第7章常微分方程数值解法
- 格式:pptx
- 大小:867.54 KB
- 文档页数:79
常微分方程的数值解法在自然科学的许多领域中,都会遇到常微分方程的求解问题。
然而,我们知道,只有少数十分简单的微分方程能够用初等方法求得它们的解,多数情形只能利用近似方法求解。
在常微分方程课中已经讲过的级数解法,逐步逼近法等就是近似解法。
这些方法可以给出解的近似表达式,通常称为近似解析方法。
还有一类近似方法称为数值方法,它可以给出解在一些离散点上的近似值。
利用计算机解微分方程主要使用数值方法。
我们考虑一阶常微分方程初值问题⎪⎩⎪⎨⎧==00)(),(yx y y x f dx dy在区间[a, b]上的解,其中f (x, y )为x, y 的已知函数,y 0为给定的初始值,将上述问题的精确解记为y (x )。
数值方法的基本思想是:在解的存在区间上取n + 1个节点b x x x x a n =<<<<= 210这里差i i i x x h -=+1,i = 0,1, …, n 称为由x i 到x i +1的步长。
这些h i 可以不相等,但一般取成相等的,这时na b h -=。
在这些节点上采用离散化方法,(通常用数值积分、微分。
泰勒展开等)将上述初值问题化成关于离散变量的相应问题。
把这个相应问题的解y n 作为y (x n )的近似值。
这样求得的y n 就是上述初值问题在节点x n 上的数值解。
一般说来,不同的离散化导致不同的方法。
§1 欧拉法与改进欧拉法 1.欧拉法1.对常微分方程初始问题(9.2))((9.1) ),(00⎪⎩⎪⎨⎧==y x y y x f dx dy用数值方法求解时,我们总是认为(9.1)、(9.2)的解存在且唯一。
欧拉法是解初值问题的最简单的数值方法。
从(9.2)式由于y (x 0) = y 0已给定,因而可以算出),()('000y x f x y =设x 1 = h 充分小,则近似地有:),()(')()(00001y x f x y hx y x y =≈-(9.3)记 ,n ,,i x y y i i 10 )(== 从而我们可以取),(0001y x hf y y ==作为y (x 1)的近似值。
第七章 常微分方程数值解法常微分方程中只有一些典型方程能求出初等解(用初等函数表示的解),大部分的方程是求不出初等解的。
另外,有些初值问题虽然有初等解,但由于形式太复杂不便于应用。
因此,有必要探讨常微分方程初值问题的数值解法。
本章主要介绍一阶常微分方程初值问题的欧拉法、龙格-库塔法、阿达姆斯方法,在此基础上推出一阶微分方程组与高阶方程初值问题的 数值解法;此外,还将简要介绍求解二阶常微分方程值问题的差分方法、试射法。
第一节 欧拉法求解常微分方程初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy(1)的数值解,就是寻求准确解)(x y 在一系列离散节点 <<<<<n x x x x 210 上的近似值 ,,,,,210n y y y y{}n y 称为问题的数值解,数值解所满足的离散方程统称为差分格式,1--=i i ix x h 称为步长,实用中常取定步长。
显然,只有当初值问题(1)的解存在且唯一时,使用数值解法才有意义,这一前提条件由下 面定理保证。
定理 设函数()y x f ,在区域+∞≤≤-∞≤≤y b x a D ,:上连续,且在区域D 内满足李普希兹(Lipschitz)条件,即存在正数L ,使得对于R 内任意两点()1,y x 与()2,y x ,恒有()()2121,,y y L y x f y x f -≤-则初值问题(1)的解()x y 存在并且唯一。
一、欧拉法(欧拉折线法)若将函数)xy 在点nx处的导数()n x y '用两点式代替, 即()hx y x y x y n n n )()(1-≈'+,再用n y 近似地代替()n x y ,则初值问题(1)变为⎩⎨⎧==++=+ ,2,1,0),()(001n x y y y x hf y y n n n n(2)(2)式就是著名的欧拉(Euler)公式。
以上方法称 为欧 拉法或欧拉折线法。
