克隆载体与表达载体
- 格式:doc
- 大小:101.50 KB
- 文档页数:15
克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。
克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。
(这是为携带”感兴趣的外源DNA实现外源DNA勺无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。
)其中,为使插入的外源 DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子 -- 核糖体结合位点 -- 克隆位点 -- 转录终止信号,这是用来区别克隆载体和表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。
表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体( Expression vectors )就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。
如表达载体 pKK223-3 是一个具有典型表达结构的大肠杆菌表达载体。
其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。
在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在 mRNAk有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3〜10 bp处的由3 —9bp组成的序列。
这段序列富含嘌吟核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体 RNA的识另U与结合位点。
一部分:概念解析二部分:问题解答克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。
克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。
(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。
) 其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。
表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。
如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。
其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。
在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。
这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。
克隆载体与表达载体
1. T载体是克隆载体,你的基因通过TA克隆法插入载体,这一步的目的是扩增基因,得到大量你要的目的基因片段,以便进行下一步表达载体的构建;DH5α是克隆菌株,不能用来做表达;
2. 欲在大肠杆菌中表达外源基因,需要首先构建原核表达载体,如可将构建至T 载体的目的通过双酶切切下来然后连接到表达载体上,如PET系列的载体等,构建成原核表达载体后,可将此载体转化表达菌株,如BL21(DE3,)等,如果你的目的基因含有稀有密码子,也可以转化Rosetta系列的表达菌株。
最后将构建成功的基因工程菌进行诱导表达。
1、T载体常用于克隆,一般来讲都会再把目的基因亚克隆到表达载体上。
但是并非T载体不能用来表达。
常见的pMD18-T,含有lacZ操纵子,可以IPTG诱导表达。
pGEM-T则含有T7和SP6启动子。
2、为了能够顺利地使用T7系统来表达蛋白,在如BL21(DE3)一类的大肠杆菌菌株中,编码T7RNA聚合酶的基因被整合到其染色体上,并位于lacUV5启动子的下游,受乳糖操纵子调控。
而目标蛋白的编码序列则被构建到含T7启动子序列的质粒上,并受T7RNA聚合酶调控转录。
3、构建质粒、基因表达看似比较成熟,也比较简单。
其实这里面大有学问。
学会看菌株和质粒的相关文档,答案就在其中。
克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。
克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。
(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。
)其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。
表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。
如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。
其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。
