11几何光学的基本定律和费马原理
- 格式:pptx
- 大小:3.42 MB
- 文档页数:35
费马原理的内容
费马原理最早由法国科学家皮埃尔·德·费马在1660年提出,又名“最短光时”原理。
费马原理:光沿着所需时间为平稳的路径传播.(所谓的平稳是数学上的变分概念,可以简单理解为一阶导数为零,它可以是极大值、极小值甚至是拐点.多数情况是极小值.宇宙学中指的时空透镜就是极大值,椭圆状镜面的表面则是拐点.)
光程 s=n l(n 为光所在介质的折射率,l为几何路程) 又因为 n=c/v 和
l=vt 所以得到 s=ct. 由此可见,光在某种介质中的光程等于同一时间内光在真空中所走的几何路程。
费马原理指出,光从一点传播到另一点,其间无论经过多少次折射和反射,光程为极值.也就是说,光是沿着光程为极值(极大值、极小值或常量)的路径传播的。
费马原理为几何光学中的基本原理,费马原理也被称为最短时间原理。
通过费马原理可以推导斯涅尔定律、反射定律和光线传播定律。
以及有关各种光学器件的定理也可以从费马原理或上述定律中推导出来。
费马原理的精确表示:在光运动的各种情形下,光会沿着一阶变量为0的路径传播。
这种表述较最短时间原理相比更为准确,在反射定律的例子中,光沿着入射角等于出射角的路径传播。
可是依据最短时间,光线并没有沿着最短的路径传播,毕竟两点之间线段最短。
因此在存在约束的条件下,“在光运动的各种情形下,光会沿着一阶变量为0的路径传播”此表述更为精确。
通过费马原理可以推导出光沿着直线传播,因为相同的一束光在同一种介质内的传播速度相同,所以若这一束光要从点A传播至点B,则根据两点之间线段最短得到光线将沿着此先短传播。
费马原理可以推导出几何光学中的很多重要规律费马原理指出,光在指定的两点之间传播,实际的光程总是为最大或保持恒定,这里的光程是指光在某种均匀介质中通过的路程和该种媒质的折射率的乘积。
费马原理是几何光学中的一个十分重要的基本原理,从费马原理可以推导出几何光学中的很多重要规律。
例如光的直线传播、反射定律,折射定律,都可以从光程极小推出。
如果反射面是一个旋转椭球面,而点光源置于其一个焦点上,所有反射光线都经过另一个焦点,所有反射光线都经过另一个焦点,便是光程恒定的一个例子。
此外,透镜对光线的折射作用,也是很典型的。
一平凸透镜的折射率为 n,放置在空气中,透镜面孔的半径为R。
在透镜外主光轴上取一点 F , OF f (图 1-3-8 )。
当平行光沿主光轴入射时,为使所有光线均会聚于 F 点。
试问:(1)透镜凸面应取什么形状?( 2)透镜顶点 A与点 O相距多少?( 3)对透镜的孔径 R有何限制?解: 根据费马原理,以平行光入射并会聚于 F 的所有光线应有相等的光程,即最边缘的光线 BF 与任一条光线 NM F 的光程应相等。
由此可以确定凸面的方程。
其余问题亦可迎刃而解。
(1)取 o xy 坐标系如图,由光线 BF 和 NM F 的等光程性,得2 2 2 2nx ( f x) y f R整理后,得到任一点 M(x,y)的坐标 x,y 应满足的方程为1 ( ) 1 ( 1)2 2 2 2 2 2 2 2 2 2 n nf f R y n n f R f n x 令 1 2 2 2 0 n n f R f x , 1 2 2 2 n nf f R a,则上式成为2 2 2 0 2 (n 1)(x x ) y a这是双曲线的方程,由旋转对称性,透镜的凸面应是旋转双曲面。
(2)透镜顶点 A的位置应满足2 2 0 2 (n 1)( xA x ) axyBAM(x,y)nRf ′ F′ 图 1-3-8或者 1 1 2 2 2 n f R f n a x A x O可见,对于一定的 n 和 f , xA 由 R决定。
费马定理费马原理是光学中最为基础的原理,它在物理学发展的历程中有着至关重要的作用。
它用一种新的看法将几何光学的三个基本实验定律(光的反射定律和折射定律、光的独立传播定律光的直线传播定律直线传播)进行统一,并表述了三者的联系。
通过研究几何光学问题,能彰显出费马定理的重要性,能更加系统化光学理论.可见通过费马原理推导上述三个基本实验定律,能使我们更加系统的理解光学理论,这对广大学者都有着不可或缺的意义。
费马原理的直观表达:光从空间的一点到另一点的实际路径是沿着光程为极值的路径传播的。
或者说, 光沿着光程为极大、极小或者常量的路径传播。
光线从Q 点传播到P 点所需的总时间:⎰∑∑=∆=∆===ndl c t l n c v l t PQ i i i i i i 1111费马原理:在所有可能的光传播路径中,实际路径所需的时间 取极值。
⎰==01ndl ct P Q δδ 在光传播的所有可能存在的路径中,其实际路径所对应的光程取极致。
⎰==0ndl L P Q δδ① 直线传播定律:两点间的所有可能连线中,线段最短-—光程取极小值。
② 内椭球面的反射: 椭球面上任一点到两个焦点连线的角平分线即过该点的面法线,且两线段长度之和相等。
用费马原理导出反射定律如下图, PQ 为两个介质间的平面反射镜,从A 点发射出的光线照射到PQ 平面上的O 点,经过反射到达B 点。
假设光线所处的介质为均匀介质。
光线的透射点O 到A 点与反射平面垂足P 的长度为x 。
那么点A 到点B 的光程为:()⎥⎦⎤⎢⎣⎡-+++=222221x a H x H n OBn AO n L +=()22222211x a H n x H n -+++=OBn AO n L 21+=很明显,光程L 是关于变量x 的函数,由费马原理分析,真实的光程是固定的,在均匀介质中的一阶导数是0,即()()0222221=-+--+=x a H x a n x H nx dx dL即有()I n I n -sin sin =即I I -=反射定律由上面推导出来了.进一步可以证明22dxL d >0 , 这说明满足反射定律的光线具有最短光程. 从费马原理导出折射定律下图中,两个介质均为均匀介质,它们的折射率分别为1n 、2n ,光线从1n 介质投射到折射面的O 点,光线折射后进入2n 介质,然后通过B 点。