河北省2019年中考数学复习 第二部分 热点专题突破 专题二 借助数学模型解决实际问题试题(含解析)
- 格式:doc
- 大小:255.50 KB
- 文档页数:12
专题二阅读理解专题【课堂精讲】例1阅读例题,模拟例题解方程.解方程x2+|x-1|-1=0.解:(1)当x-1≥0即x≥1时,原方程可化为:x2+x-1-1=0即x2+x-2=0,解得x1=1,x2=-2(不合题意,舍去)(2)当x-1<0即x<1时,原方程可化为:x2-(x-1)-1=0即x2-x=0,解得x3=0,x4=1(不合题意,舍去)综合(1)、(2)可知原方程的根是x1=1,x2=0.请你模拟以上例题解方程:x2+|x+3|-9=0.解析:(1)当x+3≥0时,即x≥-3时.原方程可化为:x2+x-6=0.解得x1=2,x2=-3.(2)当x+3<0时,即x<-3时.原方程可化为:x2-x-12=0.解得x3=-3,x4=4.经检验,x3=-3,x4=4都不符合题意,舍去.综合(1)、(2)可知原方程的根为x1=2,x2=-3.点评:解决这类题的策略是先理解例题的思想方法,再把这种思想方法迁移到问题中从而得到解决.例2条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小模型应用:(1)如图1,正方形ABCD边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是______;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC最小值是______;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值是______.解析:关键在于把握题中的两点:第一是动点在哪条线上运动?这条线就确定为对称轴;第二是画出一个点的对称点,并确定符合条件的动点的位置,再进行解答.(1)在图1中,点B关于AC的对称点是D,连接DE交AC于点P,此时点P就符合条件,再进行计算.(2)在图2中,点A关于OB的对称点是点D,连接DC交OB于点P,点P就是符合条件的点.PA+PC的最小值是CD,求出CD的长即可.(3)在图3中,作出P关于OB、OA的对称点P′和P″.连接P′P″交OB、OA于R、Q.再连接PR、PQ.则△PRQ的周长最小,此时△PRQ的周长=P′P″的长.在等腰直角形P′OP″中.求出P′P″的长即可.答案:523102【课堂提升】1.阅读材料,解答问题.用图象法解一元二次不等式,x2-2x-3>0.解:设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-2x-3=0.解得x1=-1,x2=3.∴由此得抛物线y=x2-2x-3的大致图象如图所示:观察函数图象可知:当x<-1或x>3时,y>0.∴x2-2x-3>0的解集是:x<-1或x>3.(1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是________;(2)仿照上例,用图象法解一元二次不等式:x2-5x+6<0的解集.2. 阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∵y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y +x <0+2∴x +y 的取值范围是0<x +y <2请按照上述方法,完成下列问题:(1)已知x ﹣y =3,且x >2,y <1,则x +y 的取值范围是 .(2)已知y >1,x <﹣1,若x ﹣y =a 成立,求x +y 的取值范围(结果用含a 的式子表示).3.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A . 1,2,3B . 1,1,C . 1,1,D . 1,2,y 1),Q (x 2,y 2)的对称中心的坐标为( 122x x + ,122y y + ).(1)如图,在平面直角坐标系中,若点P 1(0,-1),P 2(2,3)的对称中心是点A ,则点A 的坐标为________;(2)另取两点B (-1.6,2.1),C (-1,0).有一电子青蛙从点P 1处开始依次关于点A ,B ,C 作循环对称跳动,即第一次跳到点P 1关于点A 的对称点P 2处,接着跳到点P 2关于点B 的对称点P 3处,第三次再跳到点P 3关于点C 的对称点P 4处,第四次再跳到点P 4关于点A 的对称点P 5处,…,则点P 3,P 8的坐标分别为____、____;(3)求出点P 2012的坐标,并直接写出在x 轴上与点P 2012、点C 构成等腰三角形的点的坐标.【高效作业本】专题二 阅读理解专题1.如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A.(—2012,2) B.(一2012,一2)C. (—2013,—2) D. (—2013,2)2.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于5而小于9,求x的取值范围.