一次函数的图像及性质
- 格式:doc
- 大小:657.00 KB
- 文档页数:10
一次函数的性质与像解析一次函数,也称为线性函数,是数学中常见的一种函数形式。
它的函数表达式为y = ax + b,其中a和b为常数,x和y为自变量和因变量。
本文将讨论一次函数的性质以及如何解析其像。
一、一次函数的性质1. 斜率一次函数的斜率表征了函数图像的倾斜程度。
斜率表示为a,它决定了函数图像是向上还是向下倾斜,以及倾斜的程度。
当a>0时,函数图像向上倾斜;当a<0时,函数图像向下倾斜;当a=0时,函数图像为水平线。
2. 截距一次函数的截距决定了函数图像与y轴的交点位置。
截距表示为b,当x=0时,对应的函数值为b,即函数图像与y轴的交点的纵坐标。
3. 定义域和值域一次函数的定义域为所有实数集R,即该函数在实数范围内都有定义。
而值域则根据斜率和截距的不同取值而有所变化。
当a>0时,值域为(-∞, +∞);当a<0时,值域也为(-∞, +∞);当a=0时,值域为{b}。
4. 单调性一次函数的单调性由斜率的正负决定。
当a>0时,函数递增;当a<0时,函数递减。
二、像解析像解析是指通过函数表达式计算出函数图像上的点的方法。
对于一次函数y = ax + b,计算像的步骤如下:1. 确定自变量的取值范围,即定义域。
2. 将自变量的值代入函数表达式,并进行计算,得到对应的因变量值。
3. 得到的结果便是函数图像上的点,其坐标为自变量和因变量的值。
举例说明:以一次函数y = 2x + 3为例,我们可以计算出函数在不同自变量取值下的因变量值,并得到相应的点坐标。
例如,当x = 0时,代入函数表达式可得y = 3,即点(0, 3);当x = 1时,代入函数表达式可得y = 5,即点(1, 5)。
通过类似的计算,我们可以得到更多的点坐标,进而描绘出一次函数的图像。
结论:一次函数具有以下性质:斜率决定了倾斜方向和程度,截距决定了与y轴的交点位置,定义域为实数集,值域根据斜率和截距的不同取值而变化,单调性由斜率的正负决定。
课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。
一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。
一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。
(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。
2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。
反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。
(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。
(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。
即该函数为减函数。
3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。
4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。
一次函数的图像和性质的知识点
一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k,即:y=kx+b(k为任意不为零的实数,b取任何实数);2.当x=0时,b为函数在y 轴上的截距。
一次函数的图像及性质
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
一次函数图象与性质知识点一次函数知识点〔 1〕、一次函数的形式:形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当 b=0 时, y=kx + b 即 y=kx ,所以说正比率函数是一种特其他一次函数.〔 2〕一次函数的图象是一条直线- b, 0〕〔 3〕一次函数与坐标轴的交点:与Y 轴的交点是〔0, b〕与X 轴的交点是〔k〔 4〕增减性: k>0 , y 随 x 的增大而增大;k<0, y 随 x 增大而减小 .〔 5〕图像的平移:当b>0时,将直线y=kx 的图象向上平移 b 个单位;当 b<0 时,将直线y=kx 的图象向下平移 b 个单位 .〔 6〕一次函数y=kx + b 的图象的画法 .依照几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先采用它与两坐标轴的交点:〔0,b〕,.即横坐标或纵坐标为0 的点 .〔 7〕一次函数图象及性质b>0b<0b=0k>经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随 x 的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k<图象从左到右下降,y 随 x 的增大而减小〔 8〕待定系数法求一次函数的剖析式例题精讲 :1、做一做,画出函数 y=-2x+2 的图象 ,结合图象答复以下问题。
