克隆载体与表达载体
- 格式:doc
- 大小:97.50 KB
- 文档页数:10
克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。
克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。
(这是为携带”感兴趣的外源DNA实现外源DNA勺无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。
)其中,为使插入的外源 DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子 -- 核糖体结合位点 -- 克隆位点 -- 转录终止信号,这是用来区别克隆载体和表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。
表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体( Expression vectors )就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。
如表达载体 pKK223-3 是一个具有典型表达结构的大肠杆菌表达载体。
其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。
在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在 mRNAk有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3〜10 bp处的由3 —9bp组成的序列。
这段序列富含嘌吟核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体 RNA的识另U与结合位点。
最新为什么要先构建克隆载体再⽤表达载体备课讲稿为什么要先构建克隆载体再⽤表达载体构建克隆载体是⼤量扩增DNA⽚段,⽤以测序、酶切和改造等对DNA实施的后续操作,构建表达载体是⼤量得到翻译产物——蛋⽩质。
为什么要先构建克隆载体,再⽤表达载体,我猜是因为:①得到⼤量的DNA,虽然PCR也可以,但PCR扩增有出错率、但你每做⼀次常规的PCR,⽽且每次都要重新提DNA和RNA才⾏,⽽且,PCR反应的试剂盒⼜不便宜,⽤PCR来制备⼤量DNA有点得不偿失。
尽管构建克隆载体也存在操作复杂(相对于PCR),成功率不是极⾼,⽽且还要筛选,但⼀旦你重组成功并转⼊了⼤肠杆菌,你就可以保存了,你想什么时候⽤,摇个菌,就可以制备到⼤量的DNA。
②测序需要。
你想转表达,你⾸先得确定你扩增的⽬的⽚段是不是你要的,不要以为你设计了个特异性引物,然后跟你mark 的长度就可以确定了,这也只是推测,在科学上不严谨。
扩增出的基因⽚段保险起见或者经费允许,要拿去测序,⽽⼀般送测的序列都是构建到载体上的序列,克隆载体上⼀般也都带有测序引物,已确定这就是你要的那条序列。
你要写论⽂必须要给⼈真凭实据。
先构建克隆载体再构建表达载体并不是⼀个必须的选择,如果你的扩增PCR⽬的条带很亮,⽽且单⼀性很好,我建议你可以直接克隆进⼊表达载体。
很多⼈选择先构建克隆载体,是因为在扩增基因时⽬的条带模糊,特异性不好,这样将基因连接到克隆载体上就可以便于挑去单克隆进⾏测序,增加测序的准确度,从⽽确认⾃⼰克隆基因序列的正确性。
单纯的PCR产物往往是⼀些各种PCR⽚段的混合物,直接送过去测序,往往导致测序信号峰很杂,有时候并不能测出想要的信号序列。
同时保存的PCR⽚段⽐较容易降解,⽽构建好克隆载体后形成的质粒是很容易扩增和保存的。
先构建克隆载体,⼀是为了便于测序,确认克隆序列正确,⼆是为了便于基因PCR⽚段的保存。
怎么构建克隆载体和表达载体?⾸先根据你的实验需要选择相应的载体。
一部分:概念解析二部分:问题解答克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。
克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。
(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。
) 其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。
表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。
如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。
其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。