浙江大学城市学院实验报告课程名称数值计算方法实验项目名称常微分方程初值问题的数值解法 实验成绩指导老师签名日期2015/12/16 一.实验目的和要求1. 用Matlab 软件掌握求微分方程数值解的欧拉方法和龙格-库塔方法; 2. 通过实例学习用微分方程模型解决简化的实际问题;二.实验内容和原理编程题2-1要求写出Matlab 源程序m 文件,并有适当的注释语句;分析应用题2-2,2-3,2-4,2-5要求将问题的分析过程、Matlab 源程序和运行结果和结果的解释、算法的分析写在实验报告上; 2-1 编程编写用向前欧拉公式和改进欧拉公式求微分方程数值解的Matlab 程序,问题如下:在区间[],a b 内(1)N +个等距点处,逼近下列初值问题的解,并对程序的每一句添上注释语句; Euler 法y=eulera,b,n,y0,f,f1,b1改进Euler 法y=eulerproa,b,n,y0,f,f1,b1 2-2 分析应用题假设等分区间数100n =,用欧拉法和改进欧拉法在区间[0,10]t ∈内求解初值问题()()20(0)10y t y t y '=-⎧⎨=⎩并作出解的曲线图形,同时将方程的解析解也画在同一张图上,并作比较,分析这两种方法的精度; 2-3 分析应用题用以下三种不同的方法求下述微分方程的数值解,取10h = 画出解的图形,与精确值比较并进行分析; 1欧拉法; 2改进欧拉法; 3龙格-库塔方法;2-4 分析应用题考虑一个涉及到社会上与众不同的人的繁衍问题模型;假设在时刻t 单位为年,社会上有人口()x t 人,又假设所有与众不同的人与别的与众不同的人结婚后所生后代也是与众不同的人;而固定比例为r 的所有其他的后代也是与众不同的人;如果对所有人来说出生率假定为常数b ,又如果普通的人和与众不同的人的婚配是任意的,则此问题可以用微分方程表示为:其中变量()()()i p t x t x t =表示在时刻t 社会上与众不同的人的比例,()i x t 表示在时刻t 人口中与众不同的人的数量;1假定(0)0.01,0.02p b ==和0.1r =,当步长为1h =年时,求从0t =到50t =解()p t 的近似值,并作出近似解的曲线图形;2精确求出微分方程的解()p t ,并将你当50t =时在分题b 中得到的结果与此时的精确值进行比较; MATLAB 相关函数求微分方程的解析解及其数值的代入dsolve‘egn1’,‘egn2’,‘x ’ subsexpr,{x,y,…},{x1,y1,…}其中‘egn i ’表示第i 个方程,‘x ’表示微分方程中的自变量,默认时自变量为t ; subs 命令中的expr 、x 、y 为符合型表达式,x 、y 分别用数值x1、x2代入; >>symsxyz>>subs'x+y+z',{x,y,z},{1,2,3} ans= 6>>symsx>>subs'x^2',x,2 ans= 4>>s=dsolve‘12Dy y ∧=+’,‘(0)1y =’,‘x ’ ans= >>symsx >>subss,x,2 ans=右端函数(,)f x y 的自动生成f=inline ‘expr ’,’var1’,‘var2’,……其中’expr ’表示函数的表达式,’var1’,‘var2’表示函数表达式中的变量,运行该函数,生成一个新的函数表达式为fvar1,var2,……; >>f=inline'x+3y','x','y' f=Inlinefunction: fx,y=x+3y >>f2,3 ans= 114,5阶龙格-库塔方法求解微分方程数值解t,x=ode45f,ts,x0,options其中f 是由待解方程写成的m 文件名;x0为函数的初值;t,x 分别为输出的自变量和函数值列向量,t的步长是程序根据误差限自动选定的;若ts=t0,t1,t2,…,tf,则输出在自变量指定值,等步长时用ts=t0:k:tf,输出在等分点;options 用于设定误差限可以缺省,缺省时设定为相对误差310-,绝对误差610-,程序为:options=odeset ‘reltol ’,rt,’abstol ’,at,这里rt,at 分别为设定的相对误差和绝对误差;常用选项见下表;选项名 功能 可选值 省缺值 AbsTol 设定绝对误差正数 RelTol 设定相对误差 正数InitialStep 设定初始步长 正数 自动 MaxStep设定步长上界正数MaxOrder 设定ode15s 的最高阶数 1,2,3,4,5 5 Stats 显示计算成本统计 on,off off BDF 设定ode15s 是否用反向差分on,offoff例:在命令窗口执行>>odefun =inline ‘2*y t y -’,‘t ’,‘y ’;>>[],45(,[0,4],1)t y ode odefun =;ans=>>t y ‘o-’,%解函数图形表示>>45(,[0,4],1)ode odefun %不用输出变量,则直接输出图形 >>[],45(,0:4,1)t y ode odefun =;[],t yans=三.