安徽大学 10-11(2)高数A(二)、B(二)试卷
- 格式:pdf
- 大小:172.83 KB
- 文档页数:6
安徽大学2009-2010学年第二学期《高等数学A (二)、B (二)》考试试卷(A 卷)参考答案与评分标准一、填空题(本大题共五小题,每小题2分,共10分)12、0;3、;4、1 /20 arcsin d (,y y f x y π∫∫)d x 32;5、53二、选择题(本大题共五小题,每小题2分,共10分)6、 A ;7、D ;8、D ;9、A ; 10、A.三、计算题(本大题共五小题,其中第11、12、13题每小题10分,第14、15题每小题12分,共54分)11.解. 设。
则曲面在点处的法向量为22(,,)F x y z x y z =+−S (1,1,2)(1,1,2)(1,1,2)(,,)(2,2,1)(2,2,1)x y z F F F x y =−=−由题设可知,平面Π通过法线L ,故12a b 0,+−+=(1,,1)(2,2,1)0a −⋅−=即,由此解得123a b a +=⎧⎨+=⎩035,.22a b =−=12.解:令222(,),(,)2y xP x y Q x y x y x y−==++,则d d L I P x Q y =+∫v ,当时,220x y +≠22222()Q x y Px x y y∂−==∂+∂∂2。
取一小圆周22:C x y εε+=,0ε>充分小,使得C ε完全位于L 所围成的区域内,取逆时针方向。
设D ε为由L 与C ε所围成的区域,则由Green 公式得d d (d L C D Q PP x Q y x y x yεε+∂∂+=−=∂∂∫∫∫0, 所以d d d d LC P x Q y P x Q yε+=−+∫∫22(sin )(sin )(cos )(cos )d πεθεθεθεθθε−−=−∫20d 2πθπ==∫13.解:设cos ,sin ,x R u y R u z ==v =,则Σ对应于:02,0D u v h π≤≤≤≤。
安徽大学20 10 —20 11 学年第 2 学期《 信号与系统 》考试试卷(A 卷)(闭卷 时间120分钟)一、填空题(每小题2分,共10分) 1. 对于一个因果系统()n h 来说,当0<n 时,()n h _________。
2. 若激励信号为()t x ,响应信号为()t y ,则无失真传输的条件是_________。
3. 如果一个系统函数的极点位于左半平面,零点位于右半平面,而且零点与极点对于_________互为镜像,那么我们称这种系统函数为全通函数。
4. 若系统的单位冲激响应为()t h ,单位阶跃响应为()t g ,则二者的关系为_____________。
5. 设()n x 是一序列且[)+∞-∈,5n ,则它的收敛域是________。
二、选择题(每小题2分,共10分)1.已知()t f ,为求()at t f -0()0,0>t a 应按( )运算求得正确结果。
A. ()at f -左移0t B. ()at f 右移0t C. ()at f 左移a t 0 D. ()at f -右移a t 02. 对于信号f (t )及单位冲激信号)(t δ,则()()=-⎰+∞∞-0t t t f δ( )。
A.()0f B.()t f C. ()0t f D.03. 已知()t f 的拉氏变换为()F s ,则1()2f t 的拉式变换是( )。
A.()22s F B. ()s F 22C. ()212-s FD. ()2s e s F -4. 由S 平面与Z 平面的映射关系ST e Z =可知,S 平面的垂直带区域[]()21σσσ,∈映射为Z 平面上的( )区域。
A .环状的 B.某个圆以内 C.某个圆以外 D.带状的院/系 年级 专业 姓名 学号答 题 勿 超 装 订 线 ------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------5. 带通滤波器的品质因数Q 定义为( )。
安徽大学2018—2019学年第一学期《高等数学A (一)》期末考试试卷(B 卷)(闭卷时间120分钟)考场登记表序号一、填空题(每空2分,共10分)1.若极限2)()2(lim000=--→h x f h x f h ,则0)(x x dxx df =;2.积分=⎰dx xe x cos 2sin ;3.x e y x +=-)1(2在1x =在所对应点的切线方程为;4.若对定积分0(2)a f a x dx -⎰作换元2a x u -=,则该定积分化为;5.设函数()2100x e x f x xa x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =;二、选择题(每小题2分,共10分)6.设)(x f 的导函数为x sin ,则)(x f 的一个原函数为()。
(A)1sin +x (B)x x +sin (C)x cos 1+(D )xx sin -7.设函数)(x f 在1=x 处连续但不可导,则下列在1=x 处可导的函数是()。
(A))1)((+x x f (B)2)(x x f (C))(2x f (D))()1(2x f x -8.下列广义积分收敛的是()。
(A)dx x x e ⎰+∞ln (B)dx x x e ⎰+∞ln 1(C)dx x x e ⎰+∞2)(ln 1(D)dx x x e ⎰+∞ln 1题号一二三四五总分得分阅卷人得分得分院/系年级专业姓名学号答题勿超装订线------------------------------装---------------------------------------------订----------------------------------------线----------------------------------------9..设)(x f 为),(+∞-∞内连续的偶函数,)()(x f dxx dF =,则原函数)(x F ()。