采样控制系统的分析
- 格式:doc
- 大小:546.00 KB
- 文档页数:11
自动控制原理知识点总结自动控制原理是一门研究自动控制系统的基本理论和方法的学科,它对于理解和设计各种控制系统具有重要意义。
下面将对自动控制原理的一些关键知识点进行总结。
一、控制系统的基本概念控制系统是由控制对象、控制器和反馈环节组成的。
控制对象是需要被控制的物理过程或设备,例如电机的转速、温度的变化等。
控制器则是根据输入的控制信号和反馈信号来产生控制作用,以实现对控制对象的期望控制。
反馈环节则将控制对象的输出信号反馈给控制器,形成闭环控制,从而提高系统的控制精度和稳定性。
在控制系统中,常用的术语包括输入量、输出量、偏差量等。
输入量是指施加到系统上的外部激励,输出量是系统的响应,而偏差量则是输入量与反馈量的差值。
二、控制系统的数学模型建立控制系统的数学模型是分析和设计控制系统的基础。
常见的数学模型有微分方程、传递函数和状态空间表达式。
微分方程描述了系统输入与输出之间的动态关系,通过对系统的物理规律进行分析和推导,可以得到微分方程形式的数学模型。
传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。
它将复杂的微分方程转化为简单的代数形式,便于系统的分析和设计。
状态空间表达式则是用一组状态变量来描述系统的内部动态特性,能够更全面地反映系统的性能。
三、控制系统的性能指标为了评估控制系统的性能,需要定义一些性能指标。
常见的性能指标包括稳定性、准确性和快速性。
稳定性是控制系统能够正常工作的前提,如果系统不稳定,输出将无限制地增长或振荡,无法实现控制目标。
准确性通常用稳态误差来衡量,它表示系统在稳态时输出与期望输出之间的偏差。
快速性则反映了系统从初始状态到达稳态的速度,常用上升时间、调节时间等指标来描述。
四、控制系统的稳定性分析判断控制系统的稳定性是自动控制原理中的重要内容。
常用的稳定性判据有劳斯判据和赫尔维茨判据。
劳斯判据通过计算系统特征方程的系数来判断系统的稳定性,具有计算简单、直观的优点。
电气工程中的自动化控制系统数据采集与分析在电气工程中,自动化控制系统的数据采集与分析是至关重要的一环。
通过这一过程,工程师们可以获取到关键的数据指标,并根据其分析结果进行合理的控制与优化,以提高系统的效率和性能。
本文将就电气工程中的自动化控制系统数据采集与分析进行探讨。
一、数据采集自动化控制系统中的数据采集是指通过传感器、仪表等设备获取到系统运行时产生的各种数据信息。
这些数据信息反映了系统不同参数的实时状态,包括但不限于电压、电流、温度、湿度等。
数据采集可以通过模拟信号和数字信号两种方式实现。
1. 模拟信号采集模拟信号采集是指将连续变化的物理量转化为对应的模拟电信号,并通过模拟输入模块进行采集。
这种方式常用于测量温度、湿度等模拟量参数。
采集到的模拟信号需经过采样、滤波和放大等处理,保证信号的准确性和稳定性。
2. 数字信号采集数字信号采集是指将模拟信号经过模数转换器(ADC)转换成数字信号,并通过数字输入模块进行采集。
数字信号采集具有高精度、抗干扰能力强等优点,适用于需要高精度测量和远程传输的场合。
采集到的数字信号可以直接用于系统控制和数据分析。
二、数据分析数据采集完成后,接下来的关键环节是对所获得的数据进行分析。
通过数据分析,工程师们可以全面了解系统的运行状态,揭示其中的潜在问题,并基于分析结果制定优化措施。
1. 数据预处理在进行数据分析之前,通常需要对采集到的数据进行预处理,以去除异常值和噪声等干扰因素。
数据预处理包括数据清洗、去噪、插值和对齐等操作,以确保分析结果的准确性和可靠性。
2. 数据可视化数据可视化是将处理后的数据以图表、曲线等形式展现出来,使得工程师们可以直观地观察数据的变化趋势和规律。
常见的数据可视化手段包括直方图、折线图、散点图等。
通过数据可视化,工程师们可以更好地理解数据,并发现其中的规律和异常情况。
3. 数据分析方法在进行数据分析时,可以采用各种统计学和数学方法。
常用的数据分析方法包括回归分析、时序分析、频谱分析、相关性分析等。
