第6章弯曲变形作业参考解答
- 格式:pdf
- 大小:350.91 KB
- 文档页数:5
第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。
( ) 1.2 内力只作用在杆件截面的形心处。
( ) 1.3 杆件某截面上的内力是该截面上应力的代数和。
( ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。
( ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。
( ) 1.9 同一截面上各点的切应力η必相互平行。
( ) 1.10 应变分为正应变ε和切应变γ。
( ) 1.11 应变为无量纲量。
( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( ) 1.13 若物体内各点的应变均为零,则物体无位移。
( ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( )二、填空题1.1 材料力学主要研究 受力后发生的 ,以及由此产生的 。
1.2 拉伸或压缩的受力特征是 ,变形特征是 。
1.3 剪切的受力特征是 ,变形特征是 。
1.4 扭转的受力特征是 ,变形特征是 。
B题1.15图题1.16图1.5 弯曲的受力特征是 ,变形特征是 。
1.6 组合受力与变形是指 。
1.7 构件的承载能力包括 , 和 三个方面。
1.8 所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所谓 ,是指材料或构件保持其原有平衡形式的能力。
1.9 根据固体材料的性能作如下三个基本假设 , , 。
第六章 弯曲变形分析梁是机械与工程结构中最常见的构件。
本章内容包括梁的内力、平面弯曲中横截面上的正应力和切应力分布规律,以及梁的变形计算。
6.1 梁的内力● 梁的概念当杆件受到矢量方向垂直于轴线的外力或外力偶作用时,其轴线将由直线变为曲线,如图6–1(a)。
以轴线变弯为主要特征的变形形式称为弯曲,凡是以弯曲变形为主的杆件,工程上称为梁,如车辆的轮轴、房屋的梁及桥梁等。
在分析计算中,通常用梁的轴线代表梁,如图6–1(b)。
在工程实际中,大多数梁都具有一个纵向对称面;而外力也作用在该对称面内。
在这种情况下,梁的变形对称于纵向对称面,且变形后的轴线也在对称图6–1 梁 图6–2 对称弯曲图6–3 梁的约束 图6–4 三类静定梁面内,即所谓的对称弯曲,如图6–2。
它是弯曲问题中最基本、最常见的情况。
本章只讨论梁的对称弯曲。
图6–3表示了梁的三种常见约束形式及相应的约束力:可动铰支座(图6–3(a)),固定铰支座(图6–3(b))和(平面)固定端约束(图6–3(c))。
在以上三种约束方式下,有三种常见的梁形式,如图6–4所示。
图6–4(a)为简支梁,两端分别为固定铰支座和活动铰支座;图6–4(b)为悬臂梁,一端固定端约束,一端自由;图6–4(b)为外伸梁,它是具有一个或两个外伸部分的简支梁。
这三种梁都是静定梁。
作用在梁上的外载荷,常见的有集中力偶M (图6–5(a))、分布载荷q (图6–5(b))和集中力F (图6–5(c))。
在实际问题中,q 为常数的均布载荷较为常见。
● 梁的剪力与弯矩在4.2中已经介绍了求杆件内力的通用方法,即截面法。
具体到梁,其内力分量为剪力和弯矩,规定当剪力相对于横截面的转向为顺时针为正,使杆件发生上凹下凸的弯矩为正,如图4–5(b)和(c)。
例6–1:如图6–6所示悬臂梁,受均布载荷q ,在B 点处受矩为2qa M =的力偶作用,试绘梁的剪力图与弯矩图。
解:设固定端的约束力和约束力偶为C R 和C M ,则由平衡方程00=-=∑qa R F C y ,qa R C =05.102=--⋅=∑C C M qa qa a m ,221qa M C = 以杆件左端为坐标原点,以B 为分界面,将梁分为AB 和BC 两段。
第六章弯曲变形一、是非判断题1.梁的挠曲线近似微分方程为Eiy=M(x)。
(V)2.梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为零。
(X)3.两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。
(X)4.等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等于零的截面处。
(X)5.若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面的挠度相等,转角不等。
