高等数学习题详解-第8章二重积分
- 格式:doc
- 大小:576.00 KB
- 文档页数:13
习题8-11. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)Dm x y d μσ=⎰⎰.2. 试比较下列二重积分的大小:(1) 2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰,其中D 由x 轴、y 轴及直线x +y =1围成;(2)ln()Dx y d σ+⎰⎰与2ln()Dx y d σ+⎡⎤⎣⎦⎰⎰,其中D 是以A (1,0),B (1,1),C (2,0)为顶点的三角形闭区域.解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而, 2ln()[ln()]DDx y d x y d σσ+≥+⎰⎰⎰⎰习题8-21. 画出积分区域,并计算下列二重积分:(1) ()Dx y d σ+⎰⎰,其中D 为矩形闭区域:1,1x y ≤≤;(2) (32)Dx y d σ+⎰⎰,其中D 是由两坐标轴及直线x +y =2所围成的闭区域;(3) 22()D xy x d σ+-⎰⎰,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区域;(4) 2Dx y d σ⎰⎰,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0;(5) ln Dx y d σ⎰⎰,其中D 为:0≤x ≤4,1≤y ≤e ;(6)22Dx d σy ⎰⎰其中D 是由曲线11,,2xy x y x ===所围成的闭区域. 解:(1) 111111()()20.Dx y d dx x y dy xdx σ---+=+==⎰⎰⎰⎰⎰ (2) 222200(32)(32)[3(2)(2)]x Dx y d dx x y dy x x x dx σ-+=+=-+-⎰⎰⎰⎰⎰223202220[224]4.330x x dx x x x =-++=-++=⎰(3) 32222222002193()()()248yy Dy x y x d dy x y x dx y dy σ+-=+-=-⎰⎰⎰⎰⎰43219113.96860y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称,所以20.Dx yd σ=⎰⎰(5) 44201041ln ln (ln ln )2(1)2110e De e e x yd dx x ydy x y y y dx x e σ-==-==-⎰⎰⎰⎰⎰.(6) 122224111311122222119()()124642x x Dx x x x x x d dx dy dx x x dx y y y x σ==-=-=-=⎰⎰⎰⎰⎰⎰.2. 将二重积分(,)Df x y d σ⎰⎰化为二次积分(两种次序)其中积分区域D 分别如下:(1) 以点(0,0),(2,0),(1,1)为顶点的三角形;(2) 由直线y =x 及抛物线y 2=4x 所围成的闭区域;(3) 由直线y =x ,x =2及双曲线1y x=所围成的闭区域;(4) 由曲线y =x 2及y =1所围成的闭区域. 解:(1) 1221201(,)(,)(,).xx y ydx f x y dy dx f x y dy dy f x y dx --+=⎰⎰⎰⎰⎰⎰(2) 2441004(,)(,).y x y dx f x y dy dy f x y dx =⎰⎰⎰⎰(3) 12222111112(,)(,)(,).xyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰(4) 21111(,)(,).xdx f x y dy dy f x y dx -=⎰⎰⎰3. 交换下列二次积分的积分次序:(1) 10(,)ydy f x y dx ⎰⎰; (2)2220(,)yydy f x y dx ⎰⎰;(3) ln 10(,)e xdx f x y dy ⎰⎰; (4) 123301(,)(,)y ydy f x y dx dy f x y dx -+⎰⎰⎰⎰.解:(1) 111(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰.(2) 222402(,)(,).y x ydy f x y dx dx f x y dy =⎰⎰⎰⎰(3) ln 11(,)(,)y e xeedx f x y dy dy f x y dx =⎰⎰⎰⎰(4) 123323012(,)(,)(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+=⎰⎰⎰⎰⎰⎰.4. 求由平面x =0,y =0,x =1,y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体体积.解:11100037(623)(62).22V dx x y dy x dx =--=--=⎰⎰⎰5. 求由平面x =0,y =0,x +y =1所围成的柱体被平面z =0及曲面x 2+y 2=6-z 截得的立体体积.解:3111222000(1)34(6)[6(1)(1)).312x x V dx x y dy x x x dx --=--=----=⎰⎰⎰习题8-31. 画出积分区域,把二重积分(,)Df x y d σ⎰⎰化为极坐标系下的二次积分,其中积分区域D是:(1) x 2+y 2≤a 2 (a >0); (2) x 2+y 2≤2x ;(3) 1≤x 2+y 2≤4; (4) 0≤y ≤1-x ,0≤x ≤1. 解:(1) 20(,)(cos ,sin ).aDf x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(2) 2cos 202(,)(cos ,sin ).Df x y d d f r r rdr πθπσθθθ-=⎰⎰⎰⎰(3) 221(,)(cos ,sin ).D f x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(4)12cos sin 0(,)(cos ,sin ).Df x y d d f r r rdr πθθσθθθ+=⎰⎰⎰⎰2. 把下列积分化为极坐标形式,并计算积分值:(1)22220()aa y dy x y dx -+⎰⎰;(2)21220;xxdx x y dx +⎰⎰解:(1)224422320()248aa y aa a dy x y dx d r dr πππθ-+==⋅=⎰⎰⎰⎰. (2) 22sin 3122244cos 600001sin 3cos x x dx x y dx d r dr d πθπθθθθθ+==⎰⎰⎰⎰⎰244466400011cos 111(cos )[(cos )(cos )]33cos cos cos d d d πππθθθθθθθ-=-=--⎰⎰⎰ 532(21)1cos cos 4().3530πθθ--+=--+= 3. 