(1)随着 x 的增大, y 将〔填“增大〞或“减小〞〕(2)它的图象从左到右〔填“上升〞或“下降〞〕(3) 图象与 x 轴的交点坐标是 ,与 y 轴的交点坐标是(4) 这个函数中 ,随着 x 的增大 ,y 将增大还是减小 ?它的图象从左到右怎样变化 ? (5) 当 x 取何值时 ,y=0?(6) 当 x 取何值时 ,y > 0?1: .正比率函数 y (3m 5) x ,当 m时, y 随 x 的增大而增大 .2.假设 y x 23b 是正比率函数,那么 b 的值是〔〕2C.2 3B.3D.323.函数 y=( k-1) x ,y 随 x 增大而减小,那么k 的范围是 ( )A. k0 B. k 1 C. k1 D. k14:假设关于 x 的函数 y (n1)x m 1是一次函数,那么m=, n.5.函数 y=ax+b 与 y=bx+a 的图象在同一坐标系内的大体地址正确的选项是〔 〕6 将直线 y = 3x 向下平移 5 个单位,获取直线;将直线 y = - x- 5 向上平移 5 个单位,获取直线 .7 函数 y = 3x+1,当自变量增加 m 时,相应的函数值增加〔〕A. 3m+1 B. 3m C. m D. 3m -18 假设 m < 0, n > 0,那么一次函数 y=mx+n 的图象不经过 〔 〕A. 第一象限B. 第二象限C.第三象限D. 第四象限10、一次函数 y =3x + b 的图象与两坐标轴围成的三角形面积是 24,求 b.一次函数图象和性质练习与反应 :1、函数 y=3x -6 的图象中:〔 1〕随着 x 的增大, y 将〔填“增大〞或“减小〞 〕〔 2〕它的图象从左到右〔填“上升〞或“下降〞 〕〔 3〕图象与 x 轴的交点坐标是 ,与 y 轴的交点坐标是2、函数 y=(m-3)x- 2.3(1) 当 m 取何值时 ,y 随 x 的增大而增大 ?(2) 当 m 取何值时 ,y 随 x 的增大而减小 ?3、直线 y=4x -2 与 x 轴的交点坐标是 ,与 y 轴的交点坐标是4、直线 y= 2x 2 与 x 轴的交点坐标是,与 y 轴的交点坐标是35、写出一条与直线 y=2x-3 平行的直线6、写出一条与直线 y=2x-3 平行,且经过点〔 2,7〕的直线7、直线 y=- 5x+7 可以看作是由直线 y=-5x -1 向 平移个单位获取的8. 函数y kx b 的图象与 y 轴交点的纵坐标为5 ,且当 x 1时, y 2 ,那么此函数的剖析式为.9. 在函数 y2x b 中,函数 y 随着 x 的增大而,此函数的图象经过点(2, 1) ,那么b.10. 如图,表示一次函数y mx n 与正比率函数 y mnx 〔 m , n 为常数,且 mn0 〕图象的是〔〕yyyyOOxOxOxxA.B.C .D .11. 在以下四个函数中,y 的值随 x 值的增大而减小的是〔〕A. y 2x B. y3x 6C. y2x 5D. y 3x 712. 一次函数 y kxk ,其在直角坐标系中的图象大体是〔〕yyy yO x O xOxOx13. 在以下函数中, 〔〕的函数值先到达 100.A .B . C.D.A. y 2x 6B. y 5xC. y 5x 1D. y 4x 214. 一 次函数y 3x 5 与一次函 数 y ax 6 ,假设它们 的图象是两 条互相同样 的直线, 那么a.15.一次函数 y x 3 与 y2x b 的图象交于y 轴上一点,那么 b.16.一次函数 y kx b 的图象不经过第三象限,也不经过原点,那么k、 b 的取值范围是〔〕A. k0 且 b 0B. k0 且 b 0C. k0 且 b 0D. k0 且 b 017.以以下图,正比率函数y kx(k 0) 的函数值y随 x 的增大而增大,那么一次函数 yx k 的图象大体是〔〕y y y yOxOxOxOxA .B.C. D .18.假设函数 y(m21)x m 2 与y轴的交点在 x 轴的上方,且m 10,m 为整数,那么吻合条件的m有〔〕A.8 个B.7个C.9个D.10个19.函数 y 34x ,y随 x 的增大而.20.一次函数 y(m3)x2m 1 的图象经过一、二、四象限,求m 的取值范围.21. 一次函数y (m 3) x m216 ,且y的值随 x 值的增大而增大.〔 1〕m的范围;〔 2〕假设此一次函数又是正比率函数,试求m 的值.。