一元二次方程两个根二次三项式因式分解x2-2x+1=0 x1=1,x2=1 x2-2x+1=(x-1)(x-1)x2-3x+2=0 x1=1,x2=2 x2-3x+2=(x-1)(x-2)3x2+x-2=0 x1=,x2=-1 3x2+x-2=3(x- )(x+1)2x2+5x+2=0 x1=____,x2=____ 2x2+5x+2=2(x+ )(x+2)4x2+13x+3=0 x1=____,x2=____ 4x2+13x+3=4(x+____)(x+____)4.阅读下面的例题:解方程x2-|x|-2=0解:(1)当x≥0时,原方程化为x2-x-2=0解得x1=2,x2=-1(不合题意,舍去)(2)当x<0时,原方程化为x2+x-2=0,解得x1=1(不合题意,舍去),x2=-2所以原方程的解是x1=2,x2=-2请参照例题,解方程:x2-|x-3|-3=0.【答案】专题二阅读理解专题答案1.分析:(1)观察图象即可写出一元二次不等式:x2-2x-3<0的解集;(2)先设函数解析式,根据a的值确定抛物线的开口向上,再找出抛物线与x轴相交的两点,就可以画出抛物线,根据y<0确定一元二次不等式x2-2x-3<0的解集.解:(1)观察图象,可得一元二次不等式x2-2x-3<0的解集是:-1<x<3(2)设y=x2-5x+6,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-5x+6=0,解得x1=2,x2=3.∴由此得抛物线y=x2-5x+6的大致图象如图所示.观察函数图象可知:当2<x<3时,y<0.∴x2-5x+6<0的解集是:2<x<3点评:本题主要考查在直角坐标系中利用二次函数图象解不等式,可作图利用交点直观求解集.2.解:(1)∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;(2)∵x﹣y=a,∴x=y+a,又∵x<﹣1,∴y+a<﹣1,∴y<﹣a﹣1,又∵y>1,∴1<y<﹣a﹣1,…①同理得:a+1<x<﹣1,…②由①+②得1+a+1<y+x<﹣a﹣1+(﹣1),∴x+y的取值范围是a+2<x+y<﹣a﹣2.本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程,难度一般.3.分析A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.点评:考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.(2)(-5.2,1.2);(2,3)(提示:P1(0,-1),P2(2,3),P3(-5.2,1.2),P4(3.2,-1.2),P5(-1.2,3.2),P6(-2,1),P7(0,-1),P8(2,3))(3)∵P1(0,-1)→P2(2,3)→P3(-5.2,1.2)→P4(3.2,-1.2)→P5(-1.2,3.2)→P6(-2,1)→P7(0,-1)→P8(2,3)→…,∴P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环.∵2012÷6=335…2.∴P2012的坐标与P2的坐标相同,即P2012(2,3);在x轴上与点P2012,点C构成等腰三角形的点的坐标为(-3 -1,0),(2,0),(3 -1,0),(5,0).【高效作业本】1.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M的对应点的为坐标为(2-2014, 2),即(-2012, 2)故答案为A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点M 的对应点的坐标为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2)是解此题的关键.2.分析:首先根据运算的定义化简3△x ,则可以得到关于x 的不等式组,即可求解.解答:3△x=3x ﹣3﹣x+1=2x ﹣2,根据题意得:,解得:<x <.点评:本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.3.(1)-12 -2 -14 -3 143 (2)ax2+bx +c =a(x -x1)(x -x2)4.解析:(1)当x -3≥3,原方程为 x 2-(x -3)-3=0∵x ≥3∴不符合题意,都舍去(2)当x -3<0时,即x <3,原方程化为x 2+(x -3)-3=0解得x 2+(x -3)=0解得x 1=-3或x 2=2(都符合题意)所以原方程的解是x 1=3或x 2=2.答案:x =-3或x =2。
第二章方程(组)与不等式(组) 第一节一次方程(组)及应用及应用在河北五年中考真题及模拟)一次方程(组)的应用1.(2019河北中考)利用加减消元法解方程组⎩⎪⎨⎪⎧2x+5y=-10,①5x-3y=6,②下列做法正确的是( D ) A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×22.(2019张家口中考模拟)小明在解关于x,y的二元一次方程组⎩⎪⎨⎪⎧x+y=△,2x-3y=5时,解得⎩⎪⎨⎪⎧x=4y=则△和代表的数分别是( B )A.△=1,=5 B.△=5,=1C.△=-1,=3 D.△=3,=-13.(2019石家庄二模)希望中学九年级(1)班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是( A )A.2(x-1)+x=49 B.2(x+1)+x=49C.x-1+2x=49 D.x+1+2x=494.