在极坐标系下计算下列二重积分:(1)22x y De d σ+⎰⎰,其中D 是圆形闭区域: x 2+y 2≤1;(2) 22ln(1)Dxy d σ++⎰⎰,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;(3)arctanDyd σx⎰⎰,其中D 是由圆周x 2+y 2=1,x 2+y 2=4及直线y =0,y =x 所围成的在第一象限内的闭区域;(4)222DR x y d σ--其中D 由圆周x 2+y 2=Rx (R >0)所围成.解:(1) 22222100112(1).20xy r r De d d e rdr e e πσθππ+==⋅=-⎰⎰⎰⎰(2)23112222221ln(1)ln(1)[ln(1)]221Dr r xy d d r rdr r dr rππσθ++=+=+-+⎰⎰⎰⎰⎰ 212(1)[ln 22](2ln 21)441r r r dr rππ+-=-=-+⎰. (3) 222244010133arctan arctan(tan ).32264Dy d d rdr d rdr x ππππσθθθθ=⋅==⋅=⎰⎰⎰⎰⎰⎰(4)222DR x y d σ--3cos 2222222022cos 12()230R R d R r rdr R r d ππθππθθθ--=-=--⎰⎰⎰3333221(sin )33R R R d πππθθ-=--=⎰.4. 求由曲面z =x 2+y 2与22z x y =+所围成的立体体积.解:两条曲线的交线为x 2+y 2=1,因此,所围成的立体体积为:21222220[()]().6DV x y x y d d r r rdr ππσθ=++=-=⎰⎰⎰⎰习题8-41. 计算反常二重积分()x y De dx dy -+⎰⎰,其中D :x ≥0,y ≥x .2. 计算反常二重积分222()Ddx dyx y +⎰⎰,其中D :x 2+y 2≥1. 解:1.22201()2a aaax yx x aaa xe dx edy eedx e e ---------=-=-+-⎰⎰⎰所以2()211lim ().22a x y a a a De edxdy e e --+--→+∞-=-+-=⎰⎰2. 由232011112()22R d dr r R πθπ=-⎰⎰,得222211lim 2().2()2R Ddxdy x y R ππ→+∞=-=+⎰⎰复习题8(A )1. 将二重积分d d (,)Df x y x y ⎰⎰化为二次积分(两种次序都要),其中积分区域D 是:(1) ︱x ︱≤1,︱y ︱≤2;(2) 由直线y =x 及抛物线y 2=4x 所围成. 解:(1) 12211221(,)(,).dx f x y dy dy f x y dx ----=⎰⎰⎰⎰(2) 2424004(,)(,).xyy xdx f x y dy dy f x y dx =⎰⎰⎰⎰2. 交换下列两次积分的次序: (1)d d 10(,)yyy f x y x ⎰⎰;(2)d d 2220(,)a ax x x f x y y -⎰⎰;(3)d d +d d 12201(,)(,)xxx f x y y x f x y y -⎰⎰⎰⎰.解:(1) 211d (,)d d (,)d y x yxy f x y x x f x y y =⎰⎰⎰⎰.(2) 222222200d (,)d d (,)d aax x aa a y a a y x f x y y y f x y x -+---=⎰⎰⎰⎰.(3)1221201d (,)d +d (,)d d (,)d xxy yx f x y y x f x y y y f x y x --=⎰⎰⎰⎰⎰⎰.3. 计算下列二重积分:(1) e d x y Dσ+⎰⎰, D : ︱x ︱≤1,︱y ︱≤1;(2) d d 2D xy x y ⎰⎰,D 由直线y =1,x =2及y =x 围成;(3) d d (1)Dx x y -⎰⎰,D 由y =x 和y =x3围成;(4) d d 22()Dx y x y +⎰⎰,D :︱x ︱+︱y ︱≤1; (5) d 1sin Dy σy ⎰⎰,D 由22y x π=与y =x 围成; (6)d (4)Dx y σ--⎰⎰,D 是圆域x 2+y 2≤R 2;解: (1) 1111111211111e d ()()()1x y x y x x x x Ddx e dy e e dx e e e e σ+++-+----==-=-=--⎰⎰⎰⎰⎰.(2)5322224211121129d d ()()2253151xDx x xy x y dx x ydy x x dx ==-=-=⎰⎰⎰⎰⎰.(3) 3112430011117(1)d d (1)()325460x x Dx x y dx x dy x x x x dx -=-=--+=--+=-⎰⎰⎰⎰⎰.(4)1122220()d d 4()xDx y x y dx x y dy -+=+⎰⎰⎰⎰33241201412124(2)4()33323330x x x x x x dx x =--+=--+=⎰. (5) 222200sin 12sin d (sin sin )y y Dy y dy dx y y y dy y y πππσπ==-⎰⎰⎰⎰⎰222222sin (cos )1(cos sin )10ydy yd y y y y ππππππ=+=+-=-⎰⎰. (6)322200(4)d (4cos sin )[2(cos sin )]3RDR x y d r r rdr R d ππσθθθθθθ--=--=-+⎰⎰⎰⎰⎰3222[2(sin cos )]430R R R πθθθπ=--=.4. 已知反常二重积分e d 2y Dx σ-⎰⎰收敛,求其值.其中D 是由曲线y =4x 2与y =9x 2在第一象限所围成的区域.解:设2249(0)a D y x y x y a a ===>是由曲线、和在第一象限所围成.则22222200015555ed ()236144144144aaa a y y y y a D x dy dx ye dy e d y e σ-----==⋅=--=-⎰⎰⎰⎰⎰. 所以225e d lime d 144ay ya DD x x σσ--→+∞==⎰⎰⎰⎰. 5. 计算e d 2x x +∞--∞⎰.解:由第四节例2以及2y =e x -是偶函数,可知2e d x x +∞--∞=⎰.6. 求由曲面z =0及z =4-x 2-y 2所围空间立体的体积.解:曲面z =0和z =4-x 2-y 2的交线为x 2+y 2 =4.