光纤直放站组成及工作原理
- 格式:doc
- 大小:142.00 KB
- 文档页数:2
光纤直放站(Optic Fiber Repeater)产品概述光纤直放站是指采用光纤进行信号传输的直放站。
光纤直放站由靠近基站一侧的近端机及覆盖区域一侧的远端机两部分组成,近端机将收到的信号进行电-光转换,即将射频信号变成光信号后送入光纤,远端机则进行光-电转换并放大后输出。
一个近端机可拖一个或多个远端机。
产品应用村镇、旅游区、公路等的覆盖车站、医院、大型酒店、展馆等区域的覆盖公路和铁路隧道、地铁、矿井等区域的覆盖产品特点1W、2W、5W、10W、20W等多种功率等级支持350M、400M、430M、470M、800M等多种频段支持对讲、模拟集群、iDEN、TETRA、GoTa、GT800、PDT等多种标准和制式 采用波分复用技术,单纤传输,组网便捷、经济近端机19英寸标准机柜,方便安装;远端机高防护等级,全天候应用技术参数技术参数(Specification) 序号(No. ) 项目(Main Item)上行(UpLink) 下行(DownLink)1 频率范围(Frequency Range) 136~174MHz;350~380MHz; 380~400MHz;400~430MHz; 450~470MHz;806~869MHz。
2 带宽(Bandwidth) 2M~25MHz(用户指定)远端机(Remote) 0dBm±2dB 30/33/37/40/43dBm±2dB基站耦合型(RF Cable toBTS) 0dBm±2dB 0dBm±2dB3输出功率(Output Power)近端机(Master)空中耦合型(Wireless toBTS)27/30/33/37dBm±2dB0dBm±2dB 远端机(Remote) 50dB±3dB 55dB±3dB基站耦合型(RF cable toBTS)20dB±3dB 20dB±3dB4最大增益(Maximum Gain)近端机(Master)空中耦合型(Wireless toBTS)55dB±3dB 55dB±3dB5 自动电平控制范围(ALC Range) ≥30 dB6 增益调节范围及步进(Gain Adjust) 31dB in 1dB steps7 噪声系数(Noise Figure) ≤5dB8 时延(Group Delay) <2.5us9 带内波动(In-band Flatness) ≤±1.5dB10 互调衰减(Inter-modulation Attenuation) ≤-45dBc(带内)≤-36dBm/30KHz at 9KHz~1GHz 11 杂散发射(Spurious Emission)≤-30dBm/30KHz at 1GHz~12.75GHz12 输入输出驻波比(VSWR) ≤1.513 防护等级(Protection Class) IP55 or IP65远端机(Slave) 110V AC or 220V AC14 电源(Power Supply)近端机(Master) 48V DC or 110V AC or 220V AC15 阻抗(Impedance) 50Ω16 射频接口(RF Connector) N Female17 光纤波长(Optical Wavelength) 1310nm or 1550nm18 光纤接口(Optical Interface) FC/APC or FC/PC19 光输出功率(Optic Output Power) 0dBm or 用户指定20 工作温度(Work Temperature) -25℃~+55℃21 相对湿度(Relative Humidity) ≤95%22 监控(Monitoring) 本地监控:LCD显示,键盘操作,RS232接口远程监控:MODEM,SMS短信。
光纤直放站在地铁列调TETRA系统中的应用【前言】自2001年800兆TETRA数字集群系统开始在广州地铁二号线应用以来,TETRA技术在我国城市轨道交通领域得到非常广泛的应用,它已经成为地铁运营的支撑网络之一。
在非常态运营下,TETRA系统是运营控制中心(OCC)赖以指挥车辆有序通行的唯一手段。
上海地铁于2005年启动TETRA系统的网络化建设,一套系统覆盖全部1到13号线路,为网络化运营提供通信保障。
经过反复论证,上海地铁确立了“TETRA基站+光纤直放站”的混合组网技术路线。
基本原则为:一个基站带四个光纤直放站;枢纽站和换乘站设置TETRA基站。
相对于TETRA基站,光纤直放站的优势在于其结构简单、成本低、安装方便覆盖更灵活,是实现无线网络“小容量,大覆盖”的可行方案。
