几何光学的基本定律与像差理论
- 格式:ppt
- 大小:1.81 MB
- 文档页数:41
几何光学的三个基本定律一、引言几何光学是研究光在直线传播过程中的行为的光学分支。
其理论基础是几何光学三个基本定律,这些定律揭示了光在透明介质中的传播规律。
本文将详细介绍这三个基本定律,并探讨它们对光学现象的解释和应用。
二、第一定律:直线传播定律直线传播定律是几何光学中最基本的定律,它表明光线在均匀介质中直线传播。
光的传播路径可以用直线表示,且沿一定方向传播。
这意味着光线在不同介质之间传播时会发生折射,但在同一介质内则是直线传播。
三、第二定律:反射定律反射定律是几何光学的第二个基本定律,它描述了光线在界面上的反射行为。
根据反射定律,入射光线与法线的夹角等于反射光线与法线的夹角,而且入射光线、反射光线和法线在同一平面内。
这个定律解释了为什么我们能够看到镜子中的自己,以及为什么我们可以利用反射现象制作反光镜和平面镜。
四、第三定律:折射定律折射定律是几何光学中的第三个基本定律,它描述了光线在不同介质中的折射行为。
根据折射定律,入射光线、折射光线和法线在同一平面内,而且入射角和折射角之间的正弦比等于两个介质的折射率之比。
这个定律解释了为什么我们能看到水中的鱼和游泳池底部的景物,以及为什么光能够通过透镜形成清晰的图像。
1. 折射率的定义折射率是指光在某一介质中的速度与真空中速度之比。
高折射率的介质会使光线偏折得更多,而低折射率的介质则会使光线偏折得较少。
2. 斯涅尔定律斯涅尔定律是折射定律的一种特殊形式,适用于光线从一介质射入另一介质的情况下。
根据斯涅尔定律,入射角、折射角和两个介质的折射率之比满足一个简单的数学关系式。
五、光学现象的应用几何光学的三个基本定律在光学现象的解释和应用中起着重要的作用。
以下是几个常见光学现象及其与定律的关系:1. 倒影倒影是一种反射现象,发生在平面镜或其他光滑表面上。
根据反射定律,镜子中的物体通过镜面反射形成倒立的像。
这个现象在我们日常生活中的镜子和反光材料中得到了广泛应用。
2. 折射折射是光线在不同介质之间传播时发生的偏折现象。
第一章 几何光学基本定律与成像概念第一节几何光学基本定律一、光波与光线1、首先讲解光波性质性质:光是一种电磁波,是横波,我们说光源发光过程就是物体辐射电磁波的过6−程。
我们平常看到的光波属于可见光波,波长范围390nm—780nm,(1nm=10mm) 可见光波的可见是指能够引起人眼颜色感觉。
光波分为两种:①、单色光波――指具有单一波长的光波,λ=555nm 钠黄光λ=632.8nm 激光②、复色光波――有几种单色光波混合而成,λ1,λ2……,如:太阳光,在可见区域内就有7种波长。
2、光波的传播速度ν光波的传播速度不是一个常数,而是一个变量,他与哪些因素有关?① 与介质折射率n有关,n不同,ν不同;即介质不同,传播速度不同,所以光在水中和空气中ν不同。
② 与波长λ有关系,不同λ,其ν不同,即使处于同一介质中,λ不同,ν不同。
ν=c/n c:光在真空中的传播速度ν=3×108m/s;n为介质折射率。
例题:已知对于某一波长λ而言,其在水中的介质折射率n=4/3,求该波长的光在水中的传播速度。
8ν=c/n =3×10/4/3=2.25×108 m/s。
③ 光线――(是假想的、抽象的东西)是没有直径、没有体积却携有能量并具有方向性的几何线。
方向性是指光能的传播方向/波面的法线方向。
图1-1 平行光束④ 光束――同一光源发出的光线的集合。
会聚光束:所有光线实际交于一点(其延长线交于一点)图1-2 会聚光束发散光束:从实际点发出。
(其延长线通过一点)图1-3 发散光束需要说明的是:会聚光束可在屏上接收到亮点,发散光束不可在屏上接收到亮点,但却可为人眼观察到。
⑤ 波面――常见的有:平面波、球面波、柱面波。
平面波:有平行光形成。
平面波实际是球面波的特例,是R=∞时的球面波。
球面波:有点光源产生 柱面波:有线光源产生。
二、几何光学的基本定律可归纳为四个,即直线传播定律、独立传播定律、折射定律、反射定律。
几何光学复习大纲模块一几何光学基础一、几何光学的基本定律(考试分值:大约10分)(一)几何光学的基本定律(要求:掌握定律内容并能够用之解释光学现象)1、光的直线传播定律2、光的独立传播定律3、光的折射与反射定律反射定律表述:I’’=-I折射定律表述:n’sinI’=nsinI全反射产生的条件:光线从光密介质进入光疏介质,且入射角大于临界角arcsinn’/n(二)费马原理1、光程概念:s=nl2、原理表述:0=Sδ即光沿光程极值路径传播。
