基于动态粒子群算法的动态环境寻优算
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
【背包问题】基于matlab粒⼦群算法求解背包问题【含Matlab源码1343期】⼀、获取代码⽅式获取代码⽅式1:完整代码已上传我的资源:⼆、背包问题简介1【背包问题】背包问题(Knapsack problem)是⼀种组合优化的NP完全问题。
问题描述为:给定⼀组物品,每种物品都有⾃⼰的重量weight和价格value,在限定的总重量内,我们如何选择,才能使得物品的总价格最⾼。
2【0-1背包问题】ai:第i个物品的体积;ci:第i个物品的价值;b:背包的重量限制;背包问题就是在总的体积有限的条件下,追求总价值最⼤的有效资源分配问题。
有界的整数背包问题可转化成等价的0-1背包问题,定义变量三、粒⼦群算法简介1 引⾔⾃然界中的鸟群和鱼群的群体⾏为⼀直是科学家的研究兴趣所在。
⽣物学家Craig Reynolds在1987年提出了⼀个⾮常有影响的鸟群聚集模型,在他的仿真中,每⼀个个体都遵循:避免与邻域个体相撞:匹配邻域个体的速度;飞向鸟群中⼼,且整个群体飞向⽬标。
仿真中仅利⽤上⾯三条简单的规则,就可以⾮常接近地模拟出鸟群飞⾏的现象。
1990年, ⽣物学家Frank Heppner也提出了鸟类模型, 它的不同之处在于:鸟类被吸引飞到栖息地。
在仿真中,⼀开始每⼀只鸟都没有特定的飞⾏⽬标,只是使⽤简单的规则确定⾃⼰的飞⾏⽅向和飞⾏速度,当有⼀只鸟飞到栖息地时,它周围的鸟也会跟着飞向栖息地,最终整个鸟群都会落在栖息地。
1995年, 美国社会⼼理学家James Kennedy和电⽓⼯程师RussellEberhart共同提出了粒⼦群算法(ParticleS warm Optimization,PSO) , 该算法的提出是受对鸟类群体⾏为进⾏建模与仿真的研究结果的启发。
他们的模型和仿真算法主要对Frank Heppner的模型进⾏了修正,以使粒⼦飞向解空间并在最优解处降落。
粒⼦群算法⼀经提出,由于其算法简单,容易实现,⽴刻引起了进化计算领域学者们的⼴泛关注, 形成⼀个研究热点。
基于粒子群优化算法的最优化问题求解在当前的科技之中,机器学习、数据分析、人工智能等热门领域中,最优化问题求解显得尤为重要。
而对于最优化问题求解,粒子群优化算法成为了较为热门的解决办法。
一、最优化问题的定义在介绍粒子群算法前,我们先需要了解最优化问题的定义。
最优化问题是指在某一条件前提下,寻找函数的最大值或最小值,以达到“最优解”的目的。
在数学领域中,求解最优化问题属于优化方法的范畴。
二、粒子群算法的定义粒子群算法(Particle Swarm Optimization,PSO)是一种群体智能算法,其基本思想源于对鸟群、鱼群等生物的观察,把问题看作是一个粒子在问题空间中搜索最优解。
每个粒子表示一种可能的解,在搜索的过程中不断地调整其速度和位置,以寻找更优解。
粒子群算法充分利用了种群协同思想和群体智慧,对多峰、非线性问题有着很好的适应性,在机器学习、图像识别等领域有着广泛的应用。
三、粒子群算法的基本思路粒子群算法的基本思路是寻找某个问题目标函数的全局最小值或最大值。
针对最优化问题,我们可以把每个解想象成问题空间中的一个粒子,每次移动到下一个位置时,每个粒子所占的位置都会产生一种速度,粒子的位置在问题空间中会进行搜索,直到寻找到全局最优解或达到预设的迭代终止值。
四、粒子群算法的优点粒子群算法具有以下几个优点:1. 对于非线性多峰问题适用性好:对于搜索空间内容略多、非线性多峰问题,粒子群算法较其他算法如遗传算法、蚁群算法较具优势。
2. 全局寻优:与其他算法相比,粒子群算法在全局寻优方面表现较好。
3. 鲁棒性:由于采用并行搜索模式,粒子群算法也能够不受初始值选择过大或过小等影响,从而更加鲁棒。
五、粒子群算法的局限性粒子群算法虽然在大多数情况下表现优异,但仍然存在以下不足:1. 对于单峰问题的处理能力略弱:若要解决单峰问题,仍需选用其他的优化算法。
2. 收敛速度较慢:粒子群算法需要不断与其他粒子交互,从而增加了迭代次数,进而降低了求解速度。
求解动态优化问题的多种群骨干粒子群算法陈健;申元霞;纪滨【摘要】To solve the challenges of outdated memory and diversity loss in Dynamic Optimization Problem(DOP), this paper proposes an improved Multi-swarms Bare Bones Particle Swarm Optimization(MBBPSO). First of all, the particles of environment survey are set to detect timely the change of environment in MBBPSO, which avoids incorrect information guiding the direction of swarms'evolution. After the change of environment, MBBPSO reinitialize all swarms by using the information which every swarm explores in last