在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。
这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。
克隆载体表达载体构建详细版一、稀释引物1、4℃,15min、13000转离心(先等离心机降温)2、根据OD值加DD水。
3、静置30min(冰上)4、准备1.5毫升EP管,并加90ulDD水。
5、向EP管中加10ul引物,震荡离心,-20℃保存。
二、跑MIX检测引物(20ul体系)、上引物0.8ul下引物0.8ulMix 10ulDNA(日本晴)1ulDD水7.4ul三跑高保真酶(50ul体系)DNAorCDNA 2ul上引物2ul下引物2ul5*buffer 10uldNTPs 5ulDD水28ulPfu(最后加)1ul四胶回收流程1、在紫外线下切胶,用牙签装入2ml的EP管中。
2、按量加XP2,放在55℃水浴锅中10min,每2min摇匀1次,涡旋,短离。
3、将液体冷却到室温,转移到平衡住中,离心10000转,1min30s,倒掉滤液。
4、加入xp2 300ul,离心10000r,1min30s,倒掉滤液。
5、加入spw700ul,离心10000r,1min,倒掉滤液(重复一次)6、空转2min,13000r,之后换1.5mlEP管。
7、套上保鲜膜放入37℃烘箱中,30min。
8、加入DD水10ul,静置2min,离心2min,13000r,重复3次,-20℃保存。
五、胶回收产物检测(10ul)体系上引物0.4ul下引物0.4ulMix 5ul回收产物1ulDD水 3.2ul六、构建blunt cloning 载体(克隆载体)(4ul 体系)胶回收产物 3.5ulBlunt cloning 0.5ul混匀后,PCR:25℃15min 盖子温度50℃之后转化1、提前5min从-70℃冰箱中拿出大肠杆菌感受态,冰上解冻5min。
2、将样品(4ul)加入感受态的大肠杆菌中,冰上30min,大约剩5min左右,打开水浴锅预热到42℃,并拿出SDC 培养基解冻(室温解冻)。
3、水浴锅42℃,60-90s迅速转移到冰浴2min,该过程中不要摇动离心管。
克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。
克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。
(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA 分子。
)其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。
表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。
如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。
其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。
在表达元件中,有一个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
(RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。
这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。
简述基因克隆载体的主要类型
基因克隆载体是指一类可以携带外源DNA片段并能够被复制的DNA分子。
常用于基因工程中,将特定基因序列克隆到载体DNA上,进而进行转化和表达。
根据不同的功能和应用,基因克隆载体可以分为多种类型,以下是主要的几种:
1. 质粒(Plasmid):质粒是最常用的基因克隆载体之一,通常起源于细菌,具有自主复制的能力,易于操作和扩增。
质粒通常被用于基因表达、基因敲除和基因突变等领域。
2. 病毒载体(Viral Vector):病毒载体是一类通过改造病毒而成的基因克隆载体,具有高度的转染效率和生物安全性。
病毒载体通常被用于基因治疗、免疫治疗和癌症治疗等领域。
3. 人工染色体(Artificial Chromosome):人工染色体是一种可以模拟天然染色体结构和功能的基因克隆载体,通常具有高度的稳定性和扩增性能。
人工染色体通常被用于基因组学研究和治疗复杂遗传病等领域。
4. 原核表达载体(Prokaryotic Expression Vector):原核表达载体是一类专门用于大肠杆菌等原核生物中进行基因表达的基因克隆载体。
原核表达载体通常具有高度的表达效率和易于操作的特点,被广泛应用于蛋白质制备和生物技术研究等领域。
克隆载体
基因间隔区(intergenic region, IG 区)基因II与基因IV之间存在一段507bp的基因间隔区,内含有复制起始位点,是实施改造、构建人工载体的重点区域。
② IG区内只有一个Bsu I 切点。
(2)加入酶切位点,在IG区内加入单一内切酶位点。
M13mp1 在IG区内插入一个大肠杆菌的LacZ’(-肽序列)。