(2019原创)已知⎩⎪⎨⎪⎧x=3,y=-2是关于⎩⎪⎨⎪⎧ax+by=3,bx+ay=-7的解,则(a+b)(a-b)的值为__-8__.5.(2019河北中考)已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.解:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°.解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=11 2.∵n为整数,∴θ不能取630°;(2)依题意,得(n-2)×180°+360°=(n+x-2)×180°.解得x=2.,中考考点清单方程、方程的解与解方程1.含有未知数的__等式__叫方程.2.使方程左右两边相等的__未知数__的值叫方程的解.3.求方程__解__的过程叫解方程.等式的基本性质4.一次方程(组)次方程【易错警示】(1)解一元一次方程去分母时常数项不要漏乘,移项一定要变号;(2)二元一次方程组的解应写成⎩⎪⎨⎪⎧x=a,y=b的形式.列方程(组)解应用题的一般步骤6.(1)消元思想:将二元一次方程组通过消元使其变成一元一次方程;(2)整体思想:在解方程时结合方程的结构特点,灵活采取整体思想,使整个过程简捷;(3)转化思想:解一元一次方程最终要转化成ax =b ;解二元一次方程组先转化成一元一次方程; (4)数形结合思想:利用图形的性质建立方程模型解决几何图形中的问题; (5)方程思想:利用其他知识构造方程解决问题.,中考重难点突破一元一次方程及解法【例1】(1)(2019成都中考)已知|a +2|=1,则a =________.(2)解方程:0.5x +20.03-x =0.3(0.5x +2)0.2-13112.【解析】(1)注意绝对值等于1的数有两个;(2)先根据分式的基本性质把各分母变成整数,再由等式的性质去分母,小心不要把两者混为一谈.【答案】(1)-1或-3;(2)解:原方程可化为:50x +2003-x =3(x +4)4-13112,解得x =-5.1.若代数式x +3值是2,则x =__-1__. 2.(滨州中考)解方程:2-2x +13=1+x2.解:去分母,得12-2(2x +1)=3(1+x), 去括号,得12-4x -2=3+3x , 移项,得-4x -3x =3+2-12, 合并同类项,得-7x =-7, 系数化为1,得x =1.二元一次方程组及解法【例2】已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =m ,x +2y =-1的解互为相反数,则m =________.【解析】由解互为相反数可得x =-y ,而后把x =-y 代入方程组从而得到关于m ,y 的二元一次方程组,解之即可得m 的值.【答案】-13.(2019济南中考)如果13x a +2y 3与-3x 3y 2b -1是同类项,那么a ,b 的值分别是( A )A.⎩⎪⎨⎪⎧a =1,b =2B.⎩⎪⎨⎪⎧a =0,b =2C.⎩⎪⎨⎪⎧a =2,b =1D.⎩⎪⎨⎪⎧a =1,b =1 4.解方程组:⎩⎪⎨⎪⎧5x +10=10y , ①15x =20y +10. ②解:由①,得x -2y =-2.③ 由②,得3x -4y =2.④ ③×2-④,得x =6.把x =6代入③,得y =4,所以原方程组的解为⎩⎪⎨⎪⎧x =6,y =4.一元一次方程的应用【例3】(2019资阳中考)电器商城某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( A )A .562.5元B .875元C .550元D .750元【解析】本例涉及标价、打折后的新售价、进价、利润、利润率及它们之间的关系.进价为500÷20%=2 500(元).设标价为x 元,根据题意,得80%x -2 500=500,解得x =3 750.∴3 750×90%-2 500=875(元).【答案】B5.学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.求篮球和足球的单价.解:设一个篮球x 元,则一个足球(x -30)元. 由题意,得2x +3(x -30)=510. 解得x =120.x -30=90.答:一个篮球120元,一个足球90元.二元一次方程的应用【例4】(2019金华中考)某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4∶3,二楼售出与未售出的座位数比为3∶2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为( A )A .2∶1B .7∶5C .17∶12D .24∶17【解析】设一楼售出的座位数为4x ,未售出的座位数为3x ,二楼售出的座位数为3y ,未售出的座位数为2y.由题意,得3x =2y ,则x =2y 3.那么4x +3y3x +2y =4×23y +3y 2y +2y=17∶12.【答案】C6.(2019新疆中考)某班级为筹建运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有多少种购买方案?