第七章常微分方程第二节一阶微分方程
- 格式:ppt
- 大小:497.11 KB
- 文档页数:30
第七章 微分方程函数是客观事物的内部联系在数量方面的反映,利用函数关系可以对客观事物的规律进行研究。
但在多数情况下,无法直接找到要研究的问题所需的函数关系,却比较容易建立起该函数及其导数的关系式,即微分方程。
再通过解这种方程,就可得到该函数关系。
微分方程是一门独立的数学学科,有完整的理论体系。
目前已广泛的应用于自然科学、工程技术、人口科学、经济学、医学等各个领域,已成为应用数学知识解决实际问题的重要手段。
本章我们主要介绍微分方程的一些基本概念,几种常用的微分方程的解法。
第一节 微分方程的基本概念一 引例下面通过几个实例来说明微分方程的基本概念。
例1 一曲线y =y (x )通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程.解 根据导数的几何意义知,x dxdy 2=. (1) 且y =y (x )满足下列条件:x =1时, y =2, (2) 把(1)式两端积分, 得⎰=xdx y 2, 即y =x 2+C , (3) 其中C 是任意常数.把条件(2)代入(3)式, 得2=12+C ,由此定出C =1. 把C =1代入(3)式, 得所求曲线方程y =x 2+1. (4)例2 列车在水平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程?解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式4.022-=dts d . (5) 此外, 未知函数s =s (t )还应满足下列条件:t =0时, s =0, 20==dtds v . (6) 把(5)式两端积分一次, 得14.0C t dtds v +-==; (7) 再积分一次, 得s =-0.2t 2 +C 1t +C 2, (8) 这里C 1, C 2都是任意常数.把条件t =0,v =20代入(7)得20=C 1;把条件t =0,s =0代入(8)得0=C 2.把C 1, C 2的值代入(7)及(8)式得v =-0.4t +20, (9) s =-0.2t 2+20t . (10) 在(9)式中令v =0, 得到列车从开始制动到完全停住所需的时间504.020==t (s ). 再把t =50代入(10), 得到列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).上面的两个例子,尽管实际意义不相同,但解决问题的方法,都是归结为首先建立一个含有未知函数的导数的方程,然后通过所建立的方程,求出满足所给的附加条件的未知函数.这就是所谓的微分方程及其解微分方程。
常微分方程一阶常微分方程的解法和应用常微分方程(Ordinary Differential Equations,简称ODE)是数学中的一个重要分支,广泛应用于物理学、工程学、生物学等领域。
一阶常微分方程是其中最基础的一类方程,本文将讨论一阶常微分方程的解法以及应用。
一、解法1. 可分离变量法可分离变量法适用于一阶常微分方程可以分离为两个只含有自变量和因变量的函数之积的情况。
具体步骤如下:(1)对方程两边进行化简,将自变量和因变量分离;(2)对两边分别求积分,得到两个方程;(3)将两个方程合并,并对其求解得到解。
2. 齐次方程法齐次方程法适用于一阶常微分方程可以化为形如dy/dx=f(y/x)的方程。
具体步骤如下:(1)令y=vx,将原方程转化为v和x的方程;(2)对新方程进行求导,并将结果代入原方程中同样的位置,化简得到一个关于v和x的常微分方程;(3)求解新方程,得到v和x的关系;(4)将v和x的关系代入y=vx,得到解。
3. 线性方程法线性方程法适用于形如dy/dx+a(x)y=b(x)的方程。
具体步骤如下:(1)根据线性方程的特点,先求解对应的齐次线性方程;(2)利用待定系数法,设待求特解的形式,并代入原方程,确定待定系数;(3)将特解和齐次线性方程的通解相加,得到原方程的整体通解。
二、应用1. 自然增长和衰减模型在生物学领域中,许多生物种群的增长或衰减遵循一阶常微分方程。
例如,自然增长模型可以表示为dy/dt=k*y,其中y表示种群数量,t表示时间,k为增长率。
通过求解这一方程,可以得到种群数量随时间的变化规律。
2. RC电路的充电和放电模型在电工学领域中,一阶常微分方程被广泛用于描述电容器和电阻器组成的RC电路中的充电和放电过程。
例如,对于一个充电电路,方程可以表示为dQ/dt=(V-Vc)/RC,其中Q表示电荷量,V为电压,Vc为电容器上的电压,R为电阻,C为电容。
通过求解这一方程,可以了解电容器上电压的变化。
第七章一阶线性偏微分方程§7.1 首次积分和求解常微分方程组基本概念(,,)ni 1n i 1i u X x x 0x =∂=∂∑(,,)(,,)ni1n1ni 1iuX x x Z x x x =∂=∂∑(,,,)(,,,)ni 1n 1n i 1i uY x x u Z x x u x =∂=∂∑例丨例1解x yu uc0u cu0 x y∂∂+=+=∂∂即例2例2 解(,,)(,,)x y y x u g x y u u g x y u 0-=(,)()()(,)xy x y y x x y u y y x u x x y y u xyu u u v u v u v u g g u u g g u u g u g 0v v x y ∂==-=-⋅--⋅=-⋅=∂(,(,,))((,,))u g x y u 0u g x y u ϕΦ==或特征方程定义•齐次线性偏微分方程特征方程•拟线性偏微分方程特征方程(,,)ni1n i 1iu X x x 0x =∂=∂∑(,,,)(,,,)ni 1n 1n i 