一次函数的图像和性质
- 格式:ppt
- 大小:2.92 MB
- 文档页数:5
中国教育培训行业十大领军品牌成都戴氏精品堂学校 1 函数性质和图像一次函数性质:1.y 的变化值与对应的x 的变化值成正比例,比值为k.K 为常数. 即:y=kx+b (k ,b 为常数,k ≠0), 当x 增加m ,k (x+m)+b=y+km,km/m=k 。
2.当x=0时,b 为函数在y 轴上的点,坐标为(0,b)。
3.、当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
4.在两个一次函数表达式中:(1)当两一次函数表达式中的k 相同,b 也相同时,两个一次函数图像重合;(2) 当两一次函数表达式中的k 相同,b 不相同时,两一次函数图像平行;(3)当两一次函数表达式中的k 不相同,b 不相同时,两一次函数图像相交;(4)当两一次函数表达式中的k 不相同,b 相同时,两一次函数图像交于y 轴上的同一点(0,b )。
(5)若两个变量x,y 间的关系式可以表示成y=kx+b(k,b 为常数,k 不等于0)则称y 是x 的一次函数图像性质:1.作法与图形:通过如下3个步骤:(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
A:一般的y=kx+b(k ≠0)的图象过(0,b )和(-b/k ,0)两点画直线即可。
B:正比例函数y=kx(k ≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k )两点。
(3)连线,可以作出一次函数的图象——一条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
(通常找函数图象与x 轴和y 轴的交点分别是-k 分之b 与0,0与b ).2.性质:(1)在一次函数上的任意一点P (x ,y ),都满足等式:y=kx+b(k ≠0)。
(2)一次函数与y 轴交点的坐标总是(0,b),与x 轴总是交于(-b/k ,0)正比例函数的图像都是过原点。
3. 函数不是数,它是指某一变化过程中两个变量之间的关系。
一次函数的图象和性质【知识要点】1.一次函数的概念:函数y=kx +b (k ,b 为常数,k ≠0)叫做x 的一次函数。
学习这个定义应明确下面几点:函数y=kx +b (k ≠0)中b 可以为任意常数,当b=0时,一次函数y=kx +b 就成y=kx (k 为常数,且(k ≠0)),这时y 叫做x 的正比例函数,也可以说y 与x 成正比例,常数k 叫做因变量y 与自变量x 的比例系数.因此正比例函数是一次函数的特例,但一次函数不一定是正比例函数。
2.一次函数的图像:一次函数y =kx +b (k ≠0)的图像是一条与坐标轴斜交的直线。
因此,只需求出直线y =kx +b 上的两点,就可得到它。
一般,作正比例函数y =kx 的图像常取点(0,0)和(1,k );作一次函数)0(≠+=b b kx y 的图像常取(b ,0)和(0,k b-)两点,这两点是直线与坐标轴的交点。
3.一次函数的性质:(1)参数k 、b 的意义和对一次函数y =kx +b 的图像与性质的影响。
当k>0时,图像一定过一、三象限,y 随x 的增大而增大,这时函数的图像从左到右呈上升趋势;当k<0时,图像一定过二、四象限,y 随x 的增大而减小,这时函数的图像从左到右呈下降趋势;(因此,k 的符号与直线的方向、函数的增减性是相互决定的。
)(2)b 是一次函数y =kx +b 中,当x =0时所对应的函数值,因此直线y =kx +b 与y 轴交于点(0,b ),b 是直线y =kx +b 与y 轴上的交点的纵坐标,所以,b 的符号和直线与y 轴交点位置是相互对应的。
(3)k 、b 的符号对直线位置的影响:【小试牛刀】 1、一个正比例函数y kx=的图象经过点A (-2,4),写出这个正比例函数的表达式 .2、一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,它们离A 地的路程随时间变化的图象如图所示.则下列结论错误..的是( ) A.摩托车比汽车晚到1 h B. A , B 。
一次函数的定义和性质一次函数是指形如y=ax+b的函数,其中a和b为常数,且a不等于零。
它也被称为线性函数,因为它的图像是一条直线。
一次函数是数学中的基础概念之一,具有一些重要的性质和应用。
一. 定义一次函数是指以x为自变量,以y为因变量的函数,其表达式为y=ax+b,其中a和b为实数,且a不等于零。
其中,a称为一次项的系数,b称为常数项。
当x取不同的值时,y的取值也相应地发生变化,这种对应关系可以通过一条直线来表示。
二. 图像特征1. 直线特征:一次函数的图像总是一条直线,因此它具有线性特征;2. 斜率特征:一次函数的斜率表示为常数a,描述了图像在x轴正方向上的倾斜程度。