解:设买甲种运动服x 套,乙种y 套. 由题意,得20x +35y =365,则x =73-7y 4,∵x ,y 必须为正整数, ∴73-7y 4>0,即0<y <737,∴当x =3时,x =13, 当y =7时,x =6. 答:有2种方案.二元一次方程组的应用【例5】(2019徐州中考)某景点的门票价格如下表:班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1 118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【解析】条件中只说(1)班学生人数少于50人,(2)班人数多于50人且少于100人.那么,两班共有人数是不到100人,还是比100人多,都不清楚,因此,需分类讨论是100多人,还是在50至100中.【答案】解:(1)设七年级(1)班有x 人、七年级(2)班有y 人.当50<x +y <100时,由题意,得 ⎩⎪⎨⎪⎧12x +10y =1 118,10(x +y )=816. ∴x +y =81.6,不是整数,不合题意. 当x +y >100时,由题意,得 ⎩⎪⎨⎪⎧12x +10y =1 118,8(x +y )=816.解得⎩⎪⎨⎪⎧x =49,y =53. 答:七年级(1)班有49人,七年级(2)班有53人;(2)七年级(1)班节约了(12-8)×49=196(元),七年级(2)班节约了(10-8)×53=106(元).7.(江西中考)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.解:设每支中性笔x 元,每盒笔芯y 元. 根据题意,得 ⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28,解得⎩⎪⎨⎪⎧x =2,y =8. 答:每支中性笔2元,每盒笔芯8元.8.(孝感中考)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级.经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种、B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠.请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.解:(1)设A 种树木每棵x 元,B 种树木每棵y 元.根据题意,得⎩⎪⎨⎪⎧2x +5y =600,3x +y =380.解得⎩⎪⎨⎪⎧x =100y =80. 答:A 种树木每棵100元,B 种树木每棵80元;(2)设购买A 种树木为a 棵,则购买B 种树木为(100-a)棵. 则a≥3(100-a),∴a≥75. 设实际付款总金额为w 元.则w =0.9[100a +80(100-a)]=18a +7 200, ∵18>0,w 随a 的增大而增大, ∴当a =75时,w 最小.即a =75,w 最小值=18×75+7 200=8 550(元).∴当购买A 种树木75棵,B 种树木25棵时,所需费用最少,最少费用为8 550元.2019-2020学年数学中考模拟试卷一、选择题1.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.752.已知,则以下对m的估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<63.由6个大小相同的正方体搭成的几何体如图所示,若小正方体的棱长为a,关于它的视图和表面积,下列说法正确的是( )A.它的主视图面积最大,最大面积为4a2B.它的左视图面积最大,最大面积为4a2C.它的俯视图面积最大,最大面积为5a2D.它的表面积为22a24.如图,延长正方形ABCD的AB边至点E,使BE=AC,则∠BED=( )A.20°B.30°C.22.5°D.32.5°5.以下所给的数值中,为不等式﹣2x+3<0的解集的是()A.x<﹣2B.x>﹣1C.x<﹣32D.x>326.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.7.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)与(0,3)之间(包含端点),下列结论:①当x>3时,y<0;②﹣1≤a≤﹣23;③3≤n≤4;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确的有()A.1个B.2个C.3个D.4个8.有这样一道题:如图,在正方形ABCD中,有一个小正方形EFGH,其中E,F,G分别在4B,BC,FD 上,连接DH,如果BC=12,BF=3.求tan HDG∠的值.以下是排乱的证明步骤:①求出EF、DF的长;②求出tan HDG∠的值;③证明BFE=CDF∠∠④求出HG、DG;⑤证明ΔBEF~ΔCFD.证明步骤正确的顺序是( )A.③⑤④①②B.①④⑤③②C.③⑤①④②D.⑤①④③②9.某天的同一时刻,甲同学测得1m的测竿在地面上的影长为0.6m,乙同学测得国旗旗杆在地面上的影长为9.6m。