(V)6.简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨度增大一倍后,其最大挠度增加四倍。
(X)7.当一个梁同时受几个力作用时,某截面的挠度和转角就等于每一个单独作用下该截面的挠度和转角的代数和。
(V)8.弯矩突变的截面转角也有突变。
(X)二、选择题1.梁的挠度是(D)A横截面上任一点沿梁轴线方向的位移B横截面形心沿梁轴方向的位移C横截面形心沿梁轴方向的线位移D横截面形心的位移2.在下列关于挠度、转角正负号的概念中,(B)是正确的。
A转角的正负号与坐标系有关,挠度的正负号与坐标系无关B转角的正负号与坐标系无关,挠度的正负号与坐标系有关C转角和挠度的正负号均与坐标系有关D转角和挠度的正负号均与坐标系无关3.挠曲线近似微分方程在(D)条件下成立。
A梁的变形属于小变形B材料服从胡克定律C挠曲线在xoy平面内D同时满足A、B、C4.等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。
A挠度最大B转角最大C剪力最大D弯矩最大5.两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。
跨中作用有相同的力F二者的(B)不同。
A支反力B最大正应力C最大挠度D最大转角6.某悬臂梁其刚度为EI,跨度为1,自由端作用有力F。
为减小最大挠度,则下列方案中最佳方案是(B)A梁长改为l/2,惯性矩改为I/8B梁长改为31/4,惯性矩改为1/2C梁长改为51/4,惯性矩改为31/2D梁长改为31/2,惯性矩改为1/47.已知等截面直梁在某一段上的挠曲线方程为:y(x)=Ax2(41x-612-x),则该段梁上(B)现4个积分常数,这些积分常数需要用梁的边界条件和光滑连 续条件来确定。
第五章 梁的变形测试练习1. 判断改错题5-1-1 梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角亦为零. ( )5-1-2 两根几何尺寸、支承条件完全相同的静定梁,只要所受荷栽相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。
( ) 5-1-3 悬臂梁受力如图所示,若A 点上作用的集中力P 在A B 段上作等效平移,则A 截面的转角及挠度都不变。
( ) 5-1-4 图示均质等直杆(总重量为W ),放置在水平刚性平面上,若A 端有一集中力P 作用,使A C 部分被提起,C B 部分仍与刚性平面贴合,则在截面C 上剪力和弯矩均为零。
( )5-1-5 挠曲线近似微分方程不能用于求截面直梁的位移。
( ) 5-1-6 等截面直梁在弯曲变形时,挠度曲线的曲率最大值发生在转角等于零的截面处。
( ) 5-1-7两简支梁的抗刚度E I 及跨长2a 均相同,受力如图所示,则两梁跨中截面的挠度不等而转角是相等的。
( ) 5-1-8 简支梁在图示任意荷载作用下,截面C 产生挠度和转角,若在跨中截面C 又加上一个集中力偶M 0作用,则梁的截面C 的挠度要改变,而转角不变。
( )5-1-9 一铸铁简支梁,在均布载荷作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力及变形均相同。
( ) 5-1-10 图示变截面梁,当用积分法求挠曲线方程时,因弯矩方程有三个,则通常有6个积分常量。
( )题5-1-3图题5-1-4图 题5-1-8图 题5-1-7图题5-1-9图2.填空题5-2-1 挠曲线近似微分方程EIx M x y )()("-= 的近似性表现在 和 。
5-2-2 已知图示二梁的抗弯度E I 相同,若使二者自由端的挠度相等,则=21P P 。
5-2-3 应用叠加原理求梁的变形时应满足的条件是: 。
5-2-4 在梁的变形中挠度和转角之间的关系是 。
5-2-5 用积分法求图示的外伸梁(B D 为拉杆)的挠曲线方程时,求解积分常量所用到的边界条件是 ,连续条件是 。
第6章 弯曲变形习题解答6-1 用直接积分法求下列各梁的挠曲线方程和最大挠度。
梁的抗弯刚度EI 为已知。
