西普尔72V20A充电器电路图
- 格式:pdf
- 大小:239.53 KB
- 文档页数:1
(汽车行业)电动车充电器原理及带电路图维修创世纪-电脑配件及耗材平价店/电动车充电器原理及维修常用电动车充电器根据电路结构可大致分为俩种。
第壹种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1)图表1220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V 左右的直流电。
U1为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358)3脚为最大电流限制,调整R25(2.5欧姆)的阻值能够调整充电器的最大电流。
2脚为电压反馈,能够调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第壹是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35)起到自动调节充电器电压的作用。
调整w2(微调电阻)能够细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值能够调整充电器转浮充的拐点电流(200-300mA)。
通电开始时,C11上有300v左右电压。
此电压壹路经T1加载到Q1。
第二路经R5,C8,C3,达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压壹路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9,为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
电动车充电器原理及带电路图维修————————————————————————————————作者:————————————————————————————————日期:常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1)图表 1220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V 稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
电动车充电器原理图(2011-09-28 15:29:25)[编辑][删除]电路原理图见图12所示。
该充电器为半桥式充电器.主要性能指标为:输入电压:170-260V;输出电压:44 V(可调);最大充电电流:1.8A;浮充充电电流:200~100mA。
1)电路原理本充电器电路主要由市电整流滤波、自激加他激半桥转换、PWM控制、电压控制、电流控制、输出整流滤波六部分组成。
整流滤波市电220V/50Hz经二极管D1~D4桥式整流、电容C5~C7滤波,得到310V左右的直流电压,作为开关变换器的电源。
自激加他激半桥输出电路主要由Q1、Q2、B2、B3等元件组成。
自激启动该电路的特点是自激启动,控制电路所需辅助电源由其本身提供,无需另设。
自激振荡是利用磁心饱和特性产生的,具体过程为:接通电源,C5、C6上的150V电压经R5、R7、R9、R10给开关管Q1、Q2提供基极偏压。
设Q1由TR5偏压而微导通,则推动变压器B2的②-④绕组感应出极性是②脚正、④脚负的电压,于是①-②绕组感应出①脚正、②脚负电压加到Q1的发射极,加速Q1的导通。
这是一个十分强烈的正反馈过程,Q1迅速饱和导通。
与此同时,③-⑤绕组感应出③脚正、⑤脚负的电压,使Q2截止。
Q1饱和导通后,150电压给B3①-②主绕组充电储能,线圈中的电流和由它产生的磁感应强度随时间线性增加。
但当磁感应强度增大到饱和点Bm时,电感量迅速减小,Q1的集电极电流急剧增加,增加的速率远大于其基极电流的增加,Vce升高,于是Q1退出饱和进入放大区,推动变压器B2的②-④、①-②、③-⑤绕组感应电压将反向。
这又是一个强烈的正反馈过程,结果是Q1截止、Q2饱和导通。
此后,这种过程重复进行而形成振荡。
工作原理如下:他激振荡:自激振荡过程中,B3的次级输出电压经D9、D10全波整流、C19滤波,建立起PWM控制电路芯片TL494所需的工作电源。
TL494开始工作,由Q3、Q4输出相位差为180°的PWM脉冲,经B2⑥-⑦、⑦-⑧绕组感应至①-②或③-⑤绕组。
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1)图表 1220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V 稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。
常用电动车充电器根据电路结构可大致分为两种。
第一种是以UC3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1)220v交流电经TO双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358)3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为UC3842提供工作电源。
D4为高频整流管(16A60V )C10为低压滤波电容,D5 为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35)起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27 是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200 —300 mA )。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3,达到U1的第7脚。
强迫U1启动。
U1 的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7 (D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9,为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。
[技术辩论]西普尔充电器维修教程图文实践案例讲解(经典案
例不定时更新)
2013年离开了论坛很长一段时间,2016年我回来了,通过图片来讲解一些西普尔的维修案例。
让车友学习一下。
西普尔常见的故障
1高压部分炸机,2输出电压高,3不起震灯不亮没电压输出(非炸机),4绿灯亮不能充电,5虚焊,6各类电容烧坏,7变压器腐蚀断线,8指示灯坏,9输出电压低,10电阻、三极管烧坏或腐蚀等等情况。