在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。
这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。
克隆载体与表达载体
1. T载体是克隆载体,你的基因通过TA克隆法插入载体,这一步的目的是扩增基因,得到大量你要的目的基因片段,以便进行下一步表达载体的构建;DH5α是克隆菌株,不能用来做表达;
2. 欲在大肠杆菌中表达外源基因,需要首先构建原核表达载体,如可将构建至T 载体的目的通过双酶切切下来然后连接到表达载体上,如PET系列的载体等,构建成原核表达载体后,可将此载体转化表达菌株,如BL21(DE3,)等,如果你的目的基因含有稀有密码子,也可以转化Rosetta系列的表达菌株。
最后将构建成功的基因工程菌进行诱导表达。
1、T载体常用于克隆,一般来讲都会再把目的基因亚克隆到表达载体上。
但是并非T载体不能用来表达。
常见的pMD18-T,含有lacZ操纵子,可以IPTG诱导表达。
pGEM-T则含有T7和SP6启动子。
2、为了能够顺利地使用T7系统来表达蛋白,在如BL21(DE3)一类的大肠杆菌菌株中,编码T7RNA聚合酶的基因被整合到其染色体上,并位于lacUV5启动子的下游,受乳糖操纵子调控。
而目标蛋白的编码序列则被构建到含T7启动子序列的质粒上,并受T7RNA聚合酶调控转录。
3、构建质粒、基因表达看似比较成熟,也比较简单。
其实这里面大有学问。
学会看菌株和质粒的相关文档,答案就在其中。
克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。
克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。
(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。
)其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。
表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。
如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。
其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。
在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。
这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。
克隆载体表达载体构建详细版一、稀释引物1、4℃,15min、13000转离心(先等离心机降温)2、根据OD值加DD水。
3、静置30min(冰上)4、准备1.5毫升EP管,并加90ulDD水。
5、向EP管中加10ul引物,震荡离心,-20℃保存。
二、跑MIX检测引物(20ul体系)、上引物0.8ul下引物0.8ulMix 10ulDNA(日本晴)1ulDD水7.4ul三跑高保真酶(50ul体系)DNAorCDNA 2ul上引物2ul下引物2ul5*buffer 10uldNTPs 5ulDD水28ulPfu(最后加)1ul四胶回收流程1、在紫外线下切胶,用牙签装入2ml的EP管中。
2、按量加XP2,放在55℃水浴锅中10min,每2min摇匀1次,涡旋,短离。
3、将液体冷却到室温,转移到平衡住中,离心10000转,1min30s,倒掉滤液。
4、加入xp2 300ul,离心10000r,1min30s,倒掉滤液。
5、加入spw700ul,离心10000r,1min,倒掉滤液(重复一次)6、空转2min,13000r,之后换1.5mlEP管。
7、套上保鲜膜放入37℃烘箱中,30min。
8、加入DD水10ul,静置2min,离心2min,13000r,重复3次,-20℃保存。
五、胶回收产物检测(10ul)体系上引物0.4ul下引物0.4ulMix 5ul回收产物1ulDD水 3.2ul六、构建blunt cloning 载体(克隆载体)(4ul 体系)胶回收产物 3.5ulBlunt cloning 0.5ul混匀后,PCR:25℃15min 盖子温度50℃之后转化1、提前5min从-70℃冰箱中拿出大肠杆菌感受态,冰上解冻5min。
2、将样品(4ul)加入感受态的大肠杆菌中,冰上30min,大约剩5min左右,打开水浴锅预热到42℃,并拿出SDC 培养基解冻(室温解冻)。
3、水浴锅42℃,60-90s迅速转移到冰浴2min,该过程中不要摇动离心管。
克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。