(a )解:(1)弯矩方程 0≤ x ≤l+aM (x )=qlx -qx 2/2+q<x-l>2/2-ql 2/2(2)积分 EI θ (x )= qlx 2/2-qx 3/6+q<x-l>3/6-ql 2x /2+CEI ν(x )= qlx 3/6-qx 4/24+q<x-l>4/24-ql 2x 2/4+Cx+D (3)定常数x = 0 θ = 0 → C = 0 x = 0 ν= 0 → D = 0νmax =ν B =)341(84laEI ql +-(↓)(b )解:(1)支反力 F A = M o / l (↑), F C =-M o / l (↓) (2)弯矩方程 0≤ x ≤ 4l/3M (x )= M o x / l -M o <x-l> / l (3)积分EI θ (x )= M o x 2 / 2l - M o <x-l>2 /2 l +CEI ν(x )= M o x 3 / 6l - M o <x-l>3/6 l +C x+D (4)定常数x = 0 ν= 0 → D = 0x = l ν= 0 → C =-M o l /6νmax =ν B =EIl M o 62(↑)6-2 写出下列各梁的边界条件,并根据弯矩图和支座情况画出挠度曲线的大致形状。
解:x = 0 ν= 0 x = a ν= 0x = l ν= ∆k = M o / lk x = 3a ν= ∆l = Fa /2EA(b) ν(b) (a)x = 0 θ = 0 x = 0 ν= 0 x = 0 ν=0 x = 3a ν= 0x = 0 ν= 0 x = 0 ν= 0 , θ = 0x =2a ν=0 x = 2a ν= 06-3 用叠加法求下列各梁C 截面的挠度和B 截面的转角。
弯曲变形典型习题解析1 试用积分法写出图示梁的挠曲轴方程,说明用什么条件决定方程中积分常数,画出挠曲轴大致形状。
图中C 为中间铰。
为已知。
I E解题分析:梁上中间铰处,左、右挠度相等,转角不相等。
解:设支反力为,如图示。
yB A yA FM F、、1、建立各段挠曲轴近似微分方程并积分 将梁分为AC 、CB 、BD 段。
AC 段 a x ≤≤10挠曲轴近似微分方程 11x FM w I E yA A ⋅−=′′转角方程1211'12C x Fx Mw IE yA A+−= (a) 挠度方程1113121162D x C x F x M w I E y A A ++−=(b)CB 段 )(2b a x a +≤≤挠曲轴近似微分方程2"2x FMw I E yA A ⋅−=转角方程 222222C x F xM w I E yA A+−=′(c)挠度方程2223222262D x C xFx M w I E yA A++−= (d)BD 段 l x b a ≤≤+3)(挠曲轴近似微分方程[])(333b a x Fx FM w I E yB yA A+−+−=′′转角方程[]32323332)(2C b a x F x F x M w I E yB yA A++−+−=′ (e) 挠度方程[]33333332336)(62D x C b a x FxFxM w I E yB yA A+++−+−= (f)2、确定积分常数共有6个积分常数。
需要6个位移边界条件和光滑连续条件。
332211D C D C D C 、、、、、题1图M A边界条件:,代入(b)得 01=x 01=w 01=D (g)0'1=w 代入(a)得 01=C(h)b a x +=2,02=w (i)连续条件: , a x x ==2121w w =(j) b a x x +==32, 32w w ′=′ (k) 32w w =(l)联立(i)、(j)、(k)、(l),可求出。
第6章 弯曲变形习题解答6-1 用直接积分法求下列各梁的挠曲线方程和最大挠度。
梁的抗弯刚度EI 为已知。
(a )解:(1)弯矩方程 0≤ x ≤l+aM (x )=qlx -qx 2/2+q<x-l>2/2-ql 2/2(2)积分 EI (x )= qlx 2/2-qx 3/6+q<x-l>3/6-ql 2x /2+CEI ν(x )= qlx 3/6-qx 4/24+q<x-l>4/24-ql 2x 2/4+ (3)定常数x = 0 = 0 → C = 0 x = 0 ν= 0 → D = 0νmax =ν B =)341(84laEI ql +-(↓)(b )解:(1)支反力 F A = M o / l (↑), F C =-M o / l (↓)(2)弯矩方程 0≤ x ≤ 4l/3M (x )= M o x / l -M o <x-l> / l(3)积分EI (x )= M o x 2 / 2l - M o <x-l>2 /2 l +CEI ν(x )= M o x 3 / 6l - M o <x-l>3/6 l +C x+D (4)定常数x = 0 ν= 0 → D = 0x = l ν= 0 → C =-M o l /6νmax =ν B =EIl M o 62(↑)6-2 写出下列各梁的边界条件,并根据弯矩图和支座情况画出挠度曲线的大致形状。