而且,光纤直放站在核心侧不占用交换中心的容量。
经过八年的实际应用,证明上海地铁TETRA系统的建设方案是非常成功的。
遂撰写此文,与同行分享有关的点滴经验。
【系统概况】上海轨道交通专用无线系统采用TETRA 制式,系统覆盖全部1~13 号线,整个专用无线系统统一设计、统一建设、统一管理,在系统建设规划时即考虑到了网络化运营的需求,为全路网运营管理提供通信保障,已成为上海地铁网络化运营的重要支撑平台之一。
图示:上海地铁TETRA系统总示意图图上海轨道交通TETRA专用无线通信系统包括:两个交换中心(MSO):东宝兴路主用交换中心、中山北路备用交换中心,目前正在实施改造,引入摩托罗拉IGR交换中心异地热备份和自动切换技术。
十二个分线控制中心(OCC),分别负责各线路列车的调度管理。
一个COCC应急控制中心,负责线路的运营协调,以及应急处置。
各线投运的共15个车辆段及停车场。
无线覆盖情况:线路区间采用泄漏电缆(LCX)完成通信信号的覆盖,车站、停车场等采用小天线和定向天线完成覆盖。
TETRA基站及光纤直放站:到目前为止,已经投运的部分一共包括189个基站,超过100个近端直放站和近400个远端直放站,分布在各线的站点上。
一、 光纤直放站组成及工作原理
该产品采用光波分复用方式,利用单根光纤直接传送射频信号。
车站电台发出的下行信号被耦合到光纤直放站近端机,近端机通过电/光转换将信号发射到光纤中传播至远端机,远端机再通过光/电转换将信号通过天线或泄漏电缆辐射至空间覆盖弱场强区域。
机车电台发出的上行信号被光纤直放站远端机接收,远端机通过电/光转换将信号发射到光纤中传播至近端机,近端机再通过光/电转换将信号耦合至车站电台。
光收发单元实现信号的电光转换和光电转换,其内置了光波分复用器。
车站电台
双工器
射频开关
458M
468M
上行低噪声放大器
光模块
光模块
光纤直放站近端机下行功率放大器(带备份)
上行低噪声放大器双工器
光纤直放站远端机
光纤
天线
468M
458M
耦合器
天线
监控单元
电源单元监控单元
电源单元发射
接收
发射
接收
射频开关
图1 光纤直放站系统框图
光发射功率:
近端机正向光输出:(4±2)dBm (光功率)
远端机反向光输出:(4±2)dBm(光功率)二、光路参数
光路参数1 光波长1550nm 1310nm 2
出纤光功率(+3±2)dBm
3 最低光接收功率门限(-15±2)dBm
4 WDM 内置
5 光纤连接器FC/APC
三、光纤直放站配套程式
项目
数量
光纤一拖一光纤一拖N
光纤直放站近端机一台一台
光纤直放站远端机一台N台
光纤跳线(APC-PC)两根(可选)N+1根(可选)光分路器无N-1个。
光纤直放站的原理图如图4-1所示,主要有光近端机、光纤、光远端机(覆盖单元)几个部分组成。
光近端机和光远端机都包括射频单元(RF单元)和光单元。
无线信号从基站中耦合出来后,进入光近端机,通过电光转换,电信号转变为光信号,从光近端机输入至光纤,经过光纤传输到光远端机,光远端机把光信号转为电信号,进入RF单元进行放大,信号经过放大后送入发射天线,覆盖目标区域。
上行链路的工作原理一样,手机发射的信号通过接收天线至光远端机,再到近端机,回到基站。
图4-1 光纤直放站的原理图
光纤直放站的原理结构框图如图4-2所示。
图4-2 光纤直放站原理结构框图
光纤直放站近端机的定向天线收到基站的下行信号(935MHz-960MHz)送至近端主机,放大后送到光端机内进行电/光转换,发射1.55&1.31μm波长的光信号,再送到光波复用器,同原传输链路的光信号(波长1. 31μm)合在一起经光缆传到远端;远端光波波分器将1.31μm和1.55μm波长的光信号分开后,让1.55μm 波长的光信号输入光端机进行光/电转换,还原成下行信号(935MHz-960MHz),再经远端主机内部功放放大,由全向天线发射出去送给移动台。
移动台的上行信号(890MHz-915MHz)逆向送到基站,这样就完成了基站与移动台的信号联系,建立通话。
光纤直放站的工作原理光纤直放站的⼯作原理光纤直放站是使⼯光纤进⼯信号传输的直放站。
光纤的使⼯具有传输损耗低,布线⼯便,适合远距离传输的特点。
它可以解决乡村,城镇,旅游区,⼯速公路等⼯法接收基站信号的问题。
光纤直放站还可以解决⼯型和超⼯型建筑物中的信号覆盖问题,例如在⼯型⼯层区域建筑物(组)中使⼯的情况,以及具有更⼯要求的社区。
接下来⼯机信号放⼯器⼯编向⼯家介绍:随着我国移动通信⼯业的飞速发展,移动通信⼯户数量不断增加,蜂窝规划越来越⼯,光纤直放站位置越来越低。
另⼯⼯⼯,随着⼯层城市建设,⼯层建筑正在不断出现。