克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。
(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。
)其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。
表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。
如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。
其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。
在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。
这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。
分子生物学名词解释名词解释:1、分子生物学 (molecular biology)是从分子水平上研究生命现象、生命本质、生命活动及其规律的科学。
解释:分子一般指生物大分子(核酸和蛋白质),即以生物大分子的结构与功能为研究基础,来研究生命活动的本质与规律。
2、医学分子生物学(medical molecular biology)是分子生物学的一个重要分支,是从分子水平上研究人体和疾病相关生物在正常和疾病状态下的生命活动及其规律,从分子水平上开展人类疾病的预防、诊断和治疗研究的一门科学。
3、载体(vector ):是能携带靶DNA(目的基因)片段进入宿主细胞进行扩增或表达的DNA分子。
4、克隆载体(cloning vector):仅适于外源基因在宿主细胞中复制和扩增。
5、表达载体(expression vector):能使外源基因在宿主细胞中进行转录和翻译的载体。
6、质粒的复制子:质粒DNA中能自主复制并维持正常拷贝数的一段最小的核酸序列单位。
7、噬菌体(phage)是比细菌还小得多的微生物,和病毒侵犯真核细胞一样,噬菌体侵犯细菌,也可以认为它是细菌里的“寄生虫”。
它本身是一种核蛋白,核心是一段DNA,结构上有一个蛋白质外壳和尾巴,尾巴上的微丝可以把噬菌体的DNA注入细菌内。
8、溶菌生长:λ噬菌体感染细菌后,λDNA通过粘性末端而环化,并在宿主中多次复制,合成大量基因产物,装配成噬菌体颗粒,最后裂解宿主菌。
9、溶源生长:λDNA整合到宿主染色体基因组DNA中与之一起复制并遗传给子代,但宿主细胞不被裂解。
10、插入型载体(insertion vector):每种酶只有一个酶切位点。
如λgt系列,适用cDNA克隆。
λ噬菌体载体11、置换型载体(replacement vector ):有两组(成对)反向排列的多克隆位点,其间DNA序列可被外源基因取代。
如EMBL系列,适用基因组克隆12、穿梭载体:是一类既能在原核细胞中复制又能在真核细胞中复制表达的载体。
质粒载体总结A噬菌体载体表达载体时表达多个基因。
⑥能表达基因组DNA : 昆虫杆状病毒表达系统具有剪切的功能。
⑦对重组蛋白进行定位的功能:如将核蛋 白转送到细胞核上,膜蛋白则定位在膜 上,分泌蛋白则可分泌到细胞外等。
腺病毒载体是目前最为广泛应用的基因 载体,也是唯一基因药物的载体双链 DNA 的分子大小约为36kb.可应用于1.基因治疗2.表达真核基因3. 研制疫苗一类含单链RNA 的动物病毒。
它的基因组含有2条相同的正链RNA 分子,包装成二倍体病毒颗粒。
(1)在大多数情况下, 反转录病毒的肿瘤基因(onc)都能够在正 常的细胞中转录。
2)反转录病毒的寄主 范围相当广,包括无脊椎动物和脊椎动 物。
3)反转录病毒具有强启动子,外源 基因可得到有效表达。
4)反转录病毒不 但感染效率高,而且不招致寄主细胞的死 亡 ①含有能够被真核细胞识别的有效的启 动子。
②有许多种动物病毒,在其感染周 期中都能够持续地复制,使其基因组拷贝 数达到相当高的水平。
③有些动物病毒具 有控制自己复制的顺式元件和反式作用 首先构建一个含多克隆位点和筛选标志的转 移质粒,该质粒含有病毒基因组某段早期序 歹U ;然后将一个含有启动子一外源基因-poly A 的表达盒插入到上述质粒中腺病毒E1、E3或 E4至右侧的ITR 区之间,构建成载有外源基 因的穿梭质粒。
载体的构建: 分离原病毒DN A-删去部分序列一组入选择 性标记基因、目的基因和调控元件一克隆到含 有大肠杆菌复制起始位点的克隆载体一转化 大肠杆菌一获得反转录病毒克隆载体一辅助 细胞系(包装细胞系)一扩增 猿猴空泡病毒 40(Simian vacuolating virus 40, SV40)基因组是一种环形双链的DNA ,其 大小仅有5243bp ,很适于基因操作。
导致人 体癌变的可能性极低,对人体是安全的。