使克隆的DNA片段以特定单链的形式输出受体细胞外,M13重组分子筛选简便,被M13噬菌体感染的受体细胞生长缓慢,形成混浊斑,易于辨认挑选。
而且重组分子越大,混浊斑的混浊度亦越大但M13-DNA载体的最大缺陷是装载量小,只有 kb
考斯质粒是一类人工构建的含有λ-DNA cos序列和质粒复制子的的特殊类型载体。
能像
-DNA那样进行体外包装,并高效转染受体细胞;能像质粒那样在受体细胞中自主复制具有较高容量的克隆能力:45kb;具有与同源性序列的质粒进行重组的能力粘粒(cosmid)是带有 cos 序列的质粒。
cos序列是噬菌体 DNA 中将DNA 包装到噬菌体颗粒中所需的 DNA 序列。
黏粒的组成包括质粒复制起点(colE1),抗性标记(amp r),cos 位点,因而能象质粒一样转化和增殖。
克隆的最大 DNA 片段可达 45kb 。
有的粘粒载体含有两个cos 位点,在某种程度上可提高使用效率。
质粒载体总结
λ噬菌体载体
表达载体。
基因⼯程的载体种类基因⼯程的载体对于外源基因的复制、扩增、传代乃⾄表达⾄关重要,其必需具备以下条件:①具有有效运载能⼒,能够进⼊宿主细胞;②对多种限制酶有单⼀或较少的切点,最好是单⼀切点,即本⾝是⼀个复制⼦,携带外源基因前后均能在宿主细胞内⾃主复制,或者能够整合到宿主细胞中;③在宿主中能控制外源基因的表达活动;④要有筛选标记,鉴定⽅便,装卸⼿续简单;⑤容易控制,安全可靠。
在基因⼯程(DNA重组)中,使⽤的载体有:①克隆载体(clone vector),即以繁殖DNA分⼦为⽬的的载体;②穿梭载体(shuttle vecto),⽤于真核⽣物DNA⽚段在原核⽣物中增殖,然后在转⼊真核⽣物细胞宿主表达;③表达载体(express vector),⽤于⽬的基因的表达。
现在对载体提出了更⾼的要求,如:⾼拷贝数、具有强启动⼦和稳定的mRNA、具有⾼的分离稳定性和结构稳定性、转化频率⾼、宿主范围⼴、插⼊外源基因容量⼤且可以重新完整地复制与转录、和宿主细胞匹配等。
此外,载体在宿主不⽣长或低⽣长速率时仍能⾼⽔平地表达⽬的基因。
但达到上述要求的载体很少,尤其是当动物细胞作为宿主细胞时,⽬前能⽤的主要时病毒,进⼊宿主的⽬的基因⼀般只能是⼀个基因,⽽以基因组或多个基因同时进⾏重组还有⼀定困难。
⼀、质粒克隆载体除酵母杀伤质粒(killer plasmid)为RNA外,其他质粒多位环状DNA分⼦,每个质粒都有⼀段DNA复制起始点的序列,帮助实现质粒的复制。
质粒⼀般决定抗⽣素的抗性、产⽣抗⽣素酶系、糖酵解酶系、降解芳⾹族化合物酶系、肠毒素及限制-修饰酶系等。
其中严紧型复制控制质粒的复制与宿主染⾊体同步,并与宿主蛋⽩质合成有关,与DNA聚合酶I活性⽆关,蛋⽩质合成停⽌,质粒与宿主染⾊体复制亦停⽌,故只有1个或少数⼏个拷贝;⽽松弛型复制控制质粒的复制与宿主染⾊体复制不同步,与蛋⽩质合成⽆关,与DNA聚合酶I活性有关,蛋⽩质合成停⽌,质粒仍可复制,故可以在宿主有10—206个拷贝。
基因载体和工具酶:基因载体可分为克隆载体和表达载体两种,其中克降载体必需具备如下条件:①具有复制原点,在宿主细胞内必需能够自主复制;②有一条或多条用于筛选的选择标记,易于识别和筛选;③具备合适的限制性核酸内切醐的单一识别位点,便于外源DNA片段的插入,同时不影响其复制;④有较高的拷贝数,便于目的基因的大量制备;⑤具有较大的外援DNA片段装载容量,又不影响本身的复制。
表达载体必需具备如下条件:①具备与克隆载体相同的复制起点、多克隆位点和筛选标记基因;②具备掌握目的基因表达的调控序列,包括启动子、转录终止子;③具备完整的起始密码子、终止密码子和核糖体结合位点。
工具酶包括限制性内切酶、DNA连接酶、DNA聚合酶类、碱性磷酸酶、末端脱氧核甘酸转移防以及其他工具的。
基因工程诞生的理论基础:三大理论基础:①发觉了生物的遗传物质是DNA而不是蛋白质;②明确了DNA的双螺旋结构和半保留复制基质;③遗传密码子的破译。
三大技术基础:①采用限制性内切酶和DNA连接酶外切割和连接DNA片段;②质粒改造成载体以携带DNA片段克隆;③逆转转录酶的食用打开真核生物基因工程的一条通道。
胚胎原位杂交技术、Northern杂交、blot的异同点:相同点:①都是用带有标记的核酸探针,与待测核酸(RNA)片段进行杂交;②都要对进行了杂交处理的材料进行漂洗;③都要对杂交信号进行检测。
不同点:①用于标记的核酸探针种类不同:胚胎原位杂交所用探针分为DNA探针、RNA探针、cDNA 探针和寡核甘酸探针等,DNA探针还有双链和单链之分。
依据标记方法的不同也可分为放射性探针和非放射性探针:对于Northern/blot而言,其探针为同位素或生物素标记的DNA或RNA探针对固定于膜上的mRNA进行杂交。
②胚胎原位杂交需要两条恒氨酸单链片段,在相宜条件下,能形成DNA-DNA. DNA-RNA或RNA-RNA双链分子;而Northern、blot则是针对RNA样品。
为什么要先构建克隆载体再用表达载体(优选.)为什么要先构建克隆载体再用表达载体构建克隆载体是大量扩增DNA片段,用以测序、酶切和改造等对DNA实施的后续操作,构建表达载体是大量得到翻译产物——蛋白质。
为什么要先构建克隆载体,再用表达载体,我猜是因为:①得到大量的DNA,虽然PCR也可以,但PCR扩增有出错率、但你每做一次常规的PCR,而且每次都要重新提DNA和RNA才行,而且,PCR反应的试剂盒又不便宜,用PCR来制备大量DNA有点得不偿失。