操作方法与实验步骤包括实验数据记录和处理2-1编程编写用向前欧拉公式和改进欧拉公式求微分方程数值解的Matlab 程序,问题如下:在区间[],a b 内(1)N +个等距点处,逼近下列初值问题的解,并对程序的每一句添上注释语句; Euler 法y=eulera,b,n,y0,f,f1,b1改进Euler 法y=eulerproa,b,n,y0,f,f1,b1Euler 法y=eulera,b,n,y0,f,f1,b1 y=zeros1,n+1; y1=y0; h=b-a/n; x=a:h:b; fori=1:n; yi+1=yi+hfxi,yi; end plotx,y holdon%求微分方程的精确解 x1=linspacea,b,100; '精确解为' s=dsolvef1,b1,'x' symsxy1=zeros1,100; for i=1:100y1i=subss,x,x1i; endplotx1,y1,'r'title'红色代表精确解'改进Euler 法y=eulerproa,b,n,y0,f,f1,b1 %求微分方程的数值解 y=zeros1,n+1; y1=y0; h=b-a/n; x=a:h:b; fori=1:n; T1=fxi,yi; T2=fxi+1,yi+hT1; yi+1=yi+h/2T1+T2; end plotx,y holdon%求微分方程的精确解 x1=linspacea,b,100; '精确解为' s=dsolvef1,b1,'x' symsxy1=zeros1,100; fori=1:100 y1i=subss,x,x1i; endplotx1,y1,'r'title'红色代表精确解' 2-2分析应用题假设等分区间数100n =,用欧拉法和改进欧拉法在区间[0,10]t ∈内求解初值问题()()20(0)10y t y t y '=-⎧⎨=⎩并作出解的曲线图形,同时将方程的解析解也画在同一张图上,并作比较,分析这两种方法的精度;1向前欧拉法>>euler0,10,100,10,inline'y-20','x','y','Dy=y-20','y0=10' ans= 精确解为 s= 20-10expx ans= +005Columns1through8(2)改进欧拉法>>eulerpro0,10,100,10,inline'y-20','x','y','Dy=y-20','y0=10' ans= 精确解为 s= 20-10expx ans= +005Columns1through8改进欧拉法的精度比向前欧拉法更高; 2-3分析应用题用以下三种不同的方法求下述微分方程的数值解,取10h = 画出解的图形,与精确值比较并进行分析; 1欧拉法; 2改进欧拉法;2-4分析应用题考虑一个涉及到社会上与众不同的人的繁衍问题模型;假设在时刻t 单位为年,社会上有人口()x t 人,又假设所有与众不同的人与别的与众不同的人结婚后所生后代也是与众不同的人;而固定比例为r 的所有其他的后代也是与众不同的人;如果对所有人来说出生率假定为常数b ,又如果普通的人和与众不同的人的婚配是任意的,则此问题可以用微分方程表示为:其中变量()()()i p t x t x t =表示在时刻t 社会上与众不同的人的比例,()i x t 表示在时刻t 人口中与众不同的人的数量;1假定(0)0.01,0.02p b ==和0.1r =,当步长为1h =年时,求从0t =到50t =解()p t 的近似值,并作出近似解的曲线图形;2精确求出微分方程的解()p t ,并将你当50t =时在分题b 中得到的结果与此时的精确值进行比较;1>>euler0,50,50,,inline'','t','p','Dp=','p0= 1' ans= 精确解为 s=1-99/100expx/500 ans=Columns1through82>>dsolve'Dp=','p0=','t' ans=1-99/100expt/500 >>1-99/100exp ans=与欧拉法求得的精确值差0,0001四.实验结果与分析。