一些 质粒型表达载体带有来自SV40DNA 的个别大片段表达载体。
克隆载体
基因间隔区(intergenic region, IG 区)基因II与基因IV之间存在一段507bp的基因间隔区,内含有复制起始位点,是实施改造、构建人工载体的重点区域。
② IG区内只有一个Bsu I 切点。
(2)加入酶切位点,在IG区内加入单一内切酶位点。
M13mp1 在IG区内插入一个大肠杆菌的LacZ’(-肽序列)。
使克隆的DNA片段以特定单链的形式输出受体细胞外,M13重组分子筛选简便,被M13噬菌体感染的受体细胞生长缓慢,形成混浊斑,易于辨认挑选。
而且重组分子越大,混浊斑的混浊度亦越大但M13-DNA载体的最大缺陷是装载量小,只有 kb
考斯质粒是一类人工构建的含有λ-DNA cos序列和质粒复制子的的特殊类型载体。
能像
-DNA那样进行体外包装,并高效转染受体细胞;能像质粒那样在受体细胞中自主复制具有较高容量的克隆能力:45kb;具有与同源性序列的质粒进行重组的能力粘粒(cosmid)是带有 cos 序列的质粒。
cos序列是噬菌体 DNA 中将DNA 包装到噬菌体颗粒中所需的 DNA 序列。
黏粒的组成包括质粒复制起点(colE1),抗性标记(amp r),cos 位点,因而能象质粒一样转化和增殖。
克隆的最大 DNA 片段可达 45kb 。
有的粘粒载体含有两个cos 位点,在某种程度上可提高使用效率。
质粒载体总结
λ噬菌体载体
表达载体。
基因载体和工具酶:基因载体可分为克隆载体和表达载体两种,其中克降载体必需具备如下条件:①具有复制原点,在宿主细胞内必需能够自主复制;②有一条或多条用于筛选的选择标记,易于识别和筛选;③具备合适的限制性核酸内切醐的单一识别位点,便于外源DNA片段的插入,同时不影响其复制;④有较高的拷贝数,便于目的基因的大量制备;⑤具有较大的外援DNA片段装载容量,又不影响本身的复制。
表达载体必需具备如下条件:①具备与克隆载体相同的复制起点、多克隆位点和筛选标记基因;②具备掌握目的基因表达的调控序列,包括启动子、转录终止子;③具备完整的起始密码子、终止密码子和核糖体结合位点。
工具酶包括限制性内切酶、DNA连接酶、DNA聚合酶类、碱性磷酸酶、末端脱氧核甘酸转移防以及其他工具的。
基因工程诞生的理论基础:三大理论基础:①发觉了生物的遗传物质是DNA而不是蛋白质;②明确了DNA的双螺旋结构和半保留复制基质;③遗传密码子的破译。
三大技术基础:①采用限制性内切酶和DNA连接酶外切割和连接DNA片段;②质粒改造成载体以携带DNA片段克隆;③逆转转录酶的食用打开真核生物基因工程的一条通道。
胚胎原位杂交技术、Northern杂交、blot的异同点:相同点:①都是用带有标记的核酸探针,与待测核酸(RNA)片段进行杂交;②都要对进行了杂交处理的材料进行漂洗;③都要对杂交信号进行检测。
不同点:①用于标记的核酸探针种类不同:胚胎原位杂交所用探针分为DNA探针、RNA探针、cDNA 探针和寡核甘酸探针等,DNA探针还有双链和单链之分。
依据标记方法的不同也可分为放射性探针和非放射性探针:对于Northern/blot而言,其探针为同位素或生物素标记的DNA或RNA探针对固定于膜上的mRNA进行杂交。
②胚胎原位杂交需要两条恒氨酸单链片段,在相宜条件下,能形成DNA-DNA. DNA-RNA或RNA-RNA双链分子;而Northern、blot则是针对RNA样品。
植物基因克隆、表达载体构建及遗传转化实验心得
植物基因克隆、表达载体构建及遗传转化实验心得实习生:李宇皓,实习时间为2017年11月27日-12月25日。
这次实习是去农学院,具体是一个专业—园艺科学。
这是我第三次参加此类型的实习了。
前两次都是上课的形式,今天终于亲自动手操作了!还不错吧!这也算是我实践性比较强的一门课了。
实习内容包括有:《植物基因组文库构建》、《植物多样性》、《植物基因组工程与应用》、《植物抗病虫害》。
最后进行分组讨论会,向指导老师汇报成果,感觉很棒啊!从10月30号到12月13号,五天时间里,我们几个同学根据实际情况,做好各项准备,完成了毕业设计的前期任务,并在第六周开始正式着手整个课题的研究工作,可谓万事俱备只欠东风了!
实验目的和要求:1.掌握植物基因组文库构建方法2.掌握外源基因在大肠杆菌中表达的方法3.掌握基因组文库构建与高密度筛选4.熟悉多克隆抗体技术5.理解基因工程原理6.通过外源基因表达产物对花卉新品种的选育作用以及利用反义技术实现基因定位和标记
等相关问题。
实习步骤(含内容):实习一:了解植物基因组文库构建概念及意义;制定实验方案;进行文库构建;并利用文库分析植物进化史。
实习二:分离转录间隔区序列;目的基因与其他基因的分离纯化;目的基因的克隆及转化载体构建;目的基因的 PCR 扩增、测序与分析;目的基因片段的克隆;基因片段的连接;基因文库构建及质量检查。
- 1 -。