environment which enhances fast tracking ability of the excellent solution to the current environment. When the swarm falls into a standstill, MBBPSO designs newly methods to enhanceparticles'activation and use the multi-swarms measure to maintain the whole swarm's diversity. The simulation experi-ment results show that MBBPSO has stronger competitiveness in dynamic environment.%针对动态优化问题(Dynamic Optimization Problem,DOP)中所面临的过时记忆和多样性丧失的挑战,提出了一种改进的多种群骨干粒子群优化算法(Multi-swarms Bare Bones Particle Swarm Optimization,MBBPSO).通过设置环境勘探粒子及时检测环境的变化,避免了错误信息误导种群的进化方向;环境改变后,利用上一个环境搜索的信息初始化新的种群,提高MBBPSO快速追踪到当前环境的优秀解的能力;当种群陷入停滞时,采用新的进化方程以加强粒子的活性和多种群策略维持群体的多样性.仿真实验表明,MBBPSO在解决动态环境问题中具有较强的竞争力.【期刊名称】《计算机工程与应用》【年(卷),期】2017(053)019【总页数】7页(P45-50,108)【关键词】动态优化问题;骨干粒子群算法;过时记忆;多样性丧失;多种群【作者】陈健;申元霞;纪滨【作者单位】安徽工业大学计算机科学与技术学院,安徽马鞍山 243032;安徽工业大学计算机科学与技术学院,安徽马鞍山 243032;安徽工业大学计算机科学与技术学院,安徽马鞍山 243032【正文语种】中文【中图分类】TP301.6粒子群优化算法(Particle Swarms Optimization,PSO)是美国社会心理学学家Kennedy和电气工程师Eberhart于1995首先提出的[1]。
基于动态粒子群算法的动态环境寻优算
基于动态粒子群算法的动态环境寻优算基于动态粒子群算法的动态环境寻优算1、案例背景为了跟踪动态极值,需要对基本的PSO算法进行两方面改进,第一是引入探测机制,使种群或粒子获得感知外部环境变化的能力;第二是引入响应机制,在探测到环境的变化后,采取某种响应方式对种群进行更新,以适应动态环境。
基于敏感粒子的动态粒子群算法是一种典型的动态粒子群算法,它在算法初始化时随机选择一个或多个位置,称为敏感粒子,每次迭代中计算敏感粒子适应度值,当发现适应度值变化时,认为环境已发生变化。
响应的方式是按照一定比例重新初始化粒子位置和粒子速度。
2、案例目录第十六章基于动态粒子群算法的动态环境寻优算法. 16.1理论基础. 16.1.1 动态粒子群算法. 16.1.2 动态环境. 16.2 案例背景. 16.3 MATLAB程序实现. 16.3.1 动态环境函数. 16.3.2 种群初始化. 16.3.3 循环动态寻找.
16.3.4 仿真结果. 16.4延伸阅读. 16.4.1 .APSO 16.4.2 .EPSO 16.4.3 TDPSO 16.5 参考文献. 10 3、主程序%% 循环寻找最优点for k = 1:1200 k % 新数字地图h = DF1function(X1,Y1,H1,X2(k),Y2(k),H2(k)); % 敏感粒子变化for i=1:5*n fitnessTest(i)=h(popTest(i,1),popTest(i,2)); end
oFitness=sum(fitnessTest); % 变化超过一定范围,重新初始化if abs(oFitness - nFitness)>1 index=randperm(20); pop(index(1:10),:)=unidrnd(501,[10,2]);
V(index(1:10),:)=unidrnd(100,[10,2])-50; end % 粒子搜索for i=1:Tmax for j=1:n % 速度更新V(j,:)=V(j,:)+floor(rand*(popgbest(j,:)-pop(j,:)))+floor(rand*(po pzbest - pop(j,:))); index1=find(V(j,:)>Vmax); V(j,index1)=Vmax; index2=find(V(j,:)popMax); pop(j,index1)=popMax; index2=find(pop(j,:) fitnessgbest(j) popgbest(j,:) = pop(j,:); fitnessgbest(j) = fitness(j); end % 群体极值更新if fitness(j) > fitnesszbest popzbest= pop(j,:); fitnesszbest = fitness(j); end end end fitnessRecord(k)=fitnesszbest; fitnesszbest=0; fitnessgbest=zeros(1,20); end 4、运行结果。