这次先从西普尔输出电压高的5个案例开始讲解
案例1 220输入端5A保险烧坏,通电电压升高
方法:在220输入端5A保险烧坏时,主板不炸机电容测量不短路情况下,用220V100W灯泡代替保险,万能表两根表笔搭在输出电容上,接通220V电源,电压高于正常值时马上断开电源(在这里注意一点,主板一通电,看万能表电源变化马上断开,要养成习惯)最后发现431损坏开路
案例2
220输入端5A保险烧坏,通电电压升高
431+4148二极管损坏
案例3
220输入端5A保险烧坏,通电电压升高
431+4148二极管+358损坏
发现电压高时更换431+4148二极管后,发现电压变低了再更换358恢复正常
案例4
通电灯不亮
高压部分发现三极管9012短路,更换9012后输出电压异常(高)最后检测222贴片电阻开路
案例5
220输入端5A保险烧坏,通电电压升高
变压器损坏12V风扇供电这组线圈不通(注意这个是经常见到的,变压器腐蚀或震坏)。
可调型汽车蓄电池充电器原理及电路图
可调型汽车蓄电池充电器原理及电路图
这里介绍的可调型汽车蓄电池充电器,充电电压6V~50V可调,最大充电电流达20A。
适应于12V、24V、36V等多种规格的汽车蓄电池充电。
工作原理:如上图所示,接通电源后,交流电通过变压器的初级绕组、R1、RP及R2向电容C2充电,当C2上的电压达到触发双向二极管ST导通电压时,C2通过ST及双向可控硅BCR放电,并触发BCR 导通,使变压器T初级有电流流过,在交流电过零时,BCR关断,C2又开始充电,重复上述过程。
调节电位器RP时,改变了C2充电时间常数,即改变了双向可控硅的导通角,起到电子调节电压的作用,同时变压器T的次级电压也相应变化,改变了充电电压和充电电流。
电路中,L、C1用来消除可控硅产生的脉冲干扰。
变压器T选用功率约250W。
L用长30cm、?6mm的铁氧体磁芯,用?0.8mm的漆包线分三层共绕100匝。
BCR选用8A/600V双向可控硅,配用2mm x 140mm x 80mm的铝质散热板。
电流表A选用电大量程为20A的59L1-A型。
电压表V选用电大量程为50V的59C2-V型。
其
余元器件型号如图所示。
(汽车行业)电动车充电器维修原理电动车充电器入门知识变频器3842电源故障及维修图文解说电动车充电器结构原理及故障检测维修首先就目前市场上面常见的几款充电器我们来认识壹下:西普尔内部电路结构图:正面反面正面反面首先我们把充电器内部的电路基本结构部件进行了分割和注解电动车充电器其实仍有另外的电路结构,大致能够分成2个大的板块,TL494芯片组成的半桥电路,UC3842芯片组成反激式电路,各自都有自己的特点。
目前市场上面绝大部分的充电器都是3842电路,我们就用3842作为我们主要讲解例子。
1.输入线2.NTC3.输入保险丝4.整流管×45.400V滤波电容6.PWM芯片38427.3842供电部分8.启动电阻9.MOS管10.开关变压器11.光耦12.输出整流管13.输出滤波电容14.控制部分供电15.运放LM324/35816.电流采样电阻17.输出保险丝18.输出线补充:19.输出电压控制部件(431)三、充电器工作基本原理基本的工作方框图(下午下班回家开始画,历时3小时…汗壹个)注:图片里面的电流基准其实和电流检测存在比较关系,为了画的方便和直观,连到了壹起!下面就这个基本工作方框图我们简单的说壹下,怎么和维修的思路结合在壹起。
充电器工作原理是壹个比较复杂的过程,而维修讲究的是把把复杂的东西简单化,理清思路,剔除壹些不必要的障碍,是壹个高级维修技工必备的要素,所以我们壹般会说:会维修的人不会设计,会设计的人不会维修。
因为维修的人容易把复杂的东西去简单化,他去搞设计往往会出现壹些致命的错误,而设计师去搞维修,我们会见到壹幅比较搞笑的画面,设计师会把产品从头到脚分析壹遍,甚至画出电路图,否则他会感觉无从下手。
××××××××××××××××××××××××××××××××××××××××××××××××××××××仍是简单的说说由3842芯片构成的充电器工作原理:首先AC220电压经由保险丝,NTC和EMI滤波整流滤波变换至300V左右的直流电压,经启动电阻提供给3842(7脚)初始工作电压,驱动MOS管开关动作,开关变压器在MOS管的开关作用下,会不断的储存->释放,而使输出绕组感应到的电能经过整流滤波输出的直流电压,通过采样到431或运放控制光耦把信号反馈至3842的1脚或2脚,控制3842的输出(6脚)的占空比,以达到稳定的输出电压值。
电瓶车充电器电路图及原理-推荐下载电瓶车充电器电路图及原理(上)根据电动自行车铅酸蓄电池的特点,当其为36V/12AH时,采用限压恒流充电方式,初始充电电流最大不宜超过3A。
也就是说,充电器输出最大达到43V/3A/129W,已经可满足。
在充电过程中,充电电流还将逐渐降低。
以目前开关电源技术和开关管生产水平而言,单端开关稳压器输出功率的极限值已提高到180W,甚至更大。
输出功率为150W以下的单端它激式开关稳压器,其可靠性已达到极高的程度。
MOS FET开关管的应用,成功地解决了开关管二次击穿的难题,使开关电源的可靠性更上一层楼。
目前,应用最广的、也是最早的可直接驱动MOS FET开关管的单端驱动器为MC3842。
MC3842在稳定输出电压的同时,还具有负载电流控制功能,因而常称其为电流控制型开关电源驱动器,无疑用于充电器此功能具有独特的优势,只用极少的外围元件即可实现恒压输出,同时还能控制充电电流。
尤其是MC3842可直接驱动MOS FET管的的应用极广,本文只介绍其特点。
特点,可以使充电器的可靠性大幅提高。
由于MC3842MC3842为双列8脚单端输出的它激式开关电源驱动集成电路,其内部功能包括:基准电压稳压器、误差放大器、脉冲宽度比较器、锁存器、振荡器、脉宽调制器(PWM)、脉冲输出驱动级等等。
MC3842的同类产品较多,其中可互换的有UC3842、IR3842N、SG3842、CM3842(国产)、LM3842等。
MC3842内部方框图见图1。
其特点如下:单端PWM脉冲输出,输出驱动电流为200mA,峰值电流可达1A。
启动电压大于16V,启动电流仅1mA即可进入工作状态。
进入工作状态后,工作电压在10~34V之间,负载电流为15mA。
超过正常工作电压,开关电源进入欠电压或过电压保护状态,此时集成电路无驱动脉冲输出。
内设5V/50mA基准电压源,经2:1分压作为取样基准电压。
输出的驱动脉冲既可驱动双极型晶体管,也可驱动MOS场效应管。
智能脉冲电动车充电器电路图电动车充电器常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见(图表1)220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。