煤炭直接加氢液化解读
- 格式:ppt
- 大小:203.00 KB
- 文档页数:8
煤直接液化和煤间接液化综述摘要:煤的直接液化和间接液化技术经过长期发展,已形成了各自的工艺特征和典型工艺。
我国总的能源特征是“富煤、少油、有气”,以煤制油已成为我国能源战略的一个重要趋势。
经过长期不断努力,我国初步形成了“煤制油”产业化的雏形,在未来将迎来更多机遇和挑战。
关键字:煤直接液化煤间接液化发展历程现状前景1.煤直接液化煤直接液化又称煤加氢液化, 是将固体煤制成煤浆, 在高温高压下, 通过催化加氢裂化, 同时包括热解、溶剂萃取、非催化液化, 将煤降解和加氢从而转化为液体烃类, 进而通过稳定加氢及加氢提质等过程, 脱除煤中氮、氧、硫等杂原子并提高油品质量的技术。
煤直接液化过程包括煤浆制备、反应、分离和加氢提质等单元。
煤的杂质含量越低, 氢含量越高, 越适合于直接液化。
1.1发展历程煤直接液化技术始于二十世纪初, 1913年德国科学家Bergius首先研究了煤高压加氢, 并获得了世界上第一个煤液化专利, 在此基础上开发了著名的I G Farben工艺。
该工艺反应条件较为苛刻, 反应温度为470℃, 反应压力为70MPa。
1927年德国在Leuna建立了世界上第一个规模为0.1Mt/a的煤直接液化厂, 到第二次世界大战结束时,德国的18个煤直接液化工厂总油品生产能力已达约4.23Mt/a , 其汽油产量占当时德国汽油消耗量的50%。
第二次世界大战前后, 英国、美国、日本、法国、意大利、苏联等国也相继进行了煤直接液化技术的研究。
以后由于廉价石油的大量发现, 从煤生产燃料油变得无利可图, 煤直接液化工厂停工, 煤直接液化技术的研究处于停顿状态。
20世纪70年代,石油危机发生后, 各发达国家投人大量人力物力进行煤直接液化技术的研发, 相继开发出多种煤直接液化工艺, 但由于从20世纪80年代后期起原油价格在高位维持的时间不长,从煤生产燃料油获利的可能性较低, 这些工艺都没有实现工业化。
1.2煤直接液化技术的工艺特征典型的煤直接加氢液化工艺包括: ①氢气制备;②煤糊相(油煤浆)制备; ③加氢液化反应;④油品加工等“先并后串”四个步骤。
煤直接液化机理与动力学汇报人:日期:•煤直接液化的基本概念•煤直接液化的机理•煤直接液化的动力学模型目录•煤直接液化的工艺流程与技术•煤直接液化的经济性与环境影响•煤直接液化的研究展望01煤直接液化的基本概念煤直接液化的定义煤直接液化是指将煤在氢气和催化剂的作用下,通过加氢裂化转化为液体燃料的过程。
该过程模拟了天然石油的形成过程,将固态的煤转化为液态的烃类物质。
煤直接液化的历史与发展煤直接液化的研究始于20世纪初,经历了实验室研究、中试和工业化试验等阶段。
随着技术的不断进步和环保要求的提高,煤直接液化技术逐渐成为研究的热点。
目前,我国已经建成了多套煤直接液化装置,并实现了商业化运行,为煤炭资源的清洁利用提供了新的途径。
煤直接液化能够将煤炭资源转化为清洁的液体燃料,降低对石油资源的依赖。
通过煤直接液化,可以生产出与石油产品相媲美的燃料和化工原料,满足市场需求。
煤直接液化有助于实现煤炭资源的清洁利用,减少环境污染,符合可持续发展的要求。
煤直接液化的重要性02煤直接液化的机理煤的化学结构包括芳香环、脂肪链和含氧官能团等,这些结构决定了煤的性质和反应活性。
不同煤阶的煤具有不同的化学结构和性质,对直接液化的反应性和产物特性产生影响。
煤是一种复杂的有机无机混合物,主要由碳、氢、氧、氮、硫等元素组成。
煤的化学结构与性质煤在高温高压条件下与氢气发生反应,通过加氢催化作用将煤中的碳氢化合物转化成液态烃类物质。
液化过程中会发生一系列的化学反应,包括加氢、加氧、脱氢、脱氧等反应类型。
反应过程中需要控制温度、压力和氢气浓度等工艺条件,以实现高效、低耗的液化过程。
液化过程中的化学反应液化产物主要包括液体烃类、气体烃类和少量未转化的残煤等。
液化产物的性质和结构取决于煤的化学结构、反应条件和催化剂等因素。
液化产物中的液体烃类物质可以作为燃料油、润滑油和化学品等使用,具有较高的经济价值。
液化产物的性质与结构03煤直接液化的动力学模型描述化学反应快慢的物理量,通常用单位时间内反应物浓度的减少或产物浓度的增加来表示。
