煤加氢直接液化工艺
- 格式:ppt
- 大小:9.61 MB
- 文档页数:5
煤直接液化和煤间接液化综述摘要:煤的直接液化和间接液化技术经过长期发展,已形成了各自的工艺特征和典型工艺。
我国总的能源特征是“富煤、少油、有气”,以煤制油已成为我国能源战略的一个重要趋势。
经过长期不断努力,我国初步形成了“煤制油”产业化的雏形,在未来将迎来更多机遇和挑战。
关键字:煤直接液化煤间接液化发展历程现状前景1.煤直接液化煤直接液化又称煤加氢液化, 是将固体煤制成煤浆, 在高温高压下, 通过催化加氢裂化, 同时包括热解、溶剂萃取、非催化液化, 将煤降解和加氢从而转化为液体烃类, 进而通过稳定加氢及加氢提质等过程, 脱除煤中氮、氧、硫等杂原子并提高油品质量的技术。
煤直接液化过程包括煤浆制备、反应、分离和加氢提质等单元。
煤的杂质含量越低, 氢含量越高, 越适合于直接液化。
1.1发展历程煤直接液化技术始于二十世纪初, 1913年德国科学家Bergius首先研究了煤高压加氢, 并获得了世界上第一个煤液化专利, 在此基础上开发了著名的I G Farben工艺。
该工艺反应条件较为苛刻, 反应温度为470℃, 反应压力为70MPa。
1927年德国在Leuna建立了世界上第一个规模为0.1Mt/a的煤直接液化厂, 到第二次世界大战结束时,德国的18个煤直接液化工厂总油品生产能力已达约4.23Mt/a , 其汽油产量占当时德国汽油消耗量的50%。
第二次世界大战前后, 英国、美国、日本、法国、意大利、苏联等国也相继进行了煤直接液化技术的研究。
以后由于廉价石油的大量发现, 从煤生产燃料油变得无利可图, 煤直接液化工厂停工, 煤直接液化技术的研究处于停顿状态。
20世纪70年代,石油危机发生后, 各发达国家投人大量人力物力进行煤直接液化技术的研发, 相继开发出多种煤直接液化工艺, 但由于从20世纪80年代后期起原油价格在高位维持的时间不长,从煤生产燃料油获利的可能性较低, 这些工艺都没有实现工业化。
1.2煤直接液化技术的工艺特征典型的煤直接加氢液化工艺包括: ①氢气制备;②煤糊相(油煤浆)制备; ③加氢液化反应;④油品加工等“先并后串”四个步骤。
俄罗斯低压液化工艺前苏联在20世纪70~80年代对煤炭直接液化技术进行了十分广泛的研究,主要研究工作针对世界上最大的、露天开采的坎斯克-阿钦斯克、库兹涅茨(西伯利亚)煤田的煤质特点,开发了低压(6~10MPa )煤直接液化工艺。
该工艺采用乳化钼催化剂,反应温度425~435℃,液相加氢阶段反应时间为30~60min 。
1983年在图拉州建成了处理煤炭5~10t/d 的“CT-5”中试装置,实验工作进行了7年。
在此基础上前苏联先后完成了处理煤炭75t/d 的“CT-75”和500t/d 的“CT-500”的大型中试厂的详细工程设计。
其中“CT-75”已开始建设,后因苏联解体未完成。
俄罗斯低压液化工艺采用高活性的乳化钼催化剂,并掌握了Mo 的回收技术,可使95%~97%的Mo 得以回收再利用。
该工艺对煤种的要求较高,最适合灰分低于10%,惰性组分低于5%,反射率在0.4%~0.75%之间的年轻高活性未氧化煤,而且对煤中灰的化学成分也有较高的要求,要求(O K O Na 22+)<3%、(3232SO TiO MgO CaO O Fe ++++)/(O K O Na 22+)>2。