解题策略此专题多用数形结合法,通过题目中给出的图形总结规律,用代数量化出结果.此专题有一定的难度.,重难点突破)数式规律【例1】(安徽中考)按一定规律排列的一列数:21,22,23,25,28,213,…,若x ,y ,z 表示这列数中的连续三个数,猜想x ,y ,z 满足的关系式是________.【解析】首项判断出这列数中,2的指数各项依次为 1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数满足的规律.【答案】xy =z1.(临沂中考)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…,按照上述规律,第2 016个单项式是( D )A .2 015x 2 015B .4 029x 2 014C .4 029x 2 015D .4 031x 2 0162.(张家口一模)任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72→[72]=8→[8]=2→[2]=1,这样对72只需要进行3次操作后变为1,类似地,对数字900进行了n 次操作后变为1,那么n 的值为( B )A .3B .4C .5D .63.(廊坊一模)一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数是( A )A .8B .9C .13D .154.(邵阳中考)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( B )A .y =2n +1B .y =2n+nC .y =2n +1+nD .y =2n+n +1 【方法指导】对于数式规律问题,应先将已知的几个数,分别写成与序号有关的式子,再观察所得式子,找出规律,最后应用规律解决问题.图形规律【例2】(2019石家庄四十三中二模)如图,已知∠AOB=80°,在射线OA ,OB 上分别取点A 1,B 1,使得OA 1=OB 1,连接A 1B 1,在A 1B 1,B 1B 上分别取点A 2,B 2,使得B 1A 2=B 1B 2,连接A 2B 2,……,按此规律下去,设∠B 1A 2B 2=θ1,∠B 2A 3B 3=θ2,……,∠B n A n +1B n +1=θn ,则θ10=________.【解析】先用含n 的代数式表示∠B n A n +1B n +1,再将n =10代入求解,注意等腰三角形性质的应用.【答案】50°2105.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是( C )A .(2n +1)个B .(n 2-1)个C .(n 2+2n)个 D .(5n -2)个6.(重庆中考)观察下列一组图形,其中图①中共有2颗星,图②中共有6颗星,图③中共有11颗星,图④中共有17颗星,……,按此规律,图⑧中星星的颗数是( C )A .43颗B .45颗C .51颗D .53颗 【方法指导】对于图形递变规律,应先分析已知图形,分别得到n =1,2,3,4时,所求量(角度、线段长、图形个数)与n 的关系,再列出关于n 的代数式.坐标规律【例3】(内江中考)一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3……,则正方形A 2 016B 2 016C 2 016D 2 016的边长是( D )A.⎝ ⎛⎭⎪⎫122 015B.⎝ ⎛⎭⎪⎫122 016C.⎝ ⎛⎭⎪⎫33 2 016D.⎝ ⎛⎭⎪⎫33 2 015 【解析】易知△B 2C 2E 2∽△C 1D 1E 1,∴B 2C 2C 1D 1=B 2E 2C 1E 1=D 1E 1C 1E 1=tan30°,∴B 2C 2=C 1D 1·tan30°=33,∴C 2D 2=33.同理,B 3C 3=C 2D 2·tan30°=⎝ ⎛⎭⎪⎫332;由此猜想B n C n =⎝ ⎛⎭⎪⎫33n -1.当n =2 016时,B 2 016C 2 016=⎝ ⎛⎭⎪⎫33 2 015. 【答案】D7.(河南中考)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,……,组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第 2015秒时,点P 的坐标是( B )A .(2 014,0)B .(2 015,-1)C.(2 015,1) D.(2 016,0)【方法指导】求几何图形的边长(周长):①求出第一次变化前图形的边长(或周长);②计算第一次、第二次、第三次、第四次(所给出的图形)变化后的边长(或周长),归纳出第n次变化后的边长(或周长)与变化次数n的关系式;③代入所给图形中的某一个变化次数验证所归纳的关系式.教后反思_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2019-2020学年数学中考模拟试卷一、选择题1.下列运算中,正确的是( ) A .x 8÷x 2=x 4B .2x ﹣x =1C .(x 3)3=x 6D .x+x =2x2.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB =6cm ,高OC =8cm .则这个圆锥漏斗的侧面积是( )A .30cm 2B .30πcm 2C .60πcm 2D .120cm 23.在数轴上用点B 表示实数b .若关于x 的一元二次方程x 2+bx+1=0有两个相等的实数根,则( ) A.2OB =B.2OB >C.2OB ≥D.2OB <4.如图,矩形ABCD 中,3AB =,5BC =,点P 是BC 边上的一个动点(点P 不与点B ,C 重合),现将PCD ∆沿直线PD 折叠,使点C 落到点'C 处;作'BPC ∠的平分线交AB 于点E 。