二、共轴球面光学系统(一)符号规则1、规定:以折射球面定点为参考原点,光线方向自左向右2、线量正负沿轴线量:和光线传播方向相同为正,反之为负。
垂轴线量:以光轴为基准,在光轴以上为正,反之为负。
3、角量正负:顺时针为正,逆时针为负,均以锐角来衡量。
光线与光轴的夹角(即孔径角):始边为光轴 光线与法线的夹角:始边为法线 法线与光轴的夹角:始边为光轴 (二)单个折射球面的成像1、实际光线的光路计算(宽光束成像) 成像不完善,存在球差。
2、近轴光线光路的计算r nn l n l n -'=-''表明已知物体位置l ,即可求出像点位置l ’,反之亦然。
即物体在近轴区域能够完善成像。
定义:光焦度fnf n r n n -=''=-'=φ易知,当物象处于同一介质中时,f ’=-f 3、放大率垂轴放大率:l n l n y y ''='=β(三)反射球面的成像(令折射球面公式中n ’=-n )1、 物象位置公式:r l l 211=+'且有: 2rf f =='2、成像放大率(三)平面系统1、单平面镜成像特点完善性、等大、虚实相反、镜像等;自准直法2、折射棱镜的色散色散的概念;最小偏向角测量折射率模块二理想光学系统(考试分值:大约30分)一、理想光学系统的基点和基面1、理想光学系统的基点三对特殊的共轭点:无限远轴上物点——像方焦点;物方焦点——无限远轴上像点;物方节点——像方节点(角放大率等于1的一对共轭点)注意:物方焦点与像方焦点不是一对共轭点!2、理想光学系统的基面三对特殊的共轭面:物方无限远垂直于光轴的平面——像方焦面;物方焦面——像方无限远垂直于光轴的平面;物方主面与像方主面(垂轴放大率等于1的一对共轭面)二、理想光学系统的物像关系1、作图法求像作图常用的典型光线或性质:典型实例:(1)轴外物点或垂轴线段AB作图求像(2)轴上点图解法求像两种方法:3、解析法求像(1)牛顿公式(2)高斯公式注意:计算时所有物理量的正负性!模块三光学系统的光束限制(考试分值:大约2~4分)一、光阑的定义和作用1、定义1)指光学系统中设置的一些带有内孔的金属薄片。
第十九章几何光学几何光学,又称为光线光学。
不考虑光的波动性以及光与物质的相互作用,只以光线的概念为基础,根据以实验事实建立的基本定律,通过计算和作图来讨论物体通过光学系统的成像规律。
几何光学的适应条件:在光的传播方向上障碍物的限度D,必须远大于光波的波长λ。
即D 》λ,或λ/D→0。
§19-1 几何光学的基本定律一、几何光学的基本定律几何光学的基本实验定律可以表示如下:1、光的直线传播定律:光在均匀透明介质中沿直线传播。
2、光的独立传播定律:来自不同方向的光线在空间相遇后,各自保持自己的传播方向继续传播。
3、反射定律:当光射至两种介质的光滑分界面上时,反射光线、入射光线及界面的法线处在同一平面内,反射光线和入射光线位于法线的两侧,并且反射角等于入射角。
4、折射定律:折射光线、入射光线和法线处在同一平面内,折射光线和入射光线位于法线的两侧,且有下式成立:5、光路可逆性原理:如果光线逆着反射光线入射,则这时的反射光线将逆着原来的入射光线方线传播。
12sin sin n i n r=二、费马(Fermat )原理1、光程:在均匀介质中,光程δ表示光在该介质中走的几何路程与介质折射率n 的乘积,即nl=δ(1)如果光线从A 点出发经过N 种不同的均匀介质到达B 点,则总光程可以表示为:iNi i l n ∑=⋅=1δ(2)若A 和B 之间介质的折射率是连续改变的,但折射率随空间的变化率d n /d l 在波长数量及内可近似看作常数,则总光程可表示为:BAndlδ=⎰dd 0BAndl δ==⎰由费马原理,可以直接证明光的反射和折射定律!2、费马原理:1657年法国数学家费马用光程的概念把几何光学的基本定律归结为一个统一的基本原理,即费马原理。
光线在A 、B 两点之之间的实际路经,与其他可能的邻近路程相比,其光程为极值。
即Fermat原理导出几何光学的实验定律(1)光的直线传播定律在均匀媒质中,两点间光程最短的路径是直线.(2)光的反射定律Q,P两点在反射面的同一侧。