1iu Y x x u Z x x u x =∂=∂∑d d d n1212nx x x X X X ===d d d d n 1212n x x x uY Y Y Z====首次积分定义首次积分d (,,,),(),,,6d 0ii 1n i 0i y f x y y y x y i 1nx===()首次积分彼此独立彼此独立(,,)(,,)n 1111n 1n n 1nny y D D y y y y ψψψψψψ∂∂∂∂=∂∂∂∂n 1111n 11nn x x x x ϕϕϕϕ--∂∂⎡⎤⎢⎥∂∂⎢⎥⎢⎥⎢⎥∂∂⎢⎥⎢⎥∂∂⎣⎦一阶线性偏微分方程与常微分方程组的关系d (,)d yf x y 8x=()d (,)d y f x y 0x y x x yψψψψ∂∂∂∂+=+=∂∂∂∂(,)u u f x y 09x y∂∂+=∂∂()d d (,)d d u u u y u uf x y 0x x y x x y ∂∂∂∂=+=+=∂∂∂∂定理1定理112n 12nf f f 010x y y y ψψψψ∂∂∂∂++++=∂∂∂∂()d (,,,),(),,,d 0ii 1n i 0i y f x y y y x y i 1n 6x===()证(,,,)0001n x y y G∈()(,,,)i i 0y x i 12n ϕ==(,(),,())1n x x x const ψϕϕ=d(,(),,())d 1n x x x 0x ψϕϕ=(,,,)(,,,)(,,,)n00000001n i 01n 01n i 1i x y y f x y y x y y 0x y ψψ=∂∂+=∂∂∑(,,,)0001n x y y G ∈12n 12nf f f 010x y y y ψψψψ∂∂∂∂++++=∂∂∂∂()(),,,d(,(),,())d i i 1n 12n y x 12n i 12nx x x f f f 0xxy y y ϕψψψψψϕϕ==⎛⎫∂∂∂∂=++++= ⎪∂∂∂∂⎝⎭(,(),,())1n x x x constψϕϕ=d (,,,),(),,,d 0ii 1n i 0i y f x y y y x y i 1n 6x===()§7.3 利用首次积分求解常微分方程组定理2d(,,,),,,dii1nyf x y y i1n11x==()(,,,),,,i1n ix y y c i1n12ψ==(),证(,,,)(,,,)12n 12n 0y y y ψψψ∂≠∂(,,,),,,i 1n i x y y c i 1n 12ψ==()(,,,),,,i 1n i x y y c i 1n 13ϕ==()(,(,,,),,(,,,)),,,j 11n n 1n j x x c c x c c c j 12n ψϕϕ==d (,,,)(,,,),,,d n i j 1n j 1n i 1ix x 0j 12nxy xϕψϕϕψϕϕ=∂∂+⋅==∂∂∑,,,,j j j1n 1nf f 0j 12n 14x y y ψψψ∂∂∂+++==∂∂∂()(,,,),,,nj ii 1n d f x 0j 12ny dxψϕϕϕ∂⎡⎤-==⎢⎥∂⎣⎦∑(,,,)(,,,)(,,,),,,nj 1n i 1n j 1n i 1i x f x x 0j 12n x y ψϕϕϕϕψϕϕ=∂∂+⋅==∂∂∑d (,,,),,,d ii 1n y f x y y i 1n 11x==()(,,,),,,i 1n i x y y c i 1n 12ψ==()(,,,)(,,,)12n 12n 0y y y ψψψ∂≠∂d (,,,),,,d ii 1n f x j 12nx ϕϕϕ==(,,,),,,,i i 1n y x c c i 12nϕ==(,,,,),,,,i i 01n y x x y y i 12nϕ==(,,,)(,,,)i i 01n c x y y i 12n ψ==(,,,)(,,,)i i 1n y x c c i 12n ϕ==(,,,,)(,,,)(,,,)i 001n i i 01n x x y y y x c c i 12n ϕϕ===(,,,)(,,,,),,,,i 1n i 01n x c c x x y y i 12n ϕϕ==(,,,,)(,,,)i i 01n y x x y y i 12n ϕ==(,,,)(,,,)i i i 01n c c x y y i 12n ψ===,d (,,,),,,d ii 1n y f x y y i 1n 11x==()求首次积分方法(,)(,,)x c y x c 00c cϕψ∂∂≠≠∂∂或d d d d n12012ny y y x g g g g ====(,,)i 0i g g f i 1n ==,,,01nμμμ,d d d d 0011n n 011n n g g g 0x y y μμμμμμϕ+++=+++=d (,,,),,,d ii 1n y f x y y i 1n 11x==()例1 求解方程组d d d d 222222y2xy x x y z z 2xz x x y z ⎧=⎪--⎪⎨⎪=⎪--⎩d d d 222x y zx y z 2xy 2xz==--d d y z yz=1y c z=d d d d ()222x x y y z z yx x y z 2xy++=++2222x y zc y++=12222yc z x y z c y ⎧=⎪⎪⎨++⎪=⎪⎩例2 求方程组的通积分d d d x y z xz yz xy==,,012g xz g yz g xy===,,012y x 2z μμμ===-001122g g g 0μμμ++=()2012dx dy dz d xy z μμμ++=-21xy z c -=2xc y=212xy z c x cy ⎧-=⎪⎨=⎪⎩。