斜率为正时,表示图像向上倾斜;斜率为负时,表示图像向下倾斜;3. 截距特征:一次函数的截距表示为常数b,描述了图像与y轴的交点位置。
截距为正时,表示图像与y轴正半轴交于正值点;截距为负时,表示图像与y轴负半轴交于负值点。
三. 性质1. 单调性:一次函数的单调性由斜率的正负决定。
当a大于零时,函数单调递增;当a小于零时,函数单调递减;2. 定义域和值域:一次函数的定义域为所有实数;值域为所有实数,即函数的取值范围没有限制;3. 零点:一次函数的零点即为函数的根,表示当x取某个值时,函数的值等于零。
对于一次函数,当且仅当x=-b/a时,函数的值为零;4. 最值:一次函数没有最大值和最小值,因为它的图像是一条直线;5. 平移:通过给定一次函数的表达式,可以进行平移操作来得到新的函数。
平移操作可以在x轴和y轴上分别进行,通过改变常数a和b的值,可以使图像在平面上发生移动。
四. 应用一次函数在现实生活中有着广泛的应用,例如:1. 财务收入:一些经济指标和统计数据的变化趋势可以通过一次函数来表示,如年度收入的增长率;2. 运动模型:一次函数可以表示一些常见的运动模型,如匀速运动的位移和速度关系;3. 经济学模型:在经济学中,一次函数可以用来表示供求关系、成本和收益关系等;4. 工程预测:一次函数可以用来进行工程测量、预测物理量的变化趋势等。
课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。
一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。
一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。
(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。
2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。
反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。
(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。
(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。
即该函数为减函数。
3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。
4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。
一次函数的图像与性质函数图象性质经过象限变化规律y=kx+b(k、b为常数,且k≠0)k>0b>0b=0b<0 k<0b>0b=0b<0☆一次函数y=kx+b(k≠0)中k、b的意义:k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;b(称为截距)表示直线y=kx+b(k≠0)与y轴交点的,也表示直线在y 轴上的。
☆同一平面内,不重合的两直线 y=k1x+b1(k1≠0)与 y=k2x+b2(k2≠0)的位置关系:当时,两直线平行。
当时,两直线垂直。
当时,两直线相交。
当时,两直线交于y轴上同一点。
☆特殊直线方程:X轴 : 直线 Y轴 : 直线与X轴平行的直线与Y轴平行的直线一、三象限角平分线二、四象限角平分线1、对于函数y=5x+6,y的值随x值的减小而___________。
2、对于函数1223y x =-, y 的值随x 值的________而增大。
3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。
4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。
5、已知直线y=kx+b 经过第一、二、四象限,那么直线y=-bx+k 经过第_______象限。
6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。
7、已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?练习:理解解析式和图象的关系,掌握一次函数图象的有关性质. 一、选择题1.函数y =kx 的图象经过点P (3,-1),则k 的值为( )A.3B.-3C.31D.-31 2.下列函数中,图象经过原点的为( ) A.y =5x +1 B.y =-5x -1 C.y =-5xD.y =51-x 3.若一次函数y =kx +b 中,y 随x 的增大而减小,则( ) A.k <0,b <0 B.k <0,b >0 C.k <0,b ≠0 D.k <0,b 为任意数4.当x =5时一次函数y =2x +k 和y =3kx -4的值相同,那么k 和y 的值分别为( ) A.1,11 B.