如何进行PLC系统的数据采集与分析PLC系统的数据采集与分析PLC(可编程逻辑控制器)系统是目前工业自动化中最常用的控制器之一。
作为一种先进的控制设备,PLC系统不仅能够实现自动化生产,还可以提供重要的过程数据,以便进行数据采集和分析。
本文将着重介绍如何进行PLC系统的数据采集与分析。
一、数据采集的基本原理数据采集是从PLC系统中获取各种状态和数值的过程,对于数据采集,我们需要遵循以下基本原理:1. 选择适当的传感器:根据采集需求,选择合适的传感器进行数据采集。
传感器的类型和规格应根据具体应用场景来确定。
2. 连接传感器和PLC系统:将传感器与PLC系统进行连接,确保数据能够准确地传输到PLC系统中。
通常,我们会使用模拟输入通道或数字输入通道来接收传感器的信号。
3. 配置采样周期:根据需求,设置采样周期以确定数据的采集频率。
采样周期可以根据实际情况进行调整,以确保数据采集的准确性和效率。
4. 数据存储:将采集到的数据存储在PLC系统的存储介质中,如内存或SD卡。
存储介质的选择应根据采集数据的类型和容量需求来确定。
二、数据采集的实践步骤下面将简要介绍进行PLC系统数据采集的实践步骤:1. 配置输入通道:在PLC系统的配置界面上,选择适当的输入通道,并将其与传感器进行连接。
确保输入通道的设置与传感器的类型和规格相匹配。
2. 设置采样周期:在PLC系统的设置界面上,配置数据采集的采样周期。
根据数据采集的需要,设置合适的时间间隔,以确保数据能够根据需要进行采集。
3. 编写数据采集程序:使用PLC系统提供的编程软件,编写数据采集程序。
程序的设计应考虑到数据的类型和采集频率,并确保数据的准确性和稳定性。
4. 启动数据采集:将编写好的数据采集程序加载到PLC系统中,并启动数据采集功能。
确保传感器正常工作,并监控采集到的数据是否符合预期。
三、数据分析的基本原理数据采集完成后,接下来就是对采集到的数据进行分析。
数据分析的基本原理如下:1. 数据预处理:对采集到的原始数据进行预处理,包括去除噪声、异常值处理和数据插值等。
采样控制系统仿真实验报告姓名胡晓健班级13学号08001331课题内容1、应用采样工作原理和离散控制系统设计方法设计采样控制系统。
2、掌握采样控制系统的特点及采样控制系统仿真的特殊问题,运用采样控制系统数字仿真的一般方法(差分方程递推求解法和对离散、连续部分分别计算的双重循环法)及Simulink 对系统进行仿真。
3、给出仿真设计方案和仿真模型。
4、仿真分析。
具体内容:采样控制系统如下图所示:一. 设计要求① 设被控对象sss G o +=21)(,采用零阶保持器,数字控制器为5.015.2)(+-=z z z D ,采样周期T=0.1s 。
应用差分方程递推求解法求系统输出的单位阶跃响应,并求其超调量、上升时间、峰值时间。
设计方案和实现差分方程递推求解法在构成采样控制仿真模型时,若连续部分不要求计算内部状态变量或不含非线性环节,则可以同样的采样周期分别建立离散部分和连续部分的差分方程,然后采用差分方程递推求解。
由题意可知被控对象不含非线性环节且不要求计算其内部状态变量,为了简化仿真过程并提高仿真精度,将连续部分的离散化模型嵌入到整个仿真模型中,即求出系统闭环脉冲传递函数(离散化模型),得到系统的差分方程后递推求解由题意得数字控制器(离散部分)为5.015.2)(+-=z z z D求解传递函数的程序如下:Ts=0.1 %采样周期num1=[1]den1=[1,1,0]G1c=tf(num1,den1)G1d=c2d(G1c,Ts) %采用零阶保持法进行系统变换G2d=tf([2.5 -1],[1 0.5],0.1)Gd=G1d*G2dGHd=feedback(Gd,1) %建立闭环系统模型Ts =0.1000num1 =1den1 =1 1 0%G1c的传递函数Transfer function:1-------s^2 + s%G1c转换后的Z传递函数Transfer function:0.004837 z + 0.004679----------------------z^2 - 1.905 z + 0.9048Sampling time: 0.1%G2d的传递函数Transfer