煤炭液化技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII煤炭液化技术[编辑本段]煤炭液化技术煤炭液化是把固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。
根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类:一、直接液化直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。
1、发展历史煤直接液化技术是由德国人于1913年发现的,并于二战期间在德国实现了工业化生产。
德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。
二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。
70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。
日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。
目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGOR工艺和美国的HTI工艺。
这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。
到目前为止,上述国家均已完成了新工艺技术的处理煤100t/d级以上大型中间试验,具备了建设大规模液化厂的技术能力。
煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。
目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。
2、工艺原理煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。
煤直接液化的原理煤是一种非常重要的能源资源,但是其利用却面临着众多的问题,比如环保问题、安全问题等等,因此寻求一种更加高效、安全、环保的煤利用方式就成为了科研人员们努力追求的目标。
而煤直接液化技术就是其中的一种,其原理主要在于将煤中的含碳化合物通过一系列的反应转化成为液态燃料。
接下来,我们将从化学反应原理、反应过程和技术优势等多个方面,来详细阐述煤直接液化的原理。
一、化学反应原理煤直接液化的反应原理主要是在高温、高压、清氢气体的存在下,通过一系列的氢解、缩合、重排、酸碱催化等化学反应,将煤中的含碳化合物转化成为液态燃料。
其中,氢解反应主要是将煤中的大分子结构化合物,如芳香烃和萜烯等分解成为较小的分子。
缩合反应则将分解后的小分子进行加和生成大分子结构的化合物。
重排反应是将某些分子重排生成其他分子。
酸碱催化则能够加速这些反应的进行,提高反应产率。
通过这样的反应机理链式反应,一系列复杂的物质转化过程最终形成了液态燃料。
二、反应过程煤直接液化的反应过程也是非常复杂的,我们可以从以下几个方面来了解其反应机理。
首先是煤的预处理,需要利用一些化学和物理方法提高煤的反应性,增加煤的溶解度和可液化程度;其次是煤的低温热解,通过加热、残炭和气体析出等过程得到反应前体原料氢气,为后续高温反应提供所需氢源;最后是高温下的反应,主要反应环节包括聚合反应、缩合反应、重排反应等,其中还需要添加催化剂、表面活性剂、沉淀剂等辅助材料,以提高反应率和产品纯度。
三、技术优势相比其他煤气化技术,煤直接液化技术具有以下技术优势。
首先是化验条件温和,需要的反应温度不高,可以保证产物的品质和产率;其次是产物品质高,液化产物中不仅含有燃料成分,而且还含有化工原料成分,可以满足不同领域的需求;最后还可以与其他技术相互补充,如煤间接液化、煤气化、竞价等,可以形成一整套的煤转化技术链,提高能源产业可持续发展能力。
总之,煤直接液化技术的原理虽然看上去十分复杂,但却是一项十分有前途的技术,它不仅可以解决煤利用所面临的环保问题,而且还可以提高能源产业的生产效益。