第七章 常微分方程初值问题的数值解法--------学习小结姓名 班级 学号一、 学习体会本章研究求解常微分方程初值问题的数值方法.构造数值方法主要有两条途径:基于数值积分的构造方法和基于泰勒展开的构造方法.后一种方法更灵活,也更具有一般性.泰勒展开方法还有一个优点,它在构造差分公式的同时可以得到关于截断误差的估计.常微分方程初值问题的数值解法的基本思想就是对常微分方程初值问题的数值解法,就是要算出精确解y(x)在区间[a,b]上的一系列离散节点处的函数值的近似值.数值解法需要把连续性的问题加以离散化,从而求出离散节点的数值。
本章介绍了常微分方程初值问题的基本数值解法,包括单步法和多步法。
单步法主要有欧拉法、改进欧拉法和龙格—库塔方法,多步法是Adams 法。
它们都是基于把一个连续的定解问题离散化为一个差分方程来求解,是一种步进式的方法。
用多步法求常微分方程的数值解可获得较高的精度。
实际应用时,选择合适的算法有一定的难度,既要考虑算法的简易性和计算量,又要考虑截断误差和收敛性、稳定性。
谢谢半年多来的老师和助教的辛勤劳动!二、 知识梳理7.1 常微分方程初值问题的数值解法一般概念基本思想:将初值问题离散化步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000'(,),()y f t y t t Ty t y =≤≤⎧⎨=⎩ 的数值解法的一般形式是1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==-显式Euler 公式10(,),0,1,n n n n n y y hf t y t t nh n +=+⎧⎨=+=⎩隐式Euler 公式1110(,),0,1,n n n n n y y hf t y t t nh n +++=+⎧⎨=+=⎩7.2 显示单步法7.2.1 显示单步法的一般形式1(,,),(0,1,...,1)n n n n y y h t y h n M ϕ+=+=-单步法的局部截断误差111()()[,(),]n n n n n R y t y t h t y t h φ---=--整体截断误差()n n n y t y ε=-定理7.2.1 单步法的阶设增量函数在区域00{(,,)|,||,0}D t y h t t T y h h =≤≤<∞≤≤内对变量y 满足Lipschitz 条件,即存在常数K ,使对D 内任何两点1(,,)t u h 和2(,,)t u h ,不等式1212|(,,)(,,)|||t u h t u h K u u ϕϕ-≤-成立,那么,若单步法的局部截断误差1n R +与1(1)p h p +≥同阶,即11()p n R O h ++=,则单步法的整体截断误差1n ε+与p h 同阶,即1()p n O h ε+=。
常微分方程的数值解法常微分方程是研究变量的变化率与其当前状态之间的关系的数学分支。
它在物理、工程、经济等领域有着广泛的应用。
解常微分方程的精确解往往十分困难甚至不可得,因此数值解法在实际问题中起到了重要的作用。
本文将介绍常见的常微分方程的数值解法,并比较其优缺点。
1. 欧拉方法欧拉方法是最简单的数值解法之一。
它基于近似替代的思想,将微分方程中的导数用差商近似表示。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)根据微分方程的定义使用近似来计算下一个点的值。
欧拉方法的计算简单,但是由于误差累积,精度较低。
2. 改进欧拉方法为了提高欧拉方法的精度,改进欧拉方法应运而生。
改进欧拉方法通过使用两个点的斜率的平均值来计算下一个点的值。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)根据微分方程的定义使用近似来计算下一个点的值。
改进欧拉方法相较于欧拉方法而言,精度更高。
3. 龙格-库塔法龙格-库塔法(Runge-Kutta)是常微分方程数值解法中最常用的方法之一。