因此,所围空间立体的体积为:222220016(4)d d (4)2(8)84D x y x y d r rdr πθππ--=-=-=⎰⎰⎰⎰.7. 已知曲线y =ln x 及过此曲线上点(e ,1)的切线ey x 1=.(1) 求由曲线y =ln x ,直线ey x 1=和y =0所围成的平面图形D 的面积;(2) 求以平面图形D 为底,以曲面z =e y 为顶的曲顶柱体的体积.解:(1) 1ln (ln )12221e e e ee S xdx x x x =-=--=-⎰.(2) 221120013()()2220y y e yyyy y ye e V dy e dx e ye dy ye e ==-=-+=-⎰⎰⎰.(B )1. 交换积分次序:(1) 311(,)xxdx f x y dy -⎰⎰; (2)0112(,)y dy f x y dx --⎰⎰;(3) 224(,)x x f x y dy -⎰;(4) 110(,)dx f x y dy ⎰.解:(1) 3111(,)(,)x xydx f x y dy dy f x y dx -=⎰⎰⎰.(2) 01101221(,)(,)yxdy f x y dx dx f x y dy ---=⎰⎰⎰⎰.(3) 2242402(,)(,)(,)x x f x y dy dy f x y dx dy f x y dx -=+⎰⎰⎰.(4) 211121(,)(,)(,)y dx f x y dy dy f x y dx dy f x y dx =+⎰⎰⎰⎰.2. 计算积分2122x xxdx dy x y +⎰⎰.解:222sin sin 144cos cos 2220000cos cos xxx r dx dy d rdr d dr x y r πθπθθθθθθθ==+⎰⎰⎰⎰⎰⎰ 40sin ln 24(ln cos )cos 2d ππθθθθ==-=⎰. 3. 计算积分112201yy dy dx x y ++⎰⎰.解:111114cos 4cos cos 2222000sin sin [sin ]111yy r dy dx d rdr d dr dr x y r r ππθθθθθθθθ==-++++⎰⎰⎰⎰⎰⎰⎰ 44001ln 21(tan sin arctan )arctan (cos )cos 2cos d d ππθθθθθθ=-⋅=+⎰⎰令cos t θ=,则原式211ln 21ln 21ln 211(arctan ln(12222dt dt t t t t t =+=+=+++ln 213ln 213ln ln 22242224ππ=+--=-. 4. 设函数f (x )在区间0,1⎡⎤⎣⎦上连续,且1()f x dx A =⎰,求11()()xdx f x f y dy ⎰⎰. 解:设1'()()()(1)(0)F x f x f x dx F F A ==-=⎰,则.11111()()()[(1)()](1)()()(())xdx f x f y dy f x F F x dx F f x dx F x d F x =-=-⎰⎰⎰⎰⎰21()111(1)(1)[(1)(0)][(1)(0)](1)(1)(0)22220F x F A F A F F F F F A AF AF =-=--+=--21[(1)(0)]22A A F F =-=. 5. 计算2Dx y d σ⎰⎰,其中D 是由直线y =0,y =1及双曲线x 2-y 2=1所围成的闭区域.解:11222022(13Dx yd dy ydx y y σ==+⎰⎰⎰⎰35122222011122(1)(1)(1)1)335150y d y y =++=⋅+=⎰. 6. 计算222y xdx e dy ⎰⎰.解:2222222240000211(1)220y y y y y x dx e dy dy e dx ye dy e e ====-⎰⎰⎰⎰⎰.7. 证明211()()d ()()d 1b x bn n a a adx x y f y y b y f y y n ---=--⎰⎰⎰,其中n 为大于1的正整数. 证:22()()d ()()b x b bn n aaaydx x y f y y dy x y f y dx ---=-⎰⎰⎰⎰11()()1bn b yax y f y dy n -=--⎰11()()d 1bn ab y f y y n -=--⎰。
第八章 多元函数积分学一、二重积分的概念与性质1.定义设()y x f ,是定义在有界闭区域D 上的有界函数,如果对任意分割D 为n 个小区域,,,,21n σσσ∆∆∆ 对小区域()n k k ,,2,1 =∆σ上任意取一点()k k ηξ,都有()k nk k kd f σηξ∆∑=→1,lim存在,(其中k σ∆又表示为小区域k σ∆的面积,k d 为小区域k σ∆的直径,而k nk d d ≤≤=1max ) 则称这个极限值为()y x f ,在区域D 上的二重积分 记以()⎰⎰Dd y x f σ,,这时就称()y x f ,在D 上可积。
如果()y x f ,在D 上是有限片上的连续函数,则()y x f ,在D 上是可积的。
2.几何意义当()y x f ,为闭区域D 上的连续函数,且()0,≥y x f ,则二重积分()⎰⎰Dd y x f σ,表示以曲面()y x f z ,=为顶,侧面以D 的边界曲线为准线,母线平行于z 轴的曲顶柱体的体积。
当封闭曲面S 它在xy 平面上的投影区域为D ,上半曲面方程为()y x f z ,2=,下半曲面方程为()y x f z ,1=,则封闭曲面S 围成空间区域的体积为()()[]σd y x f y x f D⎰⎰-,,123.基本性质 (1)()()⎰⎰⎰⎰=DDd y x f k d y x kf σσ,,(k 为常数)(2)()()[]()()σσσd y x g d y x f d y x g y x f DDD⎰⎰⎰⎰⎰⎰±=±,,,,(3)()()()⎰⎰⎰⎰⎰⎰+=12,,,D D Dd y x f d y x f d y x f σσσ 其中21UDD D =,除公共边界外,1D 与2D 不重叠。
(4)若()()y x g y x f ,,≤,()D y x ∈,,则()()⎰⎰⎰⎰≤DDd y x g d y x f σσ,,(5)若()M y x f m ≤≤,,()D y x ∈,,则()⎰⎰≤≤DMS d y x f mS σ, 其中S 为区域D 的面积。
第⼋章⼆重积分习题答案第⼋章⼆重积分习题答案练习题8.11.设D:0y ≤0x a ≤≤,由⼆重积分的⼏何意义计算d Dx y解:d Dx y=20rd πθ??=22201()2d a r πθ=--??2. 设⼆重积分的积分区域为2214x y ≤+≤,则2dxdy =?? 解:2dxdy =??22 126d rdr πθπ=?练习题8.21.2d Dx σ??其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域.解:2d Dx σ??=22222301001515cos [cos2]84d r dr d d πππθθθθθπ=+= 2计算⼆重积分σd yx D)341(--,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。