尽管构建克隆载体也存在操作复杂(相对于PCR),成功率不是极高,而且还要筛选,但一旦你重组成功并转入了大肠杆菌,你就可以保存了,你想什么时候用,摇个菌,就可以制备到大量的DNA。
②测序需要。
你想转表达,你首先得确定你扩增的目的片段是不是你要的,不要以为你设计了个特异性引物,然后跟你mark的长度就可以确定了,这也只是推测,在科学上不严谨。
扩增出的基因片段保险起见或者经费允许,要拿去测序,而一般送测的序列都是构建到载体上的序列,克隆载体上一般也都带有测序引物,已确定这就是你要的那条序列。
你要写论文必须要给人真凭实据。
先构建克隆载体再构建表达载体并不是一个必须的选择,如果你的扩增PCR目的条带很亮,而且单一性很好,我建议你可以直接克隆进入表达载体。
很多人选择先构建克隆载体,是因为在扩增基因时目的条带模糊,特异性不好,这样将基因连接到克隆载体上就可以便于挑去单克隆进行测序,增加测序的准确度,从而确认自己克隆基因序列的正确性。
单纯的PCR产物往往是一些各种PCR片段的混合物,直接送过去测序,往往导致测序信号峰很杂,有时候并不能测出想要的信号序列。
同时保存的PCR片段比较容易降解,而构建好克隆载体后形成的质粒是很容易扩增和保存的。
先构建克隆载体,一是为了便于测序,确认克隆序列正确,二是为了便于基因PCR片段的保存。
怎么构建克隆载体和表达载体?首先根据你的实验需要选择相应的载体。
基于大肠杆菌表达系统的制备多肽的方法与流程在大肠杆菌表达系统中,制备多肽已成为生物技术领域的一个重要研究方向。
该系统具有操作简便、成本较低、表达量高等优点,被广泛应用于多肽类药物的研发和生产。
本文将详细介绍基于大肠杆菌表达系统的制备多肽的方法与流程。
一、选择表达载体1.克隆载体:常用的克隆载体有pET、pGEX等,可根据实验需求选择适合的载体。
2.选择适当的启动子:大肠杆菌表达系统中,T7、lac、trc等启动子均可用于驱动多肽的表达。
3.引入合适的终止子和标签:为了提高表达效率和便于纯化,可在目的基因后引入终止子和标签,如His标签、GST标签等。
二、构建表达质粒1.提取模板DNA:以含有目的多肽基因的DNA为模板,进行PCR扩增。
2.双酶切:将PCR产物和表达载体进行双酶切,获得粘性末端。
3.连接:将酶切后的目的基因与表达载体连接,构建表达质粒。
4.转化:将构建好的表达质粒转化至大肠杆菌感受态细胞。
三、诱导表达1.挑选阳性克隆:将转化后的细胞进行培养,挑选生长良好的克隆进行验证。
2.诱导表达:在适当的诱导剂(如IPTG)作用下,诱导目的多肽的表达。
3.收集菌体:诱导表达一定时间后,收集菌体进行后续实验。
四、多肽纯化1.细胞破碎:采用超声波、高压破碎等方法,将细胞破碎,释放多肽。
2.离心:将破碎后的细胞离心,分离上清和沉淀。
3.蛋白质纯化:采用亲和层析、离子交换层析、凝胶过滤等方法,对多肽进行纯化。
4.浓缩:对纯化后的多肽进行浓缩,获得较高浓度的目标产物。
五、多肽鉴定与分析1.SDS-PAGE:通过SDS-PAGE电泳,观察多肽的表达和纯化情况。
2.Western blot:利用特异性抗体,对多肽进行定性分析。
3.质谱分析:对纯化后的多肽进行质谱分析,确定其氨基酸序列。
4.生物活性检测:对多肽进行生物活性检测,验证其功能。
六、总结基于大肠杆菌表达系统制备多肽的方法与流程主要包括:表达载体的选择、构建表达质粒、诱导表达、多肽纯化、多肽鉴定与分析等步骤。
克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。
克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。
克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。
(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。
)其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。
是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体与表达载体的标志。
表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。
表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。
表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。
如表达载体pKK223-3是一个具有典型表达结构的大肠杆菌表达载体。
其基本骨架为来自pBR322与pUC的质粒复制起点与氨苄青霉素抗性基因。
在表达元件中,有一个杂合tac强启动子与终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。
(RBS位点:1974年Shine与Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG与一段位于AUG上游3~10 bp处的由3—9bp组成的序列。
这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。