它通过迭代逼近精确解,并在每一步中计算出多个斜率的加权平均值。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)计算各阶导数的导数值。
(4)根据权重系数计算下一个点的值。
与欧拉方法和改进欧拉方法相比,龙格-库塔法的精度更高,但计算量也更大。
4. 亚当斯法亚当斯法(Adams)是一种多步法,它利用之前的解来近似下一个点的值。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)通过隐式或显式的方式计算下一个点的值。
亚当斯法可以提高精度,并且比龙格-库塔法更加高效。
5. 多步法和多级法除了亚当斯法,还有其他的多步法和多级法可以用于解常微分方程。
多步法通过利用多个点的值来逼近解,从而提高精度。
而多级法则将步长进行分割,分别计算每个子问题的解,再进行组合得到整体解。
一、 常微分方程的解析解常微分方程的解析解也就是常微分方程的精确解,也称为常微分方程的符号解;一般可理解为求微分方程的通解或者特解的解析式或表达式;但只有少数的微分方程存在解析解。
在MA TLAB 中,由函数dsolve()求解常微分方程(组)的解析解,其具体格式如下: X=dsolve(‘方程1’,‘方程2’,…‘方程n ’,‘初始条件’,‘自变量’)函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解。
例1:求解常微分方程1dy dx x y =+的MA TLAB 程序为:dsolve('Dy=1/(x+y)','x'),注意,系统缺省的自变量为t ,因此这里要把自变量写明。
结果为:-lambertw(-C1*exp(-x-1))-x-1其中:Y=lambertw(X)表示函数关系Y*exp(Y)=X 。
例2:求解常微分方程2'''0yy y -=的MA TLAB 程序为:Y2=dsolve('y*D2y-Dy^2=0’,’x’) 结果为:Y2 =[ exp((x+C2)/C1)][ C2]我们看到有两个解,其中一个是常数。
例3:求常微分方程组253t tdx x y e dt dy x y e dt ⎧++=⎪⎪⎨⎪--=⎪⎩通解的MA TLAB 程序为:[X,Y]=dsolve('Dx+5*x+y=exp(t),Dy-x-3*y=exp(2*t)','t')例4:求常微分方程组020210cos ,224,0t t t dx dy x t x dt dt dx dy y e y dt dt =-=⎧+-==⎪⎪⎨⎪++==⎪⎩通解的MA TLAB 程序为:[X,Y]=dsolve('Dx+2*x-Dy=10*cos(t),Dx+Dy+2*y=4*exp(-2*t)','x(0)=2','y(0)=0')二、 常微分方程的数值解在生产和科研中所处理的微分方程往往很复杂且大多得不出一般解。
第7章 常微分方程初值问题的数值解法--------学习小结一、 本章学习体会本章的主要内容是要掌握如何用数值解代替其精确解,这对于一些特殊的微分方程,特别是一些不好解其通解方程是非常有用的。
对于本章我总结如下几点:1、本章计算量相对较小,重要是其思想。
在做题过程中,要理解各种方法的原理及推导过程。
2、本章对泰勒展开法有一定要求。
无论是求方法的阶数还是推导数值解法的公式经常用到泰勒展开。
因此,我们对于泰勒级数要有很清楚的认识。
3、在求数值解法的公式推导时,经常用到第六章的插值型求积公式。
可见,在整本书中,知识往往是贯通的。
二、 本章知识梳理将初值问题离散化 数值微分法(离散变量法)数值积分法 局部截断误差Taylor 级数法 ]),(,[)()(11h t y t h t y t y R n n n n n ϕ--=++整体截断误差n n n y t y -=)(ε初值问题数值解法的一般形式:k M n k y y y t F k n n n n -==++,,1,0,0),,,,,(1 常微分方程初值问题的数值解法的分类 显式方法隐式方法一般形式 ,2,1,0),,,(1=+=+n h y t h y y n n n n ϕ局部截断误差 ),,(11h y t h y y R n n n n n ϕ--=++整体截断误差 n n n y t y -=)(ε显示单步法 局部截断误差与整体截断误差的关系若)(11++=p n h O R ,则)(1p n h O =+ε若数值方法的局部截断误差为)(1+p h O ,则称这种数值方法的阶数是p显式欧拉公式),,(1n n n n y t h y y ϕ+=+欧拉法隐式欧拉公式),(111++++=n n n n y t h y y ϕ基本思想⎩⎨⎧=≤≤='000)(),,(y t y T t t y t f y等价于10)],(,[)())(,()()(11<<+++=+=⎰++θθθh t y h t hf t y dt t y t f t y t y n n n t t n n n n ),(y x f龙格-库塔法不同点的数值解加权平均代替)](,[h t y h t f n n θθ++而使得截断误差的阶数尽可能高N 级R-K 方法的形式,2,1,0),,,(1=+=+n h y t h y y n n n n ϕ,∑==Ni i i n n k c h y t 1),,(ϕ相容性,收敛性和绝对稳定性1、相容性:设增量函数),,(h y t ϕ在区域}0,,|),,{(00h h y T t t h y t D ≤≤<∞≤≤=上连续,且对h 满足Lipschitz 条件,则单步法与微分方程相容的充要条件是单步法至少是一阶的方法2、收敛性;(1)定义:若对任意的0y 及任意的),(0T t t ∈,极限)(lim )0(t y y n tt n h n ==∞→→则称单步法是收敛的(2)单步法的收敛的充要条件:)(0∞→→n n ε(3)收敛与相容的关系:设增量函数),,(h y t ϕ在区域}0,,|),,{(00h h y T t t h y t D ≤≤<∞≤≤=上连续,且对y 满足Lipschitz 条件,则单步法与微分方程相容的充要条件是单步法是收敛的3、稳定性(描述初始值的误差对计算结果的影响)4、绝对稳定性:线性多步法的基本思想线性多步法的一般形式∑∑==--++=r i ri i n i i n i n f h y y 011βα线性多步法 Simpson 公式Admas 公式 基于数值积分方法Milne 公式线性多步法的构造基于泰勒展开的待定系数法∑∑=-=--++'--=r i ri i n i i n i n n x y h x y x y R 0111)()()(βα三、 本章思考题试用数值积分法建立常微分方程的初值问题:),()(00y x f dxdy y x y =⎪⎩⎪⎨⎧=的数值求解公式:)(211n n n n f f h y y ++=++ 解:由),(y x f dxdy =得:dx y x f dy ),(= (1) 对于(1)式。
常微分方程初值问题数值解法初值问题:即满足初值条件的常微分方程的解y′=f(x,y),x∈[x0,b]y(x0)=y0.定理1(利普希茨条件)若存在正数L,使得对任意,y1,y2,有|f(x,y1)−f(x,y2)|≤L|(y1−y2)|定理2(解存在性)①若函数f在方区域x∈[a,b],y∈R连续,②函数f关于y 满足利普希茨条件,则对任意x∈[a,b],常微分方程存在唯一的连续可微数值解.两类问题:①单步法---计算下一个点的值yn+1只需要用到前面一个点的值yn②多步法---计算下一个点的值yn+1需要用到前面l个点的值yl1、欧拉法---下一个点的计算值等于前一个点的计算值加上步长乘以前一个点的函数值•具体过程一些批注:显式欧拉方程指下一步要计算的值,不在迭代方程中;隐式欧拉方程指下一步要计算的值,在迭代方程中。
怎么计算隐式欧拉方程----要借助显示欧拉迭代计算---一般用迭代法-----迭代---将微分方程在区间[xn,xn+1]进行积分,然后函数f进行近似,即可得到迭代方程-----迭代方程收敛性?由函数关于y满足利普希茨条件,可以推出迭代公式收敛。
•局部截断误差:假设前n步误差为0,我们计算第n+1步的误差,将次误差称为局部截断误差,且局部误差为O(hp+1)•p阶精度:由理论证明:若局部误差阶的时间复杂度为O(hp+1),则整体误差阶为O(hp)我们称公式精度为p。
•显示欧拉法与隐式欧拉法•梯形方法----将显式欧拉迭代方程与隐式欧拉迭代方程做一下加权平均,构造的计算公式.•改进的欧拉方法---思想:因为梯形公式是隐式公式,将显式欧拉公式对下一步的计算值进行预估,用梯形公式对下一步的计算值进行校正.2、龙格-库塔方法思想:根据Lagrange中值定理,下一次的计算值可以用前一次的计算值加上h乘以前一个点的斜率;而这个斜率用该区间上的多个点的斜率的算数平均来逼近。