由于⼯线传输的阴影效应,移动通信信号的盲区或弱区经常形成在这些⼯层建筑物的后⼯或中间。
另外,在蜂窝移动基站的建设过程中,由于相邻⼯区的⼯扰问题,天线辐射场⼯向图的主瓣具有⼯的下倾⼯,因此,⼯层建筑物的中上部⼯法有效接收信号。
这就是⼯们研究光纤直放站的原因。
此外,由于建筑物等对电磁波的屏蔽作⼯,在⼯些封闭的⼯型建筑物中,例如隧道,地铁,地下购物中⼯,停车场,旅馆和办公楼中,通常不能接收到移动通信信号。
光纤直放站主要由光纤近端机,光纤和光纤远端机(覆盖单元)组成。
光学近端机器和光学远端机器都包括射频单元和光学单元。
⼯线信号从基站耦合后,通过电光转换进⼯光端机,将电信号转换为光信号,从光端机到光纤,再经过通过光纤传输到光学远程机器。
信号被转换为电信号,并进⼯射频单元进⼯放⼯。
信号放⼯后,将其发送到发射天线以覆盖⼯标区域。
上⼯链路的⼯作原理相同。
⼯机发送的信号通过接收天线到达光学远端机,然后到达近端机,然后返回光纤直放站。
这就是光纤直放站的⼯作原理。
浅谈光纤直放站的功能及优势摘要:目由于光纤传输损耗小、频带宽,比较适合于长距离传输。
可用于车站、站台、地下室、隧道、铁路沿线区域等室内、外的800MHz集群信号覆盖。
关键词:光纤;直放站;近端机;远端机;概述光纤直放站主要由施主端双工器、重发端双工器、光模块(多路光模块组成)、上行低噪声放大模块、下行功率放大模块(具有备份功放)、监控单元、电源单元(具有电源备份)组成,其组成框图如下:光纤直放站工作原理框图下行链路工作原理:基带的下行信号输入到BS端通过腔体双工器进行滤波后进入了分路器后送入到各个光模块,多个光模块保证了有较高的光功率输出。
通过光缆传输到远端机,远端机的光模块转换射频输出到功放模块,远端机的功放采用备份的方式,提高了设备的可靠性。
上行链路的工作原理:接收天线接收到空中信号后进入腔体双工器进行滤波后经过低噪声放大进入光模块进行光电转换,通过光缆传输到近端机后,通过近端机的光模块转换成射频后经过合路器到近端机的腔体双工器到达BS端口。
整套设备在电源单元采用备份方式,功放部分也采用备份方式。
近端对远端的监测控制采用FSK方式,同时远端光模块内置锂电池保证设备断电时也能在短时间内对设备进行相应的监测。
近端机的监控单元用于采集设备的相关参数、设备运行状态显示和本地调测,并配置有以太网接口,便于设备纳入远程集中监控。
光纤直放站功能应用由于光纤传输损耗小、频带宽,比较适合于长距离传输。
可用于车站、站台、地下室、隧道、铁路沿线区域等室内、外的800MHz集群信号覆盖。
功能如下:近端机与基站之间采用直接耦合方式,信源纯净;利用光纤传输,传输距离远;光纤链路信号传输采用波分复用方式,节约光纤资源;系统具备光路增益AGC功能,自适应不同光链路损耗工作环境;近端机最大支持1拖8即一台近端机最多带8台远端机;近端机具备电源备份功能,电源故障后实现无瞬变、不间断备份,提高系统可靠性;远端机具备功放模块备份、电源模块备份功能,有效提高系统可靠性及维护灵活性,而且保证备份供电的不间断、无瞬变接入,完全不影响系统工作;可通过便携电脑对近端机或远端机进行增益、告警门限设置及状态查询。
一、 光纤直放站组成及工作原理
该产品采用光波分复用方式,利用单根光纤直接传送射频信号。
车站电台发出的下行信号被耦合到光纤直放站近端机,近端机通过电/光转换将信号发射到光纤中传播至远端机,远端机再通过光/电转换将信号通过天线或泄漏电缆辐射至空间覆盖弱场强区域。
机车电台发出的上行信号被光纤直放站远端机接收,远端机通过电/光转换将信号发射到光纤中传播至近端机,近端机再通过光/电转换将信号耦合至车站电台。
光收发单元实现信号的电光转换和光电转换,其内置了光波分复用器。
车站电台
双工器
射频开关
458M
468M
上行低噪声放大器
光模块
光模块
光纤直放站近端机下行功率放大器(带备份)
上行低噪声放大器双工器
光纤直放站远端机
光纤
天线
468M
458M
耦合器
天线
监控单元
电源单元监控单元
电源单元发射
接收
发射
接收
射频开关
图1 光纤直放站系统框图
光发射功率:
近端机正向光输出:(4±2)dBm (光功率)
远端机反向光输出:(4±2)dBm(光功率)二、光路参数
光路参数1 光波长1550nm 1310nm 2
出纤光功率(+3±2)dBm
3 最低光接收功率门限(-15±2)dBm
4 WDM 内置
5 光纤连接器FC/APC
三、光纤直放站配套程式
项目
数量
光纤一拖一光纤一拖N
光纤直放站近端机一台一台
光纤直放站远端机一台N台
光纤跳线(APC-PC)两根(可选)N+1根(可选)光分路器无N-1个。