{来源}2019年河北中考数学试卷 {适用范围:3. 九年级}{标题}2019年河北省中考数学试卷考试时间:120分钟 满分:120分{题型:1-选择题}一、选择题:本大题共16小题,1-10题每小题3分,11-16题每小题2分,合计42分.{题目}1.(2019年河北)下列图形为正多边形的是( )A B C D {答案}D{解析}本题考查了正多边形的定义.根据“各边都相等、各角都相等的四边形叫做正多边形”可知选项D 是正五边形.{分值}3{章节:[1-11-3]多边形及其内角和} {考点:多边形} {类别:常考题} {难度:1-最简单}{题目}2.(2019年河北)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作的个数为( ) A .+3 B .-3 C .-13 D .+13{答案}B{解析}本题考查了用正负数表示具有相反意义的量,根据“(→2)表示向右移动2记作+2”可知向右→为正,向左←为﹣,故(←3)表示向左移动3记作-3,因此本题选B ..{分值}3{章节:[1-1-1-1]正数和负数} {考点:负数的意义} {类别:常考题} {难度:2-简单}{题目}3.(2019年河北)如图1,从点C 观测点D 的仰角是( ) A .∠DAB B .∠DCE C .∠DCA D .∠ADC图1水平地面{答案}B{解析}本题考查了仰角的定义,从点C 观测点D ,仰角是视线CD 与水平线CE 的夹角∠DCE ,因此本题选B .{分值}3{章节:[1-28-1-2]解直角三角形} {考点:解直角三角形的应用-仰角} {类别:常考题} {难度:1-最简单}{题目}4.(2019年河北)语句“x 的18与x 的和不超过5”可以表示为( ) A .8x +x ≤5 B .8x +x ≥5 C .8+5x +x ≤5 D .8x +x =5{答案}A{解析}本题考查了列不等式.x 的18与x 的和为8x +x ,它不超过5,即18x+x ≤5,因此本题选A .{分值}3{章节:[1-9-1]不等式} {考点:不等式的定义} {类别:常考题} {难度:2-简单}{题目}5.(2019年河北)如图2,菱形ABCD 中,∠D =150°,则∠1=( ) A .30︒ B .25︒ C .20︒ D .15︒{答案}D{解析}本题考查了菱形的性质:菱形具有平行四边形的所有性质,菱形特有的性质有:四条边都相等,对角线互相垂直,且每条对角线平分一组对角.∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠BAD=180°-150°=30°,∠1=12×30°=15°,因此本题选D.{分值}3{章节:[1-18-2-2]菱形} {考点:菱形的性质} {类别:常考题} {难度:2-简单}{题目}6.(2019年河北)小明总结了以下结论: ①a(b+c)=ab+ac ; ②a(b –c)=ab –ac ; ③(b –c)÷a =b÷a –c÷a (a≠0); ④a÷(b+c)=a÷b+a÷c (a≠0). 其中一定成立的个数是( ) A .1 B .2 C .3 D .4{答案}C{解析}本题考查了整式的运算.根据“乘法分配律”可知①②都是正确的;(b-c )÷a=(b-c )×1a =b ×1a -c ×1a,故③也是正确的;当a ≠0时,④不一定成立,例如当a=2,b=2,c=2时,a÷(b+c )=12,a ÷b+a ÷c=2,此时a ÷(b+c )≠a ÷b+a ÷c.故一定成立有3个,因此本题选C.{分值}3{章节:[1-14-1]整式的乘法} {考点:单项式乘以多项式} {考点:多项式除以单项式} {类别:易错题} {难度:2-简单}{题目}7.(2019年河北)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容A .◎代表∠FECB .@代表同位角C .▲代表∠EFCD .※代表AB{答案}C{解析}本题考查了三角形外角的性质及平行线的判定.如图,延长BE 交CD 于点F ,则∠BEC=∠BFC+∠C (三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C ,∴∠B=∠BFC,故AB ∥CD(内错角相等,两直线平行).故选项A,B,D 都不正确,只有选项C 正确. {分值}3{章节:[1-11-2]与三角形有关的角} {考点:三角形的外角}{考点:内错角相等两直线平行} {类别:高度原创} {难度:2-简单}{题目}8.(2019年河北)一次抽奖活动特等奖的中奖率为15000,把15000用科学记数法表示为( )A .5×10–4B .5×10–5C .2×10–4D .2×10–5{答案}D{解析}本题考查了用科学记数法表示绝对值较小的数.44451111111===2=250000510510101010⨯⨯⨯⨯⨯=2×10-5.因此本题选D.