解:x = 0 ν= 0 x = a ν= 0x = l ν= ∆k = M o / lk x = 3a ν= ∆l = Fa /x AB C ν l q a l/3ν ABC xl(b) M oνa Axa EA aa CBF(b) x B ν A k(a)C2l2lM oxBC ν A•xBCA2EAx = 0 = 0 x = 0 ν= 0 x = 0 ν=0 x = 3a ν= 0x = 0 ν= 0 x = 0 ν= 0 , = 0 x =2a ν=0 x = 2a ν= 06-3 用叠加法求下列各梁C 截面的挠度和B 截面的转角。
216-3、图示矩形截面梁受集中力作用,试计算1-1横截面上a 、b 、c 、d 四点的正应力。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
中性轴z 轴过形心C 与载荷垂直,沿水平方向。
(2)内力分析,弯矩图如图(b )所示,1-1横截面的弯矩为:1115230(M-=-⨯=-⋅kN m )(3)应力分析,梁上边有弯矩图,上侧纤维受拉。
1-1横截面上的a 点处于拉伸区,正应力为正;c 点处于中性层上,正应力为零;b 、d 两点处于压缩区,正应力为负。
3111111m ax 2301011.1110.1800.36a a zzzM M M y y I I W σ---⨯=⋅=⋅===⨯⨯P a M P a 。
11.11b a σσ=-=-M Pa0c σ=31133010(0.1500.050)7.4110.1800.312d d zM y I σ-⨯=-⋅=-⨯-=-⨯⨯P a M P a37.5M kN ·m)V 图(kN )(a)(c)(b)30-(c)(e)(d)10102+q l /8M kN ·m)(f)20201z+25001150015bd (b)18015kNac (a)BqAlaz z az 22题6-3图 题6-5图6-5、两根矩形截面简支木梁受均布荷载q 作用,如图所示。
梁的横截面有两种情况,一是如图(b)所示是整体,另一种情况如图(c)所示是由两根方木叠合而成(二方木间不加任何联系且不考虑摩擦)。
若已知第一种情况整体时梁的最大正应力为10MPa ,试计算第二种情况时梁中的最大正应力,并分别画出危险截面上正应力沿高度的分布规律图示。
解:(1)外力分析,判变形。
荷载在纵向对称面内,与轴线垂直,梁发生平面弯曲。
第一种情况中性层为过轴线的水平纵向面,中性轴z 轴过整体形心C 与载荷垂直,沿水平方向。
而第二种情况,两根木梁以各自的水平纵向面为中性层发生弯曲,两根中性轴为与荷载垂直的水平形心主轴。
第六章直梁弯曲弯曲变形是杆件比较常见的基本变形形式。
通常把以发生弯曲变形为主的杆件称为梁。
本章主要讨论直梁的平面弯曲问题,内容包括:弯曲概念和静定梁的力学简图;弯曲内力及内力图;弯曲应力和强度计算;弯曲变形和刚度计算。
其中,梁的内力分析和画弯矩图是本章的重点。
第一节平面弯曲的概念和力学简图一、弯曲概念和受力特点当杆件受到垂直于杆轴的外力作用或在纵向平面内受到力偶作用(图6-1)时,杆轴由直线弯成曲线,这种在外力作用下其轴线变成了一条曲线。
这种形式的变形称为弯曲变形。
工程上通常把以弯曲变形为主的杆件称为梁。
图 6-1 弯曲变形是工程中最常见的一种基本变形。
例如房屋建筑中的楼面梁和阳台挑梁,受到楼面荷载和梁自重的作用,将发生弯曲变形,如图6-2所示。
一些杆件在荷载作用下不仅发生弯曲变形,还发生扭转等变形,当讨论其弯曲变形时,仍然把这些杆件看做梁。
图6-2工程实际中常见到的直梁,其横截面大多有一根纵向对称轴,如图6-3所示。
梁的无数个横截面的纵向对称轴构成了梁的纵向对称平面,如图6-4所示。
图 6-3 图6-4若梁上的所有外力(包括力偶)作用在梁的纵向对称平面内,梁的轴线将在其纵向对称平面内弯成一条平面曲线,梁的这种弯曲称为平面弯曲,它是最常见、最基本的弯曲变形。
本章主要讨论直梁的平面弯曲变形。
从以上工程实例中可以得出,直梁平面弯曲的受力与变形特点是:外力作用于梁的纵向对称平面内,梁的轴线在此纵向对称面内弯成一条平面曲线。
二、梁的受力简图为了便于分析和计算直梁平面弯曲时的强度和刚度,需建立梁的力学简图。
梁的力学简图(力学模型)包括梁的简化、荷载的简化和支座的简化。
1、梁的简化由前述平面弯曲的概念可知,载荷作用在梁的纵向对称平面内,梁的轴线弯成一条平面曲线。
因此,无论梁的外形尺寸如何复杂,用梁的轴线来代替梁可以使问题得到简化。
例如,图6-1a和图6-2a所示的火车轮轴和桥式起重机大梁,可分别用梁的轴线AB代替梁进行简化(图6-1b和图6-2b)。