function:2.5 z - 1---------z + 0.5Sampling time: 0.1%开环系统的Z传递函数Transfer function:0.01209 z^2 + 0.00686 z - 0.004679------------------------------------z^3 - 1.405 z^2 - 0.04758 z + 0.4524Sampling time: 0.1%闭环系统的Z 传递函数 Transfer function:0.01209 z^2 + 0.00686 z - 0.004679 ------------------------------------z^3 - 1.393 z^2 - 0.04072 z + 0.4477Sampling time: 0.1由上式可知当采样周期为T =0.1s 时,连续部分的脉冲传递函数为系统闭环脉冲传递函数系统差分方程为求解差分方程的MATLAB 程序如下clear allm=2;n=3; % 明确脉冲传递函数分子m=2;分母n=3 A=[-1.393 -0.04072 0.4477]; % 脉冲传递函数分母多项式的系数行向量 B=[0.01209 0.00686 -0.004679]; % 脉冲传递函数分子多项式的系数行向量R=zeros(m+1,1); % 建立参与递推运算的输入信号序列存储列向量Y=zeros(n,1); % 建立参与递推运算的输出信号序列存储列向量 T=0.1; % 明确采样周期T =0.1sM=150; % 设定仿真总时间为M*T=15s(进行M=150次递推计算) yt=0;t=0;for k=1:MR(k)=1; % r (t )=1(t )的离散序列R(0)=R(1)=…R(k)=1 R=[R(k);R(1:m)];% 刷新参与递推运算的输入信号序列 yk=-A*Y+B*R; % 递推运算21219048.0905.1104679.0004837.0)(----+-+=zzz z z G 3213214477.004072.0393.11004679.000686.001209.0)()(1)()()()()(------+---+=+==zz z zzzz G z D z G z D z R z Y z G cl )3(004679.0)2(00686.0)1(01209.0)3(4477.0)2(04072.0)1(393.1)(---+-+---+-=k k r k r k y k y k y k yY=[yk;Y(1:n-1)];% 刷新参与递推运算的输出信号序列yt=[yt,yk]; % yt 为记载各采样(kT)时刻输出响应的行向量 t=[t,k*T]; % t 为记载各采样(kT)时刻的行向量(与yt 对应) endplot(t,yt,'*k'); % 绘制各采样(kT)时刻的输出响应图 grid;xlabel('time(s)'); ylabel('y(kT)');超调量 σ% 指响应的最大偏离量h(tp)与终值h (∞)的差与终值h (∞)比的百分数h(tp)-h %*100%h σ∞=∞()()峰值时间 tp 指响应超过其终值到达第一个峰值所需的时间上升时间 tr 指响应从终值10%上升到终值90%所需的时间求超调量的程序 maxy=max(yt); yss=yt(length(t));pos=100*(maxy-yss)/yss求峰值时间的程序 for i=1:50if yt(i)==maxy,n=i;end endtp=(n-1)*15/length(t)求上升时间的程序 for i=1:50if (yt(i)<yss*0.1),t1=i;end if (yt(i)<yss*0.9),t2=i;end endts=(t2-t1)*15/length(t)测试和结果.输出的单位阶跃响应为由程序算出的超调量,峰值时间和上升时间超调量pos = 14.0155峰值时间tp =3.5762上升时间ts =1.6887由上面两张截图算出的超调量σ%=(1.163-1.02)/1.02=14.02%峰值时间tp=3.6由上面两张截图可得上升时间tr=2-0.4=1.6性能分析该仿真算法不仅简单易行且仿真精度高。