{分值}3{章节:[1-15-2-3]整数指数幂}{考点:将一个绝对值较小的数科学计数法} {类别:易错题} {难度:3-中等难度}{题目}9.(2019年河北)如图3,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需已知:如图,∠BEC =∠B +∠C 求证:AB ∥CD .证明:延长BE 交 ※ 于点F ,则∠BEC = ◎ +∠C (三角形的外角等于与它不相邻两个内角之和).又∠BEC =∠B +∠C ,得∠B = ▲ , 故AB ∥CD ( @ 相等,两直线平行).FED C BA涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.2{答案}C{解析}本题考查了轴对称图形及其对称轴的条数,如图,当n=3时,新图案是一个大正三角形,此时恰有三条对称轴.{分值}3{章节:[1-13-1-1]轴对称}{考点:轴对称图形}{考点:等边三角形的性质}{类别:常考题}{难度:2-简单}{题目}10.(2019年河北)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A B C D{答案}C{解析}本题考查了尺规作图及三角形的外心,知道“三角形任意两边的垂直平分线的交点是它的外心”是解题的关键,只有选项C中能用直尺画出三角形两边的垂直平分线,因此本题选D.{分值}3{章节:[1-24-2-1]点和圆的位置关系}{考点:三角形的外接圆与外心}{考点:与垂直平分线有关的作图}{类别:常考题}{难度:2-简单}{题目}11.(2019年河北)某同学要统计本校图书馆最受学生欢迎的图书种类.以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的各类;②去图书馆收集学生借阅图书的记录;③绘制扇形图来表示各个各类所占的百分比;④整理借阅图书记录并绘制频数分布表. 正确统计步骤的顺序是( )A .②→③→①→④B .③→④→①→②C .①→②→④→③D .②→④→③→①{答案}D{解析}本题考查了统计的一般步骤:收集数据→整理数据→表示数据→分析数据→合理决策.因为①是分析数据作判断,②是收集数据,③是画统计图表示数据,④是列统计表整理数据,所以正确统计步骤的顺序是:②④③①.因此本题选D. {分值}2{章节:[1-10-1]统计调查}{考点:调查收集数据的过程与方法} {类别:高度原创} {难度:2-简单}{题目}12.(2019年河北)如图4,函数y=1(0)1(0)x xx x⎧>⎪⎪⎨⎪-<⎪⎩ 的图象所在坐标系的原点是( )A .点MB .点NC .点PD .点Q{答案}A{解析}本题考查了反比例函数的图像,注意结合自变量的取值范围分析函数的图像.对于y=1x(x >0),其图像位于第一象限;对于y=-1x(x <0),其图像位于第二象限,故当点M 为坐标系的原点,因此本题选A.{分值}2{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数的图象} {考点:平面直角坐标系} {类别:高度原创} {难度:3-中等难度}{题目}13.(2019年河北)如图5,若x 为正整数,则()2221441x x x x +-+++ 表示的值的点落在( )A .段①B .段②C .段③D .段④{答案}B{解析}本题考查了分式的化简及求值,解题的关键是正确进行分式的加减运算.原式=()()2221111112x x x x x x +=-=-=++++.若x 为正整数,则0.5≤1x x +<1,即表示原式的值的点落在段②,因此本题选B{分值}2{章节:[1-15-2-2]分式的加减} {考点:两个分式的加减} {类别:高度原创}图5{难度:3-中等难度}{题目}14.(2019年河北)图6-2是图6-1中长方体的三视图,若用S 表示面积,且S 主=x 2+2x ,S 左=x 2+x ,则S 俯=( )A .x 2+3x+2 B .x 2+2 C .x 2+2x+1 D .2x 2+3x {答案}A{解析}本题考查了几何体的三视图与其长、宽、高的关系,即主视图可反映出几何体的长和高,左视图可反映出几何体的高和宽,俯视图可反映出几何体的长和宽.∵S 主=x 2+2x=x (x+2), S 左=x 2+x=x (x+1),∴这个长方体的长为x+2,高为x,宽为x+1,故S 俯=(x+2)(x+1)=x 2+3x+2,因此本题选A.{分值}2{章节:[1-29-2]三视图} {考点:几何体的三视图}{考点:因式分解-提公因式法} {类别:高度原创} {难度:3-中等难度}{题目}15.(2019年河北)小刚在解关于x 的方程ax 2+bx+c =0(a≠0)时,只抄对了a =1,b =4,解出其中一个根是x =–1.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是x =–1D .有两个相等的实数根{答案}A{解析}本题考查了一元一次方程的解及其根的判别式,由方程的解求得c 的值是解题的关键.由题意,得一元二次方程x 2+4x+c=0的一个根为x=-1,将x=-1代入x 2+4x+c=0,得c=3.所以原方程c=3+2=5.即原方程为x 2+4x+5=0,∵b 2-4ac=42-4×1×5=-4<0,∴原方程没有实数根. 因此本题选A.