对于惰性组分>15%,煤灰中(O K O Na 22+)>6%、3232SO TiO MgO CaOO Fe ++++)/(O K O Na 22+)<1的煤,则不适合该工艺。
俄罗斯低压液化工艺之所以能在较低压力(6~10MPa )和较低的温度(425~435℃)下实现煤的有效液化,主要取决于煤的品质和催化剂。
下图为俄罗斯低压煤直接加氢液化工艺流程图。
俄罗斯低压液化工艺“CT-5”流程:原料煤粉碎至小于3mm 后,进入涡流仓。
在涡流仓内,煤被惰性气体快速加热(加热速度在1000℃/min以上),发生爆炸式的水分分离、气孔爆裂,经过多级涡流仓热裂解脱除水分后,进入细磨机,最后得到尺寸小于0.1~0.2mm,水分小于1.5%~2.0%的粉煤。
煤温和加氢液化制高品质液体燃料关键技术与工艺引言在当前全球能源供应紧张的背景下,开发和利用高品质液体燃料成为了国际能源领域的研究热点之一。
煤温和加氢液化技术作为一种重要的液体燃料制备方法,具有资源成本低、适用范围广的优势,对我国能源战略和经济发展具有重要意义。
本文将从煤温和加氢液化的原理、关键技术及工艺流程等方面进行综合分析和探讨。
原理煤温和加氢液化是一种将固体煤转化为液体燃料的技术。
其原理是通过高温和高压的条件下,将煤在氢气的催化作用下进行化学反应,使煤中的高分子化合物裂解,并生成液体燃料。
这一过程主要包括三个步骤:煤的热解、煤的气化和煤的加氢。
煤的热解煤的热解是指将煤暴露在高温环境中,使煤中的有机质在没有氧气的条件下发生热解反应,生成气体和液体产物。
热解过程中,煤中的高分子化合物会发生裂解,生成低分子量的化合物,如烃类等。
煤的气化煤的气化是指将煤中的热解产物(如烃类)在高温和高压的条件下与氢气反应,生成更高价态的化合物。
在气化过程中,煤中的烃类会与氢气发生反应,生成一系列的液体和气体产物,其中液体产物就是液体燃料的主要来源。
煤的加氢煤的加氢是指将煤中的气化产物在高温和高压的条件下与氢气进一步反应,将气体产物中的不饱和化合物加氢饱和,生成高品质的液体燃料。
加氢反应可以提高液体燃料的氢碳比,增加其能量密度,提高其燃烧效率。
关键技术煤温和加氢液化制高品质液体燃料的关键技术包括催化剂选择、温度和压力控制、反应器设计等。
催化剂选择催化剂的选择对煤温和加氢液化的反应效果和产物质量起到关键作用。
优质的催化剂应具有高催化活性、良好的稳定性和选择性,能够在适宜的温度下催化反应进行。
常用的催化剂包括铁、镍、钼等金属催化剂以及复合催化剂。
温度和压力控制温度和压力是影响煤温和加氢液化反应进行的重要因素。
适当的温度和压力可以促进反应物的转化率和产物的质量。
一般来说,较高的温度和压力有利于提高反应速率和产品收率,但过高的温度和压力会增加能源消耗和设备投资。
煤直接液化工艺流程煤直接液化,煤液化方法之一。
将煤在氢气和催化剂作用下通过加氢裂化转变为液体燃料的过程。
因过程主要采用加氢手段,故又称煤的加氢液化法。
详情如下:一、埃克森供氢溶剂法简称EDS法,为美国埃克森研究和工程公司1976年开发的技术。
原理是借助供氢溶剂的作用,在一定温度和压力下将煤加氢液化成液体燃料。
建有日处理250t煤的半工业试验装置。
其工艺流程主要包括原料混合、加氢液化和产物分离几个部分(图1)。
首先将煤、循环溶剂和供氢溶剂(即加氢后的循环溶剂)制成煤浆,与氢气混合后进入反应器。
反应温度425~450℃,压力10~14MPa,停留时间30~100min。