解:σd y x D)341(--??= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--=222(1)84xdx --=?3. 应⽤⼆重积分,求在xy 平⾯上由曲线224x x y x y -==与所围成的区域D 的⾯积.解:22242202320(42)28(2)|33x x xDA dxdy dx dy x x x x -===-=-=4. 求旋转抛物⾯224z x y =--与xy 平⾯所围成的⽴体体积解: 2222220(4)(4)48DV x y d d r rdr d ππσθθπ=--=-==习题⼋⼀.判断题1.d Dσ??等于平⾯区域D 的⾯积.(√)2.⼆重积分 100f(x,y)d ydy x ??交换积分次序后为11f(x,y)d xdx x ?(×)⼆.填空题1.⼆重积分的积分区域为2214x y ≤+≤,则4dxdy =12π12π.2.⼆重积分d d Dxy x y ??的值为112,其中2:0D y x ≤≤,01x ≤≤.1123.⼆重积分1(,)ydy f x y dx ?交换积分次序后为11(,)xdx f x y dy. 11(,)xdx f x y dy ?4.设区域D 为1x ≤,1y ≤,则??(sin x x -)d d x y =0.05.交换积分次序1d (,)y f x y dx ?=211(,)(,)x dx f x y dy f x y dy +??.211(,)(,)x dx f x y dy f x y dy +??6.设D 是由221x y +≤所确定的区域。
习题8-11. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)Dm x y d μσ=⎰⎰.2. 试比较下列二重积分的大小:(1) 2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰,其中D 由x 轴、y 轴及直线x +y =1围成;(2)ln()Dx y d σ+⎰⎰与2ln()Dx y d σ+⎡⎤⎣⎦⎰⎰,其中D 是以A (1,0),B (1,1),C (2,0)为顶点的三角形闭区域.解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而, 2ln()[ln()]DDx y d x y d σσ+≥+⎰⎰⎰⎰习题8-21. 画出积分区域,并计算下列二重积分:(1) ()Dx y d σ+⎰⎰,其中D 为矩形闭区域:1,1x y ≤≤;(2) (32)Dx y d σ+⎰⎰,其中D 是由两坐标轴及直线x +y =2所围成的闭区域;(3) 22()D xy x d σ+-⎰⎰,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区域;(4) 2Dx y d σ⎰⎰,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0; (5) ln Dx y d σ⎰⎰,其中D 为:0≤x ≤4,1≤y ≤e ;(6)22Dx d σy ⎰⎰其中D 是由曲线11,,2xy x y x ===所围成的闭区域. 解:(1) 111111()()20.Dx y d dx x y dy xdx σ---+=+==⎰⎰⎰⎰⎰ (2) 222200(32)(32)[3(2)(2)]x Dx y d dx x y dy x x x dx σ-+=+=-+-⎰⎰⎰⎰⎰223202220[224]4.330x x dx x x x =-++=-++=⎰(3) 32222222002193()()()248yy Dy x y x d dy x y x dx y dy σ+-=+-=-⎰⎰⎰⎰⎰43219113.96860y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称,所以20.Dx yd σ=⎰⎰(5) 44201041ln ln (ln ln )2(1)2110e De e e x yd dx x ydy x y y y dx x e σ-==-==-⎰⎰⎰⎰⎰.(6) 122224111311122222119()()124642x x Dx x x x x x d dx dy dx x x dx y y y x σ==-=-=-=⎰⎰⎰⎰⎰⎰.2. 将二重积分(,)Df x y d σ⎰⎰化为二次积分(两种次序)其中积分区域D 分别如下:(1) 以点(0,0),(2,0),(1,1)为顶点的三角形;(2) 由直线y =x 及抛物线y 2=4x 所围成的闭区域;(3) 由直线y =x ,x =2及双曲线1y x=所围成的闭区域;(4) 由曲线y =x 2及y =1所围成的闭区域. 解:(1) 1221201(,)(,)(,).xx y ydx f x y dy dx f x y dy dy f x y dx --+=⎰⎰⎰⎰⎰⎰(2) 2441004(,)(,).y x y dx f x y dy dy f x y dx =⎰⎰⎰⎰(3) 12222111112(,)(,)(,).xyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰(4) 21111(,)(,).xdx f x y dy dy f x y dx -=⎰⎰⎰3. 交换下列二次积分的积分次序:(1) 10(,)ydy f x y dx ⎰⎰; (2)2220(,)yydy f x y dx ⎰⎰;(3) ln 10(,)e xdx f x y dy ⎰⎰; (4) 123301(,)(,)y ydy f x y dx dy f x y dx -+⎰⎰⎰⎰.解:(1) 111(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰.(2) 222402(,)(,).y x ydy f x y dx dx f x y dy =⎰⎰⎰⎰(3) ln 11(,)(,)y e xeedx f x y dy dy f x y dx =⎰⎰⎰⎰(4) 123323012(,)(,)(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+=⎰⎰⎰⎰⎰⎰.4. 求由平面x =0,y =0,x =1,y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体体积.