《自动控制理论》实验教学大纲课程名称:自动控制理论课程性质:非独立设课使用教材:自编课程编号:面向专业:自动化课程学分:考核方法:成绩是考核学习效果的重要手段,实验成绩按学生的实验态度,独立动手能力和实验报告综合评定,以20%的比例计入本门课程的总成绩。
实验课总成绩由平时成绩(20%)、实验理论考试成绩(40%)、实验操作考试成绩(40%)三部分组成,满分为100分。
实验理论考试内容包含实验原理、实验操作方法、实验现象解析、实验结果评价、实验方案设计等。
考试题型以填空、判断、选择、问答为主,同时可结合课程特点设计其他题型。
实验操作考试根据课程特点设计若干个考试内容,由学生抽签定题。
平时成绩考核满分为20分,平时成绩= 平时各次实验得分总和÷实验次数(≤20分)。
每次实验得分计算办法为:实验报告满分10分(其中未交实验报告或不合格者0分,合格6分,良好8分,优秀10分);实验操作满分10分(其中旷课或不合格者0分,合格6分,良好8分,优秀10分)。
撰写人:任鸟飞审核人:胡皓课程简介:自动控制理论是电气工程及其自动化专业最主要的专业基础必修课。
通过本课程的各个教学环节的实践,要求学生能熟练利用模拟电路搭建需要的控制系统、熟练使用虚拟示波器测试系统的各项性能指标,并能根据性能指标的变化分析参数对系统的影响。
实验过程中要求学生熟悉自动控制理论中相关的知识点,可以在教师预设的实验前提下自己设计实验方案,完成实验任务。
教学大纲要求总学时80,其中理论教学68学时、实验12学时,实验个数6个。
9采样控制系统的分析√4选做10采样控制系统的动态校正√4选做合计实验一典型环节的电路模拟一、实验类型:综合性实验二、实验目的:1.熟悉THBCC-1型实验平台及“THBCC-1”软件的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
三、实验内容与要求:1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.画出各典型环节的实验电路图,并注明参数。
东南大学自动化学院
实验报告
课程名称:自动控制原理
实验名称:串联校正研究、采样控制系统的分析
院(系):电气工程学院专业:电气工程及其自动化姓名:学号:
同组人员:实验时间:2011.12.16
评定成绩:审阅教师:
实验八采样控制系统的分析
一、实验目的
(1) 熟悉用LF398组成的采样控制系统;
(2) 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理
及其实现方法;
(3) 研究开环增益K 和采样周期T 的变化对系统动态性能的影
响;
二、实验仪器
THBDC-1实验平台
THBDC-1虚拟示波器
三、实验原理
(1) 采样定理即香农采样定理,其证明要使被采样后的离散信号
X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为: max 2ωω≥S
式中S ω为采样的角频率,max ω为连续信号的最高角频率。
由于T
S πω2=,因而式可为 max
ωπ≤T T 为采样周期。
(2)采样控制系统稳定的充要条件是其特征方程的根均位于Z 平
面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。
根据上式可判别该采样控制系
统否稳定,并可用迭代法求出该系统的阶跃输出响应。
四、实验内容
(1)利用实验平台设计一个对象为二阶环节的模拟电路,并与采
样电路组成一个数-模混合系统。
(2)分别改变系统的开环增益K 和采样周期T S ,研究它们对系统
动态性能及稳态精度的影响。
五、实验结果及分析
(1)零阶保持器
模拟电路图如下:
其中输入的连续波形图的信号为: c ω=2π×10=10π≈31.4 rad/s
以下通过改变采样周期T ,来观察比较输出信号的变化。
① T S =0.003s ,即S ω=2π×
31000≈2094.4 rad/s ,远远大于输入信号的。
输入输出波形图如下:可见此时输入波形图得到完全复现。