第8讲—一次函数的图像及其性质 姓名:◆【要点1】---一次函数的图像1、一次函数通过列表、描点、连线画出来的图像是一条直线,常取两点A (kb-,0),B (0,b );因此我们也把一次函数y kx b =+(0k ≠)的图像叫做直线y kx b =+; 特例:(0)y kx k =≠的图像是经过坐标原点的一条直线。
2、一次函数y kx b =+中的k 叫做直线的斜率,b 叫做直线在y 轴上的截距; 【例1】在同一坐标系中,分别画出下列函数的图象 (1);122+==x y x y 和 (2)3212--=+-=x y x y 和 和2y x =-◆【要点2】---一次函数的图像性质【例2】1、已知函数:①、0.26y x =+;②、172y x =-+;③、2y x =;④、y =; 其中y 随x 的增大而增大的函数是 ;y 随x 的增大而减小的函数是 ;2、若正比例函数1352)1(---=m m x m y 的图象经过二、四象限,则这个正比例函数的解析式是 ;3、点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是( )6x +A 、12y y > B 、12y y < C 、12y y = D 、无法确定【例3】已知函数26y x =-+的图象如图所示,根据图象回答: (1)当______x =时,0y =,即方程260x -+=的解为思考:(2)当______x 时,0y >,即不等式260x -+>的解集为 ;(3)当______x 时,0y <,即不等式260x -+<的解集为 ; 总结:当0y =时,正好是图象与 轴的交点 当0y >时,图象位于 轴 方 当0y <时,图象位于 轴 方◆【要点3】---直线的平移:一次函数中,自变量x 增加或减少,图像就左、右平移,其法则是:左加右减;函数值y 增加或减少,图像就上、下平移,其法则是:上加下减,反之亦然。
一次函数的图像与性质一次函数,也被称为线性函数,是指一个变量与另一个变量之间的关系可以表示为 y = ax + b 的函数形式,其中 a 和 b 是常数。
本文将探讨一次函数的图像及其相关性质。
I. 一次函数的图像一次函数的图像是一条直线,在直角坐标系中表示为一条斜率为a、截距为 b 的直线。
斜率 a 决定了直线的倾斜方向和角度。
若 a > 0,则直线向右上方倾斜;若 a < 0,则直线向右下方倾斜;若 a = 0,则直线为水平直线。
截距 b 则表示了直线与 y 轴的交点。
II. 一次函数的性质1. 斜率一次函数的斜率 a 表示了直线的倾斜程度。
斜率的绝对值越大,则直线越陡峭;斜率为正值时表示直线上升,为负值时表示直线下降;斜率为零时表示直线水平。
通过斜率,我们可以判断一次函数的增减性。
2. 截距截距 b 表示了一次函数与 y 轴的交点,即当 x = 0 时,函数的取值。
截距的正负决定了直线在 y 轴上的位置,正值表示与 y 轴正向交点在上方,负值则在下方。
截距的大小也影响了直线与坐标轴的交点。
3. 零点一次函数的零点是指函数取值为零的点,也就是使得y = 0 的x 值。
通过求解一次函数的零点,我们可以求得函数与 x 轴的交点。
4. 增减性一次函数的增减性由斜率来决定。
当斜率a > 0 时,函数单调递增;当斜率 a < 0 时,函数单调递减;当斜率 a = 0 时,函数为常数函数,不具有增减性。
5. 定义域与值域一次函数的定义域为所有实数,因为 x 可以取任意实数值;值域则由斜率和截距来决定。
当斜率 a > 0 时,值域为 (-∞, +∞);当斜率 a < 0 时,值域为(+∞, -∞);当斜率 a = 0 时,值域只有截距 b。
6. 图像平移一次函数的图像可以通过改变斜率或截距来进行平移变换。
增加或减小截距 b 可以使得图像上下平移,增加或减小斜率 a 则使得图像左右平移。