解:11100037(623)(62).22V dx x y dy x dx =--=--=⎰⎰⎰5. 求由平面x =0,y =0,x +y =1所围成的柱体被平面z =0及曲面x 2+y 2=6-z 截得的立体体积.解:3111222000(1)34(6)[6(1)(1)).312x x V dx x y dy x x x dx --=--=----=⎰⎰⎰习题8-31. 画出积分区域,把二重积分(,)Df x y d σ⎰⎰化为极坐标系下的二次积分,其中积分区域D是:(1) x 2+y 2≤a 2 (a >0); (2) x 2+y 2≤2x ;(3) 1≤x 2+y 2≤4; (4) 0≤y ≤1-x ,0≤x ≤1. 解:(1) 20(,)(cos ,sin ).aDf x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(2) 2cos 202(,)(cos ,sin ).Df x y d d f r r rdr πθπσθθθ-=⎰⎰⎰⎰(3) 221(,)(cos ,sin ).D f x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(4)12cos sin 0(,)(cos ,sin ).Df x y d d f r r rdr πθθσθθθ+=⎰⎰⎰⎰2. 把下列积分化为极坐标形式,并计算积分值:(1)220)ady x y dx +⎰;(2)21;xxdx ⎰⎰解:(1)4422320)248aaa a dy x y dx d r dr πππθ+==⋅=⎰⎰⎰.(2) 2sin 31244cos 600001sin 3cos x x dx d r dr d πθπθθθθθ==⎰⎰⎰⎰⎰244466400011c o s 111(c o s )[(c o s )(c o s )]33cos cos cos d d d πππθθθθθθθ-=-=--⎰⎰⎰531cos cos 4()3530πθθ--=--+= 3. 在极坐标系下计算下列二重积分:(1)22x y De d σ+⎰⎰,其中D 是圆形闭区域: x 2+y 2≤1;(2) 22ln(1)Dxy d σ++⎰⎰,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;(3)arctanDyd σx⎰⎰,其中D 是由圆周x 2+y 2=1,x 2+y 2=4及直线y =0,y =x 所围成的在第一象限内的闭区域;(4)Dσ其中D 由圆周x 2+y 2=Rx (R >0)所围成.解:(1) 22222100112(1).20xy r r De d d e rdr e e πσθππ+==⋅=-⎰⎰⎰⎰(2)23112222221ln(1)ln(1)[ln(1)]221Dr r xy d d r rdr r dr rππσθ++=+=+-+⎰⎰⎰⎰⎰ 212(1)[ln 22](2ln 21)441r r r dr rππ+-=-=-+⎰. (3) 222244010133arctan arctan(tan ).32264Dy d d rdr d rdr x ππππσθθθθ=⋅==⋅=⎰⎰⎰⎰⎰⎰(4)Dσ3cos 22222022cos 12()230R R d R r d ππθππθθθ--==--⎰⎰⎰ 3333221(s i n )33R R R d πππθθ-=--=⎰. 4. 求由曲面z =x 2+y 2与z =所围成的立体体积.解:两条曲线的交线为x 2+y 2=1,因此,所围成的立体体积为:212220()]().6DV x y d d r r rdr ππσθ=+=-=⎰⎰⎰⎰习题8-41. 计算反常二重积分()x y De dx dy -+⎰⎰,其中D :x ≥0,y ≥x .2. 计算反常二重积分222()Ddx dyx y +⎰⎰,其中D :x 2+y 2≥1. 解:1.22201()2a aaax yx x aaa xe dx edy eedx e e ---------=-=-+-⎰⎰⎰所以2()211lim ().22a x y a a a De edxdy e e --+--→+∞-=-+-=⎰⎰2. 由232011112()22R d dr r R πθπ=-⎰⎰,得222211lim 2().2()2R Ddxdy x y R ππ→+∞=-=+⎰⎰复习题8(A )1. 将二重积分d d (,)Df x y x y ⎰⎰化为二次积分(两种次序都要),其中积分区域D 是:(1) ︱x ︱≤1,︱y ︱≤2;(2) 由直线y =x 及抛物线y 2=4x 所围成. 解:(1) 12211221(,)(,).dx f x y dy dy f x y dx ----=⎰⎰⎰⎰(2) 244004(,)(,).yy xdx f x y dy dy f x y dx =⎰⎰⎰⎰2. 交换下列两次积分的次序:(1)d d 10(,)yy f x y x ⎰;(2)d d 20(,)a x x y y ⎰;(3)d d +d d 12201(,)(,)xxx f x y y x f x y y -⎰⎰⎰⎰.解:(1)211d (,)d d (,)d x yxy f x y x x f x y y =⎰⎰⎰.(2) 200d (,)d d (,)d aaa a x f x y y y f x y x =⎰⎰⎰.(3)1221201d (,)d +d (,)d d (,)d xxy yx f x y y x f x y y y f x y x --=⎰⎰⎰⎰⎰⎰.3. 计算下列二重积分:(1) e d x y Dσ+⎰⎰, D : ︱x ︱≤1,︱y ︱≤1;(2) d d 2D xy x y ⎰⎰,D 由直线y =1,x =2及y =x 围成;(3) d d (1)Dx x y -⎰⎰,D 由y =x 和y =x3围成;(4) d d 22()Dx y x y +⎰⎰,D :︱x ︱+︱y ︱≤1; (5) d 1sin Dy σy ⎰⎰,D 由22y x π=与y =x 围成; (6)d (4)Dx y σ--⎰⎰,D 是圆域x 2+y 2≤R 2;解: (1) 1111111211111e d ()()()1x y x y x x x x Ddx e dy e e dx e e e e σ+++-+----==-=-=--⎰⎰⎰⎰⎰.(2)5322224211121129d d ()()2253151xDx x xy x y dx x ydy x x dx ==-=-=⎰⎰⎰⎰⎰.(3) 3112430011117(1)d d (1)()325460x x Dx x y dx x dy x x x x dx -=-=--+=--+=-⎰⎰⎰⎰⎰.