注意:怎么计算任意斜率Ki?第i个点的斜率Ki有微分方程可以算出f′=f(xn,yn)所以要算的f(xn,yn)值,由欧拉法即可算出, yn+1=yn+hf′•2阶-龙格-库塔方法----类似改进的欧拉法根据Lagrange中值定理,下一次的计算值可以用前一次的计算值加上h乘以斜率;而这个斜率用区间上的端点和中点的斜率的算数平均来逼近。
常微分方程的数值解法常微分方程的数值解法,这个话题一听就让人感觉有点儿“高大上”,是不是?别急,咱们今天就把这个看似复杂的东西聊得轻松点。
想象一下,你的生活中随时都在用到数学,走路时的速度、车子的加速,甚至你做的美食,背后其实都藏着一些微分方程的身影。
说白了,常微分方程就是描述一个变量随另一个变量变化的关系。
听起来是不是有点儿抽象?咱们可以用一些简单的例子来说明。
比如说,想象一下你在家里的花园里浇水,植物的生长就可以用微分方程来描述。
你浇水越多,植物长得越快,没错吧?这时候,就有个问题来了:你浇水的频率和量应该是多少呢?这就涉及到微分方程了。
可是,现实生活中,咱们并不能总是拿个公式就能算出结果。
假如你想要把这个过程模拟出来,找出植物生长的规律,这时候数值解法就派上用场了。
数值解法听起来很复杂,但实际上它的核心思想就是通过一些巧妙的方法把这些难以直接求解的微分方程转化为我们能够计算的形式。
就像是你要吃一个巨大的蛋糕,如果直接咬下去,肯定会噎着;所以,聪明的你会选择先把蛋糕切成小块,再慢慢享用。
这就是数值解法的思路。
它把复杂的事情分解成简单的小步骤,让我们能一个一个地解决。
常见的数值解法有很多,比如欧拉法、龙格库塔法。
这些名字听起来像是外星人的语言,其实很简单。
以欧拉法为例,就像在慢慢走路,每一步都非常稳当。
你先确定一个初始值,然后根据微分方程的斜率来推算下一步的值。
一步一步走,虽然速度慢点儿,但稳妥得很,不容易出错。
只要你把每一步都计算好,最终就能到达目标。
再说说龙格库塔法,这个名字听起来像是在做科学实验,其实它是一种更高效的方法。
就好比你打游戏,普通模式下你需要慢慢磨练,而龙格库塔法就像是开了个外挂,让你更快地达到目标。
这个方法通过在每一步中做多次的预测和修正,来提高精度,减少误差。
简单来说,就是“多看看再决定”,这样能让你走得更稳、更远。
咱们在应用这些方法时,当然得注意一些细节。
比如说,步长的选择。
微分方程数值解法微分方程数值解法是一种将微分方程的解转化为数值计算的方法。
常用的微分方程数值解法包括欧拉法、隐式欧拉法、龙格-库塔法等。
1. 欧拉法:欧拉法是最简单的一种数值解法,它基于微分方程的定义,在给定的初始条件下,通过不断迭代计算微分方程在给定区间上的近似解。
欧拉法的迭代公式为:y_{n+1}=y_n+h\\cdot f(t_n,y_n),其中y_n表示第n步的近似解,t_n表示第n步的时间,h表示步长,f(t_n,y_n)表示微分方程的右侧函数。
2. 隐式欧拉法:隐式欧拉法是欧拉法的改进,它在计算近似解时使用了未知公式的近似值,从而提高了精度。
隐式欧拉法的迭代公式为:y_{n+1}=y_n+h\\cdotf(t_{n+1},y_{n+1}),其中y_{n+1}表示第n+1步的近似解,t_{n+1}表示第n+1步的时间,h表示步长,f(t_{n+1},y_{n+1})表示微分方程的右侧函数。
3. 龙格-库塔法:龙格-库塔法是一种常用的高阶数值解法,它通过计算微分方程的斜率来提高精度。
最常见的是四阶龙格-库塔法,它的迭代公式为:y_{n+1}=y_n+\\frac{1}{6}(k_1+2k_2+2k_3+k_4),其中k_1=h\\cdot f(t_n,y_n),k_2=h\\cdotf(t_n+\\frac{h}{2},y_n+\\frac{1}{2}k_1),k_3=h\\cdotf(t_n+\\frac{h}{2},y_n+\\frac{1}{2}k_2),k_4=h\\cdotf(t_n+h,y_n+k_3)。
这些方法的选择取决于问题的性质和精度要求。
其中,欧拉法是最简单的方法,但精度较低,龙格-库塔法精度较高,但计算量较大。
在实际应用中需要根据问题的具体情况选择合适的数值解法。