-1,9 C.5,11 D.3,35.若直线y =kx +b 经过A (1,0),B (0,1),则( ) A.k =-1,b =-1 B.k =1,b =1 C.k =1,b =-1 D.k =-1,b =1 二、填空题6.把一个函数的自变量x 与对应的因变量y 的值分别作为点的______和______,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的______.7.作函数图象的一般步骤为______,______,______;一次函数的图象是一条______. 8.直线y =3-9x 与x 轴的交点坐标为______,与y 轴的交点坐标为______.9.一次函数y =5kx -5k -3,当k =______时,图象过原点;当k ______时,y 随x 的增大而增大.10.在一次函数y =2x -5中,当x 由3增大到4时,y 的值由______;当x 由-3增大到-2时,y 的值______.。
一次函数的图像和性质一次函数是一个代数函数,也称为线性函数或直线函数。
它是最简单的一种函数形式,在数学和物理等领域中都有广泛的应用。
一次函数的一般形式为y = ax + b,其中a和b是常数,且a≠0。
一次函数的图像是一个直线,在平面直角坐标系中表示为一根斜率为a的直线,并且通过点(0,b)。
斜率a表示函数的变化率,即y随x的变化速度。
当a>0时,表明随着x增大,y也增大;当a<0时,表明随着x增大,y减小;当a=0时,函数是一个常数函数。
一次函数图像的性质包括斜率、截距、与坐标轴的交点等。
1.斜率:一次函数的斜率表示函数图像在x轴方向每单位变化时,y轴方向的变化量。
斜率的计算可以通过选择两个不同的x值,计算对应的y值的差异,然后除以对应x值的差异。
即斜率a=Δy/Δx。
斜率为正的函数图像向上倾斜,斜率为负的函数图像向下倾斜,斜率为零的函数图像是水平的。
2. 截距:一次函数的截距表示函数图像与y轴的交点,它的值可以从函数的形式y=ax+b中得到。
当x=0时,y=b,因此截距为b。
3. 与坐标轴的交点:一次函数的图像与x轴的交点为y=0时的x值,可以通过令y=0,解方程ax+b=0,得到x=-b/a。
图像与y轴的交点已经在上述截距部分提到,为(0, b)。
4.平行:两个斜率相等的一次函数图像是平行的,它们可能在坐标轴上的交点不同,但是平行于同一直线。
5. 垂直平分线:对于一次函数y = ax + b,它的垂直平分线为x =-a/2、如果两个函数的图像关于该直线对称,那么它们是互为反函数。
6. 对称轴:对于一次函数y = ax + b,它的对称轴为x = -b/(2a)。
如果交换a和b的位置,可以得到该函数关于y轴对称函数。
如果交换x和y的位置,可以得到原函数的倒数。
7.等差数列:一次函数的图像可以表示等差数列,其中公差为斜率a。
数列的第一个项为截距b。
8.增长率:一次函数的增长率等于斜率a的绝对值。
15一次函数的图像与性质1.图像特点:一次函数的图像是一条直线,它经过原点(0,0)。
直线的斜率k可以表示函数的性质,决定了直线的倾斜程度和方向。
当k大于0时,直线向右上方倾斜;当k小于0时,直线向右下方倾斜;当k等于0时,直线平行于x轴。
2.变化趋势:一次函数的变化趋势与自变量x的变化直接相关。
当x变大时,若k大于0,则y也会增大;若k小于0,则y会减小。
反之,当x变小时,则y的变化情况也相应地相反。
由此可见,一次函数的图像呈现出一个直线,且变化趋势具有确定性。
3.斜率性质:斜率k是一次函数的重要性质,它表示了函数图像的倾斜程度和方向。
一次函数的斜率有以下几个关键性质:-当k大于0时,函数图像是向上倾斜的,即从左下向右上。
斜率越大,直线越陡峭。
-当k小于0时,函数图像是向下倾斜的,即从左上向右下。
斜率越小,直线越平缓。
-当k等于0时,函数图像是平行于x轴的水平直线。
4.截距性质:一次函数还有一个重要的性质是截距。
截距表示了一条直线与y轴的交点,记作(0,b)。
对于一次函数y=kx来说,截距b等于函数在x=0处的取值,即b=k*0=0。
因此,一次函数经过原点(0,0),并且与y轴没有交点。
5.定比关系:一次函数的数值关系具有一种特殊的定比关系。
对于一次函数y=kx来说,当x增大或减小时,y的值与x的比值始终保持不变,即y/x=k。
这称为一次函数的定比关系,可以用来解决一些实际问题,如单位换算、速度、密度等概念的计算。
6.定义域和值域:一次函数的定义域为所有实数集R,即函数在实数范围内都有定义。
值域则取决于斜率k的正负。
当k大于0时,一次函数的值域是(0,+∞);当k小于0时,值域是(-∞,0)。
由于一次函数的图像是直线,所以图像在纵轴方向上没有上下界限。
7.相关性质:一次函数的图像与直线的性质有密切关联,因为一次函数的图像就是一根直线。
因此,一次函数也具有直线的一些基本性质,如:-一次函数的斜率等于直线的斜率。