粒子群优化算法(详细易懂_很多例子)
- 格式:ppt
- 大小:2.63 MB
- 文档页数:49
粒子群优化算法(1)—粒子群优化算法简介PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。
大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。
这个过程我们转化为一个数学问题。
寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。
该函数的图形如下:当x=0.9350-0.9450,达到最大值y=1.3706。
为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。
下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。
直到最后在y=1.3706这个点停止自己的更新。
这个过程与粒子群算法作为对照如下:这两个点就是粒子群算法中的粒子。
该函数的最大值就是鸟群中的食物。
计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。
更新自己位置的公式就是粒子群算法中的位置速度更新公式。
下面演示一下这个算法运行一次的大概过程:第一次初始化第一次更新位置第二次更新位置第21次更新最后的结果(30次迭代)最后所有的点都集中在最大值的地方。
粒子群优化算法(2)—标准粒子群优化算法在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。
这个公式就是粒子群算法中的位置速度更新公式。
下面就介绍这个公式是什么。
在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。
并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。
粒子群算法原理及简单案例[ python ]介绍粒子群算法(Particle swarm optimization,PSO)是模拟群体智能所建立起来的一种优化算法,主要用于解决最优化问题(optimization problems)。
1995年由 Eberhart和Kennedy 提出,是基于对鸟群觅食行为的研究和模拟而来的。
假设一群鸟在觅食,在觅食范围内,只在一个地方有食物,所有鸟儿都看不到食物(即不知道食物的具体位置。
当然不知道了,知道了就不用觅食了),但是能闻到食物的味道(即能知道食物距离自己是远是近。
鸟的嗅觉是很灵敏的)。
假设鸟与鸟之间能共享信息(即互相知道每个鸟离食物多远。
这个是人工假定,实际上鸟们肯定不会也不愿意),那么最好的策略就是结合自己离食物最近的位置和鸟群中其他鸟距离食物最近的位置这2个因素综合考虑找到最好的搜索位置。
粒子群算法与《遗传算法》等进化算法有很多相似之处。
也需要初始化种群,计算适应度值,通过进化进行迭代等。
但是与遗传算法不同,它没有交叉,变异等进化操作。
与遗传算法比较,PSO的优势在于很容易编码,需要调整的参数也很少。
一、基本概念与遗传算法类似,PSO也有几个核心概念。
粒子(particle):一只鸟。
类似于遗传算法中的个体。
1.种群(population):一群鸟。
类似于遗传算法中的种群。
2.位置(position):一个粒子(鸟)当前所在的位置。
3.经验(best):一个粒子(鸟)自身曾经离食物最近的位置。
4.速度(velocity ):一个粒子(鸟)飞行的速度。
5.适应度(fitness):一个粒子(鸟)距离食物的远近。
与遗传算法中的适应度类似。
二、粒子群算法的过程可以看出,粒子群算法的过程比遗传算法还要简单。
1)根据问题需要,随机生成粒子,粒子的数量可自行控制。
2)将粒子组成一个种群。
这前2个过程一般合并在一起。
3)计算粒子适应度值。
4)更新种群中每个粒子的位置和速度。
什么是粒子群优化算法粒子群优化算法(ParticleSwarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。
是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。
通常认为它是群集智能(Swarm intelligence, SI)的一种。
它可以被纳入多主体优化系统(Multiagent OptimizationSystem,MAOS). 是由Eberhart博士和kennedy博士发明.PSO模拟鸟群的捕食行为。
一群鸟在随机搜索食物,在这个区域里只有一块食物。
所有的鸟都不知道食物在那里.但是他们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢.最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
PSO从这种模型中得到启示并用于解决优化问题.PSO中,每个优化问题的解都是搜索空间中的一只鸟。
我们称之为“粒子”。
所有的粒子都有一个由被优化的函数决定的适应值(fitnessva lue),每个粒子还有一个速度决定他们飞翔的方向和距离。
然后粒子们就追随当前的最优粒子在解空间中搜索。
PSO初始化为一群随机粒子(随机解),然后通过叠代找到最优解,在每一次叠代中,粒子通过跟踪两个“极值”来更新自己。