(4)1122220()d d 4()xDx y x y dx x y dy -+=+⎰⎰⎰⎰33241201412124(2)4()33323330x x x x x x dx x =--+=--+=⎰. (5) 222200sin 12sin d (sin sin )y y Dy y dy dx y y y dy y y πππσπ==-⎰⎰⎰⎰⎰222222sin (cos )1(cos sin )10ydy yd y y y y ππππππ=+=+-=-⎰⎰. (6)322200(4)d (4cos sin )[2(cos sin )]3RDR x y d r r rdr R d ππσθθθθθθ--=--=-+⎰⎰⎰⎰⎰3222[2(sin cos )]430R R R πθθθπ=--=.4. 已知反常二重积分e d 2y Dx σ-⎰⎰收敛,求其值.其中D 是由曲线y =4x 2与y =9x 2在第一象限所围成的区域.解:设2249(0)a D y x y x y a a ===>是由曲线、和在第一象限所围成.则22222200015555ed ()236144144144aaa a y y y y a D x dy dx ye dy e d y e σ-----==⋅=--=-⎰⎰⎰⎰⎰. 所以225e d lime d 144ay ya DD x x σσ--→+∞==⎰⎰⎰⎰. 5. 计算e d 2x x +∞--∞⎰.解:由第四节例2以及2y =e x -是偶函数,可知2e d x x +∞--∞=⎰.6. 求由曲面z =0及z =4-x 2-y 2所围空间立体的体积.解:曲面z =0和z =4-x 2-y 2的交线为x 2+y 2 =4.因此,所围空间立体的体积为:222220016(4)d d (4)2(8)84D x y x y d r rdr πθππ--=-=-=⎰⎰⎰⎰.7. 已知曲线y =ln x 及过此曲线上点(e ,1)的切线ey x 1=.(1) 求由曲线y =ln x ,直线ey x 1=和y =0所围成的平面图形D 的面积;(2) 求以平面图形D 为底,以曲面z =e y 为顶的曲顶柱体的体积.解:(1) 1ln (ln )12221e e e ee S xdx x x x =-=--=-⎰.(2) 221120013()()2220y y e yyyy y ye e V dy e dx e ye dy ye e ==-=-+=-⎰⎰⎰.(B )1. 交换积分次序:(1) 311(,)xxdx f x y dy -⎰⎰; (2)0112(,)y dy f x y dx --⎰⎰;(3) 224(,)x x f x y dy -⎰;(4) 110(,)dx f x y dy ⎰.解:(1) 3111(,)(,)x xydx f x y dy dy f x y dx -=⎰⎰⎰.(2) 01101221(,)(,)yxdy f x y dx dx f x y dy ---=⎰⎰⎰⎰.。
习题8-11. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)Dm x y d μσ=⎰⎰.2. 试比较下列二重积分的大小:(1) 2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰,其中D 由x 轴、y 轴及直线x +y =1围成;(2) ln()Dx y d σ+⎰⎰与2ln()Dx y d σ+⎡⎤⎣⎦⎰⎰,其中D 是以A (1,0),B (1,1),C (2,0)为顶点的三角形闭区域.解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而,2ln()[ln()]DDx y d x y d σσ+≥+⎰⎰⎰⎰习题8-21. 画出积分区域,并计算下列二重积分: (1)()Dx y d σ+⎰⎰,其中D 为矩形闭区域:1,1xy ≤≤;(2) (32)Dx y d σ+⎰⎰,其中D 是由两坐标轴及直线x +y =2所围成的闭区域;(3) 22()Dx y x d σ+-⎰⎰,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区域;(4)2Dx y d σ⎰⎰,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0;(5)ln Dx y d σ⎰⎰,其中D 为:0≤x ≤4,1≤y ≤e ;(6)22Dx d σy ⎰⎰其中D 是由曲线11,,2xy x y x ===所围成的闭区域. 解:(1) 111111()()20.Dx y d dx x y dy xdx σ---+=+==⎰⎰⎰⎰⎰(2) 222200(32)(32)[3(2)(2)]xDx y d dx x y dy x x x dx σ-+=+=-+-⎰⎰⎰⎰⎰223202220[224]4.330x x dx x x x =-++=-++=⎰(3) 32222222002193()()()248yy Dy x y x d dy x y x dx y dy σ+-=+-=-⎰⎰⎰⎰⎰43219113.96860y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称,所以20.Dx yd σ=⎰⎰(5) 44201041ln ln (ln ln )2(1)2110e De e e x yd dx x ydy x y yy dx x e σ-==-==-⎰⎰⎰⎰⎰.(6) 122224111311122222119()()124642x x Dx x x x x x d dx dy dx x x dx y y y x σ==-=-=-=⎰⎰⎰⎰⎰⎰. 2. 将二重积分(,)Df x y d σ⎰⎰化为二次积分(两种次序)其中积分区域D 分别如下:(1) 以点(0,0),(2,0),(1,1)为顶点的三角形; (2) 由直线y =x 及抛物线y 2=4x 所围成的闭区域;(3) 由直线y =x ,x =2及双曲线1y x =所围成的闭区域;(4) 由曲线y =x 2及y =1所围成的闭区域. 解:(1) 12212001(,)(,)(,).xxy ydx f x y dy dx f x y dy dy f x y dx --+=⎰⎰⎰⎰⎰⎰(2) 2441004(,)(,).y xy dx f x y dy dy f x y dx =⎰⎰⎰⎰(3) 12222111112(,)(,)(,).xyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰(4) 211110(,)(,).xdx f x y dy dy f x y dx -=⎰⎰⎰3. 交换下列二次积分的积分次序:(1) 100(,)ydy f x y dx⎰⎰; (2)2220(,)yydy f x y dx⎰⎰;(3)ln 1(,)exdx f x y dy⎰⎰; (4)123301(,)(,)y ydy f x y dx dy f x y dx-+⎰⎰⎰⎰.