有限元基础
- 格式:pdf
- 大小:2.74 MB
- 文档页数:164
有限元基础编程百科全书
有限元基础编程是指使用有限元方法(FEM)进行工程分析和设计的计算机编程技术。
有限元方法是一种数值分析技术,用于解决复杂的工程和物理问题,例如结构分析、热传导、流体力学等。
下面我将从多个角度全面介绍有限元基础编程的百科全书。
首先,有限元基础编程百科全书应该包括对有限元方法的基本原理和数学基础的详细讲解。
这包括有限元离散化过程、单元和节点的概念、刚度矩阵和质量矩阵的推导,以及有限元解的数值求解技术等内容。
此外,对于常见的工程问题,如静力学、动力学、热传导和流体力学等,百科全书还应该包括有限元方法在这些领域的应用原理和算法。
其次,有限元基础编程百科全书还应该涵盖有限元程序的编写和实现。
这包括使用常见的有限元软件(如Abaqus、Ansys、Nastran等)进行编程的基本步骤和技巧,以及各种编程语言(如Fortran、C++、Python等)在有限元分析中的应用。
此外,还应该包括有限元程序的优化和并行计算技术,以提高计算效率和精度。
此外,有限元基础编程百科全书还应该介绍有限元分析在工程
实践中的应用。
这包括结构分析、材料力学、振动和声学分析、热传导和传热分析、流体力学和多物理场耦合分析等方面的工程案例和实际应用。
这些案例不仅可以帮助读者理解有限元方法的具体应用,还可以帮助他们将理论知识转化为实际工程问题的解决方案。
综上所述,有限元基础编程百科全书应该全面介绍有限元方法的理论基础、编程实现和工程应用,从而帮助读者全面深入地理解和掌握有限元分析技术。
希望这些信息对你有所帮助。
第一讲第一章有限元的基本根念Basic Concepts of the Finite Element Method1.1引言(introduction)有限元(FEM或FEA)是一种获取近似边值问题的计算方法。
边值问题(boundary value problems, 场问题field problem )是一种数学问题(mathematical problems)(在所研究的区域,一些相关变量满足微分方程如物理方程、位移协调方程等且满足特定的区域边界)。
边值问题也称为场问题,场是指我们研究的区域,并代表一种物理模型。
场变量是满足微分方程的相关变量,边界条件代表场变量在场边界上特定的值(物理边界转化为数学边界)。
根据所分析物理问题的不同,场变量包括位移、温度、热量等。
1.2有限元法的基本思路 (how does the finite element methods work)有限元法的基本思路可以归结为:将连续系统分割成有限个分区或单元,对每个单元提出一个近似解,再将所有单元按标准方法组合成一个与原有系统近似的系统。
下面用在自重作用下的等截面直杆来说明有限元法的思路。
等截面直杆在自重作用下的材料力学解答图1.1 受自重作用的等截面直杆图1.2 离散后的直杆受自重作用的等截面直杆如图所示,杆的长度为L ,截面积为A ,弹性模量为E ,单位长度的重量为q ,杆的内力为N 。
试求:杆的位移分布,杆的应变和应力。
)()(x L q x N -=EAdx x L q EA dx x N x dL )()()(-== ⎰-==xx Lx EA q EA dx x N x u 02)2()()( (1))(x L EAq dx du x -==ε )(x L A q E x x -==εσ 等截面直杆在自重作用下的有限元法解答(1)离散化如图1.2所示,将直杆划分成n 个有限段,有限段之间通过一个铰接点连接。
称两段之间的连接点为结点,称每个有限段为单元。
有限元的理论基础有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
1.加权余量法:是指采用使余量的加权函数为零求得微分方程近似解的方法称为加权余量法。
(Weigh ted residual method WRM )是一种直接从所需求解的微分方程及边界条件出发,寻求边值问题近似解的数学方法。
加权余量法是求解微分方程近似解的一种有效的方法。
设问题的控制微分方程为:在V 域内 在S 边界上式中 :L 、B ——分别为微分方程和边界条件中的微分算子;f 、g ——为与未知函数u 无关的已知函数域值;u ——为问题待求的未知函数 ()0B u g -=(5.1.2)()0L u f -=(5.1.1)混合法对于试函数的选取最方便,但在相同精度条件下,工作量最大。
对内部法和边界法必须使基函数事先满足一定条件,这对复杂结构分析往往有一定困难,但试函数一经建立,其工作量较小。
无论采用何种方法,在建立试函数时均应注意以下几点:(1)试函数应由完备函数集的子集构成。
已被采用过的试函数有幂级数、三角级数、样条函数、贝赛尔函数、切比雪夫和勒让德多项式等等。
(2)试函数应具有直到比消除余量的加权积分表达式中最高阶导数低一阶的导数连续性。
(3)试函数应与问题的解析解或问题的特解相关联。
若计算问题具有对称性,应充分利用它。
显然,任何独立的完全函数集都可以作为权函数。
按照对权函数的不同选择得到不同的加权余量计算方法,主要有:配点法、子域法、最小二乘法、力矩法和伽辽金法。
其中伽辽金法的精度最高。
2、虚功原理——平衡方程和几何方程的等效积分“弱”形式虚功原理包含虚位移原理和虚应力原理,是虚位移原理和虚应力原理的总称。
有限元理论基础及应用有限元理论是应用于工程计算领域的一种数值分析方法,它是通过将连续的结构或物体分割成有限数量的离散单元,然后在每个单元上进行近似计算,最终得到整个结构或物体的近似解。
有限元理论广泛应用于结构分析、流体力学、电磁场分析等领域,是工程计算的重要工具。
有限元理论的基础是有限元方法,它将连续的结构或物体以网格的形式划分成一系列有限的单元,通过在每个单元内进行节点位移或其他物理量的近似表示,建立起离散的数学模型。
在有限元方法中,常用的单元形状包括线元、三角形单元、四边形单元等。
每个单元的节点之间通过连接的方式形成整个结构的网格。
有限元理论的基本原理是将连续的物理问题转化为离散的代数问题,通过求解代数方程组得到数值结果。
其基本步骤包括:1.离散化:将连续的结构或物体划分为离散的单元,并在每个单元上建立近似解。