一次函数图像和性质小结一般地,形如y=kx+b(k、b是常数,且k≠0•)的函数,•叫做一次函数(•linear function).一次函数的定义域是一切实数.当b=0时,y=kx+b即y=kx(k是常数,且k≠0•).所以说正比例函数是一种特殊的一次函数.当k=0时,y等于一个常数,这个常数用c来表示,一般地,我们把函数y=c(c是常数)叫做常值函数(constant function)它的定义域由所讨论的问题确定.一般来说, 一次函数y=kx+b(其中k、b是常数,且k≠0)的图像是一条直线. 一次函数y=kx+b的图像也称为直线y=kx+b. 一次函数解析式y=kx+b称为直线的表达式.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距.一般地,直线y=kx+b(k0)与y轴的交点坐标是(0,b).直线y=kx+b(k0)的截距是b.一次函数的图像:k>0 b>0 函数经过一、三、二象限k>0 b<0 函数经过一、二、三象限k<0 b>0 函数经过一、二、四象限k<0 b<0 函数经过二、三、四象限上面性质反之也成立1.b的作用在坐标平面上画直线y=kx+b (k≠0),截距b相同的直线经过同一点(0,b).2.k的作用k值不同,则直线相对于x轴正方向的倾斜程度不同.(1)k>0时,K值越大,倾斜角越大(2)k<0时,K值越大,倾斜角越大说明(1)倾斜角是指直线与x轴正方向的夹角;(2)常数k称为直线的斜率.关于斜率的确切定义和几何意义,将在高中数学中讨论.3.直线平移一般地,一次函数y=kx+b(b0)的图像可由正比例函数y=kx的图像平移得到.当b>0时,向上平移b个单位;当b<0时,向下平移|b|个单位.4.直线平行如果k1=k2 ,b1b2,那么直线y=k1x+b1与直线y=k2x+b2平行.如果直线y=k1x+b1与直线y=k2x+b2平行,那么k1=k2 ,b1b2 .1.一次函数与一元一次方程的关系一次函数y=kx+b的图像与x轴交点的横坐标就是一元一次方程kx+b=0的解;反之,一元一次方程kx+b=0的解就是一次函数y=kx+b的图像与x轴交点的横坐标.两者有着密切联系,体现数形结合的数学思想.2.一次函数与一元一次不等式的关系由一次函数y=kx+b的函数值y大于0(或小于0),就得到关于x的一元一次不等式kx+b>0(或kx+b<0).在一次函数y=kx+b的图像上且位于x轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式kx+b>0(或kx+b<0)的解.。
一次函数(四)一次函数图象及性质知识点一:一次函数的图象及其画法例1:已知一次函数2y x=,画出图象。
方法一:①列表方法二:①列表②描点③连线②描点③连线④两种方法画出的图象(相同或不同);正比例函数的图象是一条。
例2:已知一次函数1y x=+,画出它的图象。
方法一:①列表方法二:①先求与x轴和y轴的交点坐标②描点③连线②描点③连线④两种方法画出的图象(相同或不同);一次函数的图象是一条;x …-2 -1 0 1 2 …y ……(x,y)……x 0 1y(x,y)x …-2 -1 0 1 2 …y ……(x,y)……x 0 1y(x,y)总结归纳:⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是 .⑵由于 确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可,这种方法叫两点法. ①如果这个函数是正比例函数,通常取 两点;②如果这个函数是一般的一次函数(0b ≠),通常取 两点,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.练习:1、已知一次函数21y x =-,求直线与x 轴和y 轴的交点坐标,并画出它的图象。
解:(1)先求与x 轴和y 轴的交点(2)描点 (3)连线2、已知一次函数1y x =-+,求直线与x 轴和y 轴的交点坐标,并画出它的图象。
解:(1)先求与x 轴和y 轴的交点(2)描点 (3)连线知识点二:正比例函数和一次函数的性质 一、正比例函数性质 复习回顾1、正比例函数的概念:形如y kx =(k 是常数,0k ≠)的函数叫做 ,其中k 叫做 。
2、正比例函数(1)y a x =-,其中______k =,则a 的取值范围是 。
x 0y 0 (x ,y ) x 0y 0(x ,y )正比例函数的性质1、画出下列正比例函数的图象(1)2y x = (2)2y x =-①k = ,k 0 ①k = ,k 0②列表:③描点 ④连线2、①由图观察,正比例函数的图像是一条 。
②函数2y x =和2y x =-经过点(0, )(即 点),③函数2y x =的图象从左向右 ;(填上升或下降),即随着x 的增大,y 的值 。
函数2y x =-的图象从左向右 ; (填上升或下降),即随着x 的增大,y 的值 。
3、画下列函数图象,并回答问题:(1)3y x = (2)3y x =- 解:○1列表○2描点 ②描点 ○3连线 ○3连线④由图观察,正比例函数的图像是一条 。