解:(1) 111000(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰.(2) 2224002(,)(,).yx ydy f x y dx dx f x y dy =⎰⎰⎰⎰(3) ln 1100(,)(,)y exeedx f x y dy dy f x y dx =⎰⎰⎰⎰(4) 1233230012(,)(,)(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+=⎰⎰⎰⎰⎰⎰.4. 求由平面x =0,y =0,x =1,y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体体积.解:11100037(623)(62).22V dx x y dy x dx =--=--=⎰⎰⎰ 5. 求由平面x =0,y =0,x +y =1所围成的柱体被平面z =0及曲面x 2+y 2=6-z 截得的立体体积.解:3111222000(1)34(6)[6(1)(1)).312xx V dx x y dy x x x dx --=--=----=⎰⎰⎰习题8-31. 画出积分区域,把二重积分(,)Df x y d σ⎰⎰化为极坐标系下的二次积分,其中积分区域D 是:(1) x 2+y 2≤a 2 (a >0); (2) x 2+y 2≤2x ;(3) 1≤x 2+y 2≤4; (4) 0≤y ≤1-x ,0≤x ≤1.解:(1) 20(,)(cos ,sin ).aDf x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(2) 2cos 202(,)(cos ,sin ).Df x y d d f r r rdr πθπσθθθ-=⎰⎰⎰⎰(3) 221(,)(cos ,sin ).Df x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(4) 12cos sin 0(,)(cos ,sin ).Df x y d d f r r rdr πθθσθθθ+=⎰⎰⎰⎰2. 把下列积分化为极坐标形式,并计算积分值:(1) 222200()aa y dy x y dx -+⎰⎰; (2) 21220;xxdx x y dx +⎰⎰解:(1) 2244223200()248aa y aa a dy x y dx d r dr πππθ-+==⋅=⎰⎰⎰⎰. (2) 22sin 3122244cos 60001sin 3cos xxdx x y dx d r dr d πθπθθθθθ+==⎰⎰⎰⎰⎰ 244466400011cos 111(cos )[(cos )(cos )]33cos cos cos d d d πππθθθθθθθ-=-=--⎰⎰⎰ 532(21)1cos cos 4().3530πθθ--+=--+= 3. 在极坐标系下计算下列二重积分: (1)22x y De d σ+⎰⎰,其中D 是圆形闭区域: x 2+y 2≤1;(2) 22ln(1)Dx y d σ++⎰⎰,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;(3) arctan Dy d σx⎰⎰,其中D 是由圆周x 2+y 2=1,x 2+y 2=4及直线y =0,y =x所围成的在第一象限内的闭区域;(4) Dσ其中D 由圆周x 2+y 2=Rx (R >0)所围成.解:(1) 22222100112(1).20x y r r De d d e rdr e e πσθππ+==⋅=-⎰⎰⎰⎰(2) 23112222221ln(1)ln(1)[ln(1)]221Dr r xy d d r rdr r dr rππσθ++=+=+-+⎰⎰⎰⎰⎰ 212(1)[ln 22](2ln 21)441r r r dr r ππ+-=-=-+⎰.(3) 222244010133arctan arctan(tan ).32264Dy d d rdr d rdr x ππππσθθθθ=⋅==⋅=⎰⎰⎰⎰⎰⎰(4) Dσ3cos 22222022cos 12()230R R d R r d ππππθθθ--==--⎰⎰⎰ 3333221(sin )33R R R d πππθθ-=--=⎰.4. 求由曲面z =x 2+y 2与z =所围成的立体体积.解:两条曲线的交线为x 2+y 2=1,因此,所围成的立体体积为:212220()]().6DV x y d d r r rdr ππσθ=+=-=⎰⎰⎰⎰习题8-41. 计算反常二重积分()x y De dx dy -+⎰⎰,其中D :x ≥0,y ≥x .2. 计算反常二重积分222()Ddx dy x y +⎰⎰,其中D :x 2+y 2≥1.解:1. 22201()2a aa ax y x x a aa xe dx e dy e e dx e e ---------=-=-+-⎰⎰⎰ 所以2()211lim ().22a x y a a a De edxdy e e --+--→+∞-=-+-=⎰⎰2. 由232011112()22Rd dr r R πθπ=-⎰⎰,得222211lim 2().2()2R Ddxdy x y R ππ→+∞=-=+⎰⎰复习题8 (A )1. 将二重积分d d (,)Df x y x y ⎰⎰化为二次积分(两种次序都要),其中积分区域D 是:(1) ︱x ︱≤1,︱y ︱≤2;(2) 由直线y =x 及抛物线y 2=4x 所围成. 解:(1) 12211221(,)(,).dx f x y dy dy f x y dx ----=⎰⎰⎰⎰(2) 2424004(,)(,).xyy xdx f x y dy dy f x y dx =⎰⎰⎰⎰2. 交换下列两次积分的次序: (1)d d 10(,)yyy f x y x⎰⎰;(2)d d 2220(,)a ax x x f x y y-⎰⎰;(3)d d +d d 122001(,)(,)xxx f x y y x f x y y -⎰⎰⎰⎰.解:(1) 21100d (,)d d (,)d yxyxy f x y x x f x y y =⎰⎰⎰⎰.(2) 22222220d (,)d d (,)d aax x aa a y a a y x f x y y y f x y x -+---=⎰⎰⎰⎰.(3) 12212001d (,)d +d (,)d d (,)d xxy yx f x y y x f x y y y f x y x --=⎰⎰⎰⎰⎰⎰.3. 