反应产物经蒸馏分离后,残油一部分作为溶剂直接进入混合器,另一部分在另一个反应器进行催化加氢以提高供氢能力。
溶剂和煤浆分别在两个反应器加氢是EDS法的特点。
在上述条件下,气态烃和油品总产率为50%~70%(对原料煤),其余为釜底残油。
气态烃和油品中C1~C4约占22%,石脑油约占37%,中油(180~340℃)约占37%。
石脑油可用作催化重整原料,或加氢处理后作为汽油调合组分。
中油可作为燃料油使用,用于车用柴油机时需进行加氢处理以减少芳烃含量。
减压残油通过加氢裂化可得到中油和轻油。
埃克森供氢溶剂法流程图二、溶剂精炼煤法简称SRC法,是将煤用溶剂制成浆液送入反应器,在高温和氢压下,裂解或解聚成较小的分子。
此法首先由美国斯潘塞化学公司于60年代开发,继而由海湾石油公司的子公司匹兹堡-米德韦煤矿公司进行研究试验,建有日处理煤50t的半工业试验装置。
按加氢深度的不同,分为SRC-Ⅰ和SRC-Ⅱ两种。
SRC-Ⅰ法(图2)以生产固体、低硫、无灰的溶剂精炼煤为主,用作锅炉燃料,也可作为炼焦配煤的黏合剂、炼铝工业的阳极焦、生产碳素材料的原料或进一步加氢裂化生产液体燃料。
近年来,此法较受产业界重视。
SRC-Ⅱ法用于生产液体燃料,但因当今石油价格下降以及财政困难,开发工作处于停顿状态。
煤的直接液化概述煤的液化是先进的洁净煤技术和煤转化技术之一,是用煤为原料以制取液体烃类为主要产品的技术。
煤液化分为“煤的直接液化”和“煤的间接液化”两大类,煤的直接液化是煤直接催化加氢转化成液体产物的技术.煤的间接演化是以煤基合成气(CO+H2)为原料,在一定的温度和压力下,定向催化合成烃类燃料油和化工原料的工艺,包括煤气化制取合成气及其挣化、变换、催化合成以及产品分离和改质加工等过程。
通过煤炭液化,不仅可以生产汽油、柴油、LPG(液化石油气)、喷气燃料,还可以提取BTX(苯、甲苯、二甲苯),也可以生产制造各种烯烃及含氧有机化台物。
煤炭液化可以加工高硫煤,硫是煤直接液化的助催化剂,煤中硫在气化和液化过程中转化威H2S再经分解可以得到元素硫产品.本篇专门介绍煤炭直接液化技术早在1913年,德国化学家柏吉乌斯(Bergius)首先研究成功了煤的高压加氢制油技术,并获得了专利,为煤的直接液化奠定了基础。
煤炭直接加氢液化一般是在较高温度(400℃以上),高压(10MPa以上),氢气(或CO+H2, CO+H2O)、催化剂和溶剂作用下,将煤的分子进行裂解加氢,直接转化为液体油的加工过程。
煤和石油都是由古代生韧在特定的地质条件下,经过漫长的地质化学滴变而成的。
煤与石油主要都是由C、H、O等元素组成。
煤和石油的根本区别就在于:煤的氢含量和H/C 原子比比石油低,氧含量比石油高I煤的相对分子质量大,有的甚至大干1000.而石油原油的相对分子质量在数十至数百之间,汽油的平均分子量约为110;煤的化学结构复杂,它的基本结构单元是以缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。
煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧,氮、硫)、碱金属和微量元素。
通过加氢,改变煤的分子结构和H/C原子比,同时脱除杂原子,煤就可以液化变成油。
1927年德国在莱那(Leuna)建立了世界上第一个煤直接液化厂,规模10×l04 t/a。