x 0 1 y (x ,y ) x 0 1 y (x ,y ) x 0 1 y(x ,y )x 0 1 y (x ,y )②列表: ③描点 ④连线 ①列表⑤函数3y x =和3y x =-都经过点(0, )(即 点),⑥函数3y x =的图象从左向右 (填上升或下降);即随着x 的增大,y 的值 。
函数3y x =-的图象从左向右 (填上升或下降);即随着x 的增大,y 的值 。
4、归纳正比例函数的性质正比例函数(0)y kx k =≠的图象是一条 ,它经过 点;正比例函数k 的取值 大致图象经过的象限 函数的性质(0)y kx k =≠0k第 象限y 随x 的增大而0k第 象限y 随x 的增大而课堂练习:1、①正比例函数7y x =-的大致图象是 图象经过第 象限,y 随着x 的增大而 ;②正比例函数4y x =的大致图象是 图象经过第 象限,y 随着x 的增大而 ;③直线y x =-的大致图象 图象经过第 象限,y 随着x 的增大而 ;⑥正比例函数12y x =图象是经过点(0, )和点(3, )的一条 ,它的大致图象是 图象经过第 象限,从左到右图象 (上升或下降),y 随x 的增大而 。
2、正比例函数()239y a x a =-+-,求a 的取值范围。
解:∵______k =,_______b =,∴3、正比例函数(21)y m x =-的图象经过第一、三象限,则m 的取值范围 。
4、正比例函数(21)y m x =+的图象经过第二、四象限,则m 的取值范围 。
5、已知函数(0)y kx k =≠,当3x =时,6y =,求出y 与x 之间的函数关系式,并分别求出4x =和3x =-时,y 的值。
二、一次函数性质复习一次函数的概念:形如y = (,k b 是常数且 )的函数是一次函数。
一、根据图象探索k 的性质1、用两点法分别画出下列一次函数的图象(1)1y x =+ (2)1y x =-①k = ,k 0 ①k = ,k 0②列表:③描点 ④连线(3)1y x =-+ (4)1y x =--①k = ,k 0 ①k = ,k 0②列表:③描点 ④连线2、①由上面四个图观察看出,一次函数的图象是一条 。
x y (x ,y )x y (x ,y ) x y (x ,y )x y (x ,y ) ②列表: ③描点 ④连线 ②列表:③描点 ④连线②一次函数1y x =+中_____k =;1y x =-中_____k =;它们的____0k 。
两个图象相同之处:图象从左向右 ;(填上升或下降),即y 随着x 的增大而 。
(____0k ) ③一次函数1y x =-+中_____k =;1y x =--中_____k =;它们的____0k 。
两个图象相同之处:图象从左向右 ;(填上升或下降),即y 随着x 的增大而 。
(____0k )3、归纳一次函数k 的性质:当0k >时,直线y kx b =+从左向右 ;即y 随着x 的增大而 。
当0k <时,直线y kx b =+从左向右 ;即y 随着x 的增大而 。
4、练习:(1)直线31y x =-+由左至右 ,y 随x 的增大而 (2)直线21y x =-由左至右 ,y 随x 的增大而 (3)直线45y x =-+由左至右 ,y 随x 的增大而二:探索一次函数b 的性质1、用两点法分别画出下列一次函数的图象(1)21y x =+ (2)2y x =-①k = ,b = ①k = ,b =②列表:③描点④连线⑤21y x =+与y 轴的交点坐标是( , );2y x =-与y 轴的交点坐标是( , );x y (x ,y ) x y (x ,y ) ②列表: ③描点 ④连线(3)33y x =-- (4)24y x =-+①k = ,b = ①k = ,b =②列表:③描点 ④连线⑤33y x =--与y 轴的交点坐标是( , );24y x =-+与y 轴的交点坐标是( , );总结归纳:一次函数y kx b =+的图象、性质与k 、b 的符号一次函数 ()0k kx b k =+≠k ,b符号0k >0k <0b > 0b < 0b = 0b > 0b < 0b =图象经过象限性质 y 随x 的增大而 y 随x 的增大而☆一次函数y=kx+b (k≠0)中k 、b 的意义:1、k(称为斜率)的绝对值得大小决定直线y=kx+b (k≠0)的倾斜程度;k 的绝对值越大,直线与x 轴的夹角度数越大k 的正负决定直线y=kx+b (k≠0)的倾斜方向,当0k >时,其图象从左向右 ,一定经过 、 象限;当0k <时,其图象从左向右 ,一定经过 、 象限.2、b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。