计算下列二重积分: (1)ed x yDσ+⎰⎰, D : ︱x ︱≤1,︱y ︱≤1;(2)d d 2Dxy x y ⎰⎰,D 由直线y 1,x 2及y x 围成;(3)d d (1)Dx x y-⎰⎰,D 由y x 和y x 3围成;(4)d d 22()Dxy x y +⎰⎰,D :︱x ︱︱y ︱≤1;(5)d 1sin Dy σy ⎰⎰,D 由22y x π=与y x 围成; (6)d (4)Dx y σ--⎰⎰,D是圆域x 2+y 2≤R 2;解: (1) 1111111211111e d ()()()1x y x y x x x x Ddx e dy e e dx e e e e σ+++-+----==-=-=--⎰⎰⎰⎰⎰.(2) 5322224211121129d d ()()2253151xDx x xy x y dx x ydy x x dx ==-=-=⎰⎰⎰⎰⎰.(3) 3112430011117(1)d d (1)()325460xx Dx x y dx x dy x x x x dx -=-=--+=--+=-⎰⎰⎰⎰⎰.(4) 11222200()d d 4()xDx y x y dx x y dy -+=+⎰⎰⎰⎰33241201412124(2)4()33323330x x x x x x dx x =--+=--+=⎰.(5) 222200sin 12sin d (sin sin )y y Dy y dy dx y y y dy y y πππσπ==-⎰⎰⎰⎰⎰222222sin (cos )1(cos sin )10ydy yd y y y y ππππππ=+=+-=-⎰⎰.(6)3222(4)d (4cos sin )[2(cos sin )]3R DR x y d r r rdr R d ππσθθθθθθ--=--=-+⎰⎰⎰⎰⎰3222[2(sin cos )]430R R R πθθθπ=--=.4. 已知反常二重积分e d 2y Dx σ-⎰⎰收敛,求其值.其中D 是由曲线y =4x 2与y =9x 2在第一象限所围成的区域.解:设2249(0)a D y x y x y a a ===>是由曲线、和在第一象限所围成.则22222200015555ed ()236144144144aaa a y y y y a D x dy dx ye dy e d y e σ-----==⋅=--=-⎰⎰⎰⎰⎰.所以225e d lim e d 144ay y a DD x x σσ--→+∞==⎰⎰⎰⎰. 5. 计算e d 2xx+∞--∞⎰.解:由第四节例2以及2y =e x -是偶函数,可知2e d x x +∞--∞=⎰.6. 求由曲面z =0及z =4-x 2-y 2所围空间立体的体积.解:曲面z =0和z =4-x 2-y 2的交线为x 2+y 2 =4.因此,所围空间立体的体积为:22222016(4)d d (4)2(8)84Dx y x y d r rdr πθππ--=-=-=⎰⎰⎰⎰.7. 已知曲线y =ln x 及过此曲线上点(e ,1)的切线ey x 1=. (1) 求由曲线y =ln x ,直线ey x 1=和y =0所围成的平面图形D 的面积;(2) 求以平面图形D 为底,以曲面z =e y 为顶的曲顶柱体的体积.解:(1) 1ln (ln )12221ee e eeS xdx x x x =-=--=-⎰. (2) 221120013()()2220yye y y y y y ye e V dy e dx e ye dy ye e ==-=-+=-⎰⎰⎰.(B )1. 交换积分次序: (1) 311(,)xx dx f x y dy -⎰⎰; (2)0112(,)ydy f x y dx--⎰⎰;(3) 224(,)x x f x y dy-⎰; (4) 110(,)dx x y dy ⎰.解:(1) 31110(,)(,)xx ydx f x y dy dy f x y dx -=⎰⎰⎰.(2) 01101221(,)(,)yxdy f x y dx dx f x y dy ---=⎰⎰⎰⎰.(3) 224242(,)(,)(,)x xf x y dy dy f x y dx dy f x y dx -=+⎰⎰⎰.(4) 21112001(,)(,)(,)y dx f x y dy dy f x y dx dy f x y dx =+⎰⎰⎰⎰.2. 计算积分21220xxxdx dy x y +⎰⎰.解:222sin sin 144cos cos 22200000cos cos xxx r dx dy d rdr d dr x y r πθπθθθθθθθ==+⎰⎰⎰⎰⎰⎰40sin ln 24(ln cos )cos 2d ππθθθθ==-=⎰. 3. 计算积分112201yy dy dx x y ++⎰⎰.解:111114cos 4cos cos 222200000sin sin [sin ]111yy r dy dx d rdr d dr dr x y r r ππθθθθθθθθ==-++++⎰⎰⎰⎰⎰⎰⎰ 44001ln 21(tan sin arctan )arctan (cos )cos 2cos d d ππθθθθθθ=-⋅=+⎰⎰令cos t θ=,则原式211ln 21ln 21ln 211(arctan ln(12222dt dt t t t t t =+=+=+++ln 213ln 213ln ln 22242224ππ=+--=-. 4. 设函数f (x )在区间0,1⎡⎤⎣⎦上连续,且10()f x dx A =⎰,求11()()xdx f x f y dy ⎰⎰.解:设10'()()()(1)(0)F x f x f x dx F F A ==-=⎰,则.11111()()()[(1)()](1)()()(())xdx f x f y dy f x F F x dx F f x dx F x d F x =-=-⎰⎰⎰⎰⎰21()111(1)(1)[(1)(0)][(1)(0)](1)(1)(0)22220F x F A F A F F F F F A AF AF =-=--+=--21[(1)(0)]22A A F F =-=.5. 计算2Dx y d σ⎰⎰,其中D 是由直线y =0,y =1及双曲线x 2-y 2=1所围成的闭区域.解:112220022(13Dxyd dy ydx y y σ==+⎰⎰⎰⎰ 35122222011122(1)(1)(1)1)335150y d y y =++=⋅+=⎰. 6. 计算2220y x dx e dy ⎰⎰.解:2222222240000211(1)220yy y y yx dx e dy dy e dx ye dy e e ====-⎰⎰⎰⎰⎰. 7. 证明211()()d ()()d 1bxbn n a a a dx x y f y y b y f y y n ---=--⎰⎰⎰,其中n 为大于1的正整数.证:22()()d ()()b x b bn n a a a y dx x y f y y dy x y f y dx ---=-⎰⎰⎰⎰11()()1b n b yax y f y dy n -=--⎰11()()d 1bn ab y f y y n -=--⎰。