第一个就是粒子本身所找到的最优解,这个解叫做个体极值p Best,另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。
另外也可以不用整个种群而只是用其中一部分最优粒子的邻居,那么在所有邻居中的极值就是局部极值.[编辑]PSO算法介绍[1]如前所述,PSO模拟鸟群的捕食行为。
设想这样一个场景:一群鸟在随机搜索食物.在这个区域里只有一块食物。
所有的鸟都不知道食物在那里。
但是他们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢。
最简单有效的就是搜寻目前离食物最近的鸟的周围区域.PSO从这种模型中得到启示并用于解决优化问题。
PSO中,每个优化问题的解都是搜索空间中的一只鸟.我们称之为“粒子”。
粒子群优化算法综述粒子群优化算法的核心思想是模拟粒子通过信息交流来寻找最优解的过程。
每个粒子在空间中通过位置和速度进行与移动。
它们通过个体极值和全局极值的引导来调整自己的速度和位置。
具体而言,每个粒子根据自身经验和信息共享来更新速度和位置,并不断跟随历史经验和全局经验向最优解逼近。
在原始的粒子群优化算法中,粒子的速度和位置更新公式如下:\begin{{align*}}V_{ij}(t+1) &= wV_{ij}(t) + c_1r_1(p_{ij}(t) - x_{ij}(t)) + c_2r_2(g_{ij}(t) - x_{ij}(t)) \\x_{ij}(t+1) &= x_{ij}(t) + V_{ij}(t+1)\end{{align*}}\]其中,$V_{ij}(t)$为粒子$i$在维度$j$上的速度,$x_{ij}(t)$为粒子$i$在维度$j$上的位置,$p_{ij}(t)$为粒子$i$当前的个体最优位置,$g_{ij}(t)$为全局最优位置,$r_1$和$r_2$为[0, 1]的随机数,$c_1$和$c_2$为学习因子。
尽管原始的粒子群优化算法在一些简单问题上表现出良好的性能,但对于复杂问题,其效率和精度有待提升。
因此,研究者进行了一系列的改进与发展。
首先是关于学习因子的改进。
学习因子的选择会影响算法的性能。
经典的学习因子取值策略是将$c_1$和$c_2$设置为常数,但这种策略缺乏自适应性。
改进的学习因子选择方法包括线性递减学习因子、非线性学习因子和自适应学习因子等。
其次是关于收敛性和多样性的改进。
经典的粒子群优化算法容易陷入局部最优解,从而导致的收敛性不佳。
研究者通过引入惯性权重、控制种群多样性、引入随机性等方式改善了算法的收敛性和多样性。
此外,还有一些改进的算法思想在粒子群优化算法中得到了应用。
例如,粒子竞争机制、学习机制和混合策略等。
这些改进方法可以提高粒子群优化算法的效率和精度。
粒子群优化算法算法介绍 v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数.c1, c2 是学习因子. 通常 c1 = c2 = 2. 程序的伪代码如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax。
遗传算法和PSO的比较人工神经网络和PSO 这里用一个简单的例子说明PSO训练神经网络的过程。
这个例子使用分类问题的基准函数 (Benchmark function)IRIS数据集。
【优秀作业】粒子群优化算法粒子群优化算法一、概述粒子群优化算法(Particle Swarm Optimization,PSO)的思想来源于对鸟捕食行为的模仿,最初,Reynolds.Heppner 等科学家研究的是鸟类飞行的美学和那些能使鸟群同时突然改变方向,分散,聚集的定律上,这些都依赖于鸟的努力来维持群体中个体间最佳距离来实现同步。
而社会生物学家 E.O.Wilson 参考鱼群的社会行为认为从理论上说,在搜寻食物的过程中,尽管食物的分配不可知,群中的个体可以从群中其它个体的发现以及以往的经验中获益。
粒子群从这种模型中得到启发并用于解决优化问题。
如果我们把一个优化问题看作是在空中觅食的鸟群,那么粒子群中每个优化问题的潜在解都是搜索空间的一只鸟,称之为“粒子”(Particle),“食物”就是优化问题的最优解。
每个粒子都有一个由优化问题决定的适应度用来评价粒子的“好坏”程度,每个粒子还有一个速度决定它们飞翔的方向和距离,它根据自己的飞行经验和同伴的飞行经验来调整自己的飞行。
粒子群初始化为一群随机粒子(随机解),然后通过迭代的方式寻找最优解,在每一次的迭代中,粒子通过跟踪两个“极值”来更新自己,第一个是粒子本身所经历过的最好位置,称为个体极值即;另一个是整个群体经历过的最好位置称为全局极值。
每个粒子通过上述的两个极值不断更新自己,从而产生新一代的群体。
二、粒子群算法算法的描述如下:假设搜索空间是维,并且群体中有个粒子。
那么群体中的第个粒子可以表示为一个维的向量,,即第个粒子在维的搜索空间的位置是,它所经历的“最好”位置记作。
粒子的每个位置代表要求的一个潜在解,把它代入目标函数就可以得到它的适应度值,用来评判粒子的“好坏”程度。
整个群体迄今为止搜索到的最优位置记作,是最优粒子位置的索引。
()为惯性权重(inertia weight),为第个粒子到第代为止搜索到的历史最优解,为整个粒子群到目前为止搜索到的最优解,,分别是第个粒子当前的位置和飞行速度,为非负的常数,称为加速度因子,是之间的随机数。