当0b >时,图象与y 轴交点在x 轴 ,所以其图象一定经过 、 象限;当0b <时,图象与y 轴交点在x 轴 ,所以其图象一定经过 、 象限.x y (x ,y )x y (x ,y ) ②列表:③描点 ④连线3、由k 、b 的符号可以确定一次函数y kx b =+的图象的大致位置;反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号.☆同一平面内,不重合的两直线 y 1=k 1x+b 1(k 1≠0)与 y 2= k 2x+b 2(k 2≠0)的位置关系: 当 k1=k2,b1≠b2 时⇔两直线平行 当 k1•k2=-1 时⇔两直线垂直。
当 k1≠ k2 时⇔两直线相交 当 b1=b2 时⇔两直线交于y 轴上同一点。
练习:根据k 、b 的值画出函数的大致图象,写出函数性质。
(1)直线52-=x y 与y 轴交点坐标是( , ),____0k ,则图象从左向右 ,大致图象为 ,图象经过第 象限,y 随x 的增大而 ;(2)直线4y x =-+与y 轴交点坐标是( , ),____0k ,则图象从左向右 ,大致图象为 ,图象经过第 象限,y 随x 的增大而 ;(3)直线51y x =-与y 轴交点坐标是( , ),____0k ,则图象从左向右 ,大致图象为 ,图象经过第 象限,y 随x 的增大而 ;(4)直线32y x =+与y 轴交点坐标是( , ),____0k ,则图象从左向右 ,大致图象为 , 图象经过第 象限,y 随x 的增大而 ;(5)直线43y x =--与y 轴交点坐标是( , ),____0k ,则图象从左向右 ,大致图象为 ,图象经过第 象限,y 随x 的增大而 ;(6)直线85y x =-+与y 轴交点坐标是( , ),____0k ,则图象从左向右 ,大致图象为 ,图象经过第 象限,y 随x 的增大而 ;课后作业一.选择题(共10小题)1.正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<12.若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A.m>0 B.m<0 C.m>3 D.m<33.在平面直角坐标系中,直线y=x+1经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限4.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过()A.第一、二象限B.第一、三象限 C.第二、三象限 D.第二、四象限5.已知一次函数y=﹣x+b的图象经过第一、二、四象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.26.一次函数y=2x+3的图象沿y轴向下平移2个单位,那么所得图象的函数解析式是()A.y=2x﹣3 B.y=2x+2 C.y=2x+1 D.y=2x7.一次函数y=ax+b,ab<0,且y随x的增大而减小,则其图象可能是()A.B.C.D.8.函数y=x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限 D.第四象限9.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是()A.B.C.D.10.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.二.填空题(共5小题)11.点(x,0)在函数y=3x+2的图象上,则x=.12.若一次函数y=(1+m)x﹣3+m不过第二象限,则m取值范围为.13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.14.将直线y=2x﹣1沿y轴正方向平移2个单位,得到的直线的解析式为.15.如果ab>0,bc<0,那么函数的图象不经过第象限.三.解答题(共3小题)16.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.17.已知一次函数y=(2m+4)x+(3﹣n).(1)当m、n是什么数时,y随x的增大而增大;(2)当m、n是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求m、n的取值范围.18.已知函数y=(1﹣2m)x+m+1,求当m为何值时.(1)y随x的增大而增大?(2)图象经过第一、二、四象限?(3)图象经过第一、三象限?(4)图象与y轴的交点在x轴的上方?。