h h h h h h h h h L ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----+⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=5020.108548.56472.45007.143556.200028.153556.100.22.18.33.04.48.24.0500.10856.5651.4501.14360.20000.15356.10ˆˆˆˆˆˆˆˆ7654321765432176543217)、精度评定1)、单位权方差估值计算mm 98.24605.35±==2)、建立所求精度的平差值函数的算式,并按误差传播律求平差值函数的精度 依题意列平差值函数为: 5ˆh =ϕ 则:[]Tf 0010000=[][][][]51687.048313.01)16853.3146.0(1001111236.001124.016853.03146.0100110011111ˆˆ=-=+-=⨯---=-=-=--TTT T T aaaa N AQf N QA f Qf fQ ϕϕ所以:mm Q 14.251687.098.2ˆˆ0ˆ±=⨯==ϕϕϕσσ【答】:各观测高差的平差值为:}{m m m m m m m5020.108548.56472.45007.143556.200028.153556.10平差后P1到P2点间高差的中误差为:±2.14mm987654321ACPB 图8-11二、测角网条件平差 范例:有一测角网(如图8-11所示),A 、B 、C 三点为已知三角点,P 为待定点。
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
误差理论与平差基础一、名词解释1、测量平差:依据某种最优准则(最小二乘法),对一系列带有观测误差的观测值,运用概率统计的方法来消除它们之间的不符值,求出未知数的最估计值与精度的理论方法。
2、偶然误差:即从单个误差看,该列误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律,这种误差称为偶然误差。
3、系统误差:在相同观测条件下做一系列的观测,如果误差在大小和符号上都表现出系统性,或者在观测过程中按一定的规律变化,或者为某一常数,那么,这种误差称为系统误差。
4、粗差:明显歪曲测量结果的误差,是指比在正常观测条件所可能出现的最大误差还要大的误差。
5、平均误差:在一定观测条件下一组独立的偶然误差的绝对值的数学期望称为平均误差。
6、或然误差:当观测误差出现在(—,+)之间的概率等于1/2时,称为或然误差。
7、条件平差:一个几何模型中有r个多余观测,就产生r个条件方程,以条件方程为函数模型的平差方法,称为条件平差。
8、附有参数的条件平差:在平差问题中多选择了u个独立量为参数(而0<u<t)参加平差计算,就可建立含有参数的条件方程作为平差的函数模型,称之为附有参数的条件平差。
9、间接平差:在平差问题中,当所选的独立参数个数等于必要观测数t时,可将每个观测值表达成这t个参数的函数,组成观测方程,这种以观测方程为函数模型的平差方法称为间接平差。
10、附有限制条件的间接平差:在平差问题中,多余观测数r=n-t,所选参数u>t个,其中包含t个独立参数,则参数间存在s=u-t个限制条件。
平差时列出n个观测方程和s个限制参数间关系的条件方程,以此为函数模型的平差方法称为附有限制条件的间接平差。
11、秩亏自由网平差:如果网中不设起始数据或没有必要的起算数据,而且又设所有网点坐标为参数,这样的平差问题称为秩亏自由网平差。
12、精度:误差分布的密集或离散程度。
13、准度:随机变量的真值与数学期望之差。