2.建立单元方程:根据结构或物体的本构关系、边界条件等,建立每个单元的方程。
3.组装:根据单元之间的连接方式,将每个单元的方程组装成整个结构或物体的方程。
4.边界条件处理:考虑边界条件对结构或物体的约束作用,修改方程。
5.求解代数方程组:将边界条件处理后的方程组进行求解,得到数值解。
有限元理论的应用非常广泛,主要包括:1.结构分析:有限元方法在结构力学领域的应用非常广泛,可以用于预测结构的应力、变形、疲劳寿命等。
例如,在建筑工程中,可以使用有限元方法对建筑结构进行静力分析,以确保结构的稳定性和安全性。
2.流体力学:有限元方法在流体力学领域的应用包括流体流动、传热、空气动力学等方面。
通过将流体分割成离散的单元,并建立流体的动量方程、能量方程等,可以模拟和预测流体的各种特性。
3.电磁场分析:有限元方法可以用于模拟和分析电磁场的分布、辐射、散射等现象。
在电子器件设计中,有限元方法可以用于预测电磁场的影响和优化设计。
此外,有限元方法还应用于声学、热力学、生物力学等领域。
它的优势包括模拟结果的准确性、适用于复杂几何形状和边界条件、计算速度较快等。
有限元基础知识归纳有限元知识点归纳1.、有限元解的特点、原因?答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。
在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。
2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处Ni=1,其它节点Ni=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。
可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。
4、等参元的概念、特点、用时注意什么?(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。
即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。
称前者为母单元,后者为子单元。
还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。
如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。
5、单元离散?P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。
每个部分称为一个单元,连接点称为结点。
对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。
这种单元称为常应变三角形单元。
常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。
有限元方法基础吉林大学汽车工程学院
引论
一、结构分析的目的
1、克服传统设计方法的不足。
2、为改进设计、优化设计提供指导。
以往的设计大都是基于经验的,尽管基于经验的设计方法在以往的设计中取得了巨大的成功,并且今后的设计仍然将以经验设计为主。
但也必须承认基于经验的设计也存在许多不足。
首先经验的积累需要时间,有时也不一定都可靠。
此外,通常基于经验的设计能解决行不行的问题,很难解决优不优的问题,尽管为了解决结构优化的问题,也有人提出了一些新的设计理念,如加法设计原则。
解决上述问题的根本手段就是采用合理的、科学的方法对上述性能进行分析。
二、数值分析与实验分析的比较
分析方法可分为理论计算和实验测试两大类。
1、基于实验的分析方法
指通过的实验测试获取需要的性能参数的方法。
这种方法获取不同的性能参数需要采用不同的测试方法、仪器设备和辅助实验装置。
如:强度实验,可以采用电阻应变片及应变仪、光弹涂膜或云纹栅、应变涂料等;
扭转与弯曲刚度实验则需要专门的实验台等等。
实验方法的最大优点是工程上普遍认为,实验结果真实可靠,通常被当作产品最终定型的权威性依据。
实验方法的优点:
是工程上普遍认为,实验结果真实可靠,
通常被当作产品最终定型的权威性依据。
实验方法的缺点:
1)实验一定要在样品或样机试制之后才能进行,无法与设计并行。
2)成本高、周期长,通常只适合批量生产的产品。
3)可以获得的数据量有限,无法对设计提供更多的指导,更无法进行结构优化。
4)受实验手段的限制,有些参数无法测准。
2、基于理论计算的分析方法
指通过理论分析或数值计算获取所需的性能参数的分析方法
优点:
1)经济、快捷,成本低、周期短。
(与实验相比)2)一次分析可以获得大量的数据。
3)可以与设计同步进行。
4)可以配合优化算法,对设计进行优化。
缺点:分析结果受模型质量、算法理论及边界条件等诸多因素影响。
三、有限元分析的原理1,
变形体
单一变量的常微分方程给定边界条件下的偏微分方程简化计算方法(载荷简化、物性关系简化以及结构形状简化等)半解析法:解析法与数值法的结合
中华和钟
万年永保
第一章弹性力学基础
图1.1 变形体的描述及所需要的变量
图1.2 平面问题中的应力表达
1.2
1.2
(1-13)
(1-14)
(1-15)
(1-16)(1-17)
(1-20)
(1-20)
(1-21)
(1-22)
yx
τxy
τyx
τyx τyx τyx
τ
(1-24)
(1-25)(1-26)
(分量形式)
(1-27)
(1-28)
(1-29)
(1-30)
(1-31)
(1-32)
(1-33)
(1-34)
(1-35)
(1-36)
(1-37)
1=
图1.7 平面应力
条件
1)只在板边上承受平行于板面,而不沿板厚度变化的面力,两板面上无外力作用。
2)很薄的等厚度薄板。
3)体力也平行于板面并且不沿厚度变化。
1.7
图1.8 平面应变问题
条件:
1)几何条件:沿厚度方向的截面形状大小相同且厚度尺寸远远大于截面尺寸,即结构呈等截面的细长形。
2)载荷条件:载荷垂直于厚度方向且沿厚度均匀分布,两个端面不受力。
设有一无限长等截面柱形体,所承受外载不随z变化,见图1.8,任一截面都为对称面,则有。