{分值}2{章节:[1-21-2-2]公式法} {考点:一元二次方程的解} {考点:根的判别式} {类别:常考题} {难度:3-中等难度}{题目}16.(2019年河北)对于题目“如图7-1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n .”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x ,再取最小整数n .图6-2图6-1正面俯视图甲:如图7-2,思路是当x 为矩形对角线长时就可以移转过去;结果取n =13. 乙:如图7-3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取n =14. 丙:如图7-4,思路是当x为矩形的长与宽之和的2倍时就可移转过去;结果取n =13. 下列正确的是( )A .甲的思路错,他的n 值对B .乙的思路和他的n 值都对C .甲和丙的n 值都对D .甲、乙的思路都错,而丙的思路对{答案}B{解析}本题考查了图形的变换及勾股定理等知识.因为矩形的长为12,宽为6,所以矩形对角线∵1314,∴n=14.故甲和乙的思路都对,甲的n 值错,乙的n 值对;(12+6)×2n 值都错.{分值}2{章节:[1-28-1-2]解直角三角形} {考点:勾股定理} {考点:解直角三角形} {考点:旋转的性质} {类别:高度原创} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共3小题,17小题3分,18~19小题各有2个空,每空2分,合计11分.{题目}17.(2019年河北)若7–2×7–1×70=7p ,则p 的值为= .{答案}-3{解析}本题考查了同底数幂的运算,根据“同底数幂相乘,底数不变,指数相加”可知原式=7-2-1+0=7-3,故p=-3.{分值}3{章节:[1-15-2-3]整数指数幂} {考点:同底数幂的乘法} {考点:零次幂}{考点:负指数参与的运算} {类别:常考题} {难度:2-简单}图7-2图7-1{题目年河北)如图8,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.即4+3=7.则(1)用含x的式子表示m=_________;(2)当y=–2时,n的值为_________.{答案}3x 1{解析}本题考查了整式的加减及解一元一次方程,明白题目的约定是解题的关键.(1)由题意,得m=x+2x;(2)由题意,得n=2x+3,m+n=y,∴y=3x+(2x+3).当y=-2时,3x+(2x+3)=-2,解得x=-1.∴n=2×(-1)+3=1.{分值}4{章节:[1-3-2-1]解一元一次方程(一)合并同类项与移除}{考点:整式加减}{考点:解一元一次方程(去括号)}{类别:高度原创}{难度:3-中等难度}{题目}19.(2019年河北)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图9(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离_________km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为_________km..{答案}20 13{解析}本题考查了平面直角坐标系中两点距离的求法、点到直线的距离、线段垂直平分线的性质、勾股定理等知识,解题的关键根据题意构建出平面直角坐标系.(1)∵点A(12,1),B(-8,1),∴AB=12-(-8)=20 km;(2)如图,设AB与y轴交于点E,连接CE,则CE为C到AB的最短公路l,连接AC,作AC的垂直平分线DF,交l于点D,由垂直平分线的性质可知点D到A,C的距离相等.设DA=DC=x,则ED=18-x.在Rt△ADE中,根据勾股定理,得AE2+ ED2=DA2,即122+(18-x)2=x2,解得x=13,即DC=13km.图8{分值}4{章节:[1-17-1]勾股定理}{考点:平面直角坐标系}{考点:点的坐标的应用}{考点:两点之间距离}{考点:点到直线的距离}{考点:垂直平分线的性质}{考点:勾股定理}{类别:高度原创}{难度:5-高难度}{题型:4-解答题}三、解答题:本大题共7小题,合计67分.{题目}20.(2019年河北)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,–,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2–6–9;(2)若1÷2×6□9=–6,请推算□的符号;(3)若“1□2□6–9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.{解析}本题考查了有理数的混合运算,掌握有理数的运算法则和运算顺序是正确解题的前提. (1)只含有加减运算,按照从左往右的顺序计算即可;(2)先从左往右计算,再推算□的符号;(3)当原式为“1-2×6-9”时,结果为-10,计算所得数最小.{答案}解:(1)原式=3-15=-12;(2)∵1÷2×6=3,∴3□9=-6,∴□内是-号.(3)-20.{分值}8{章节:[1-1-4-2]有理数的除法}{考点:有理数的加减混合运算}{考点:有理数加减乘除乘方混合运算}{难度:2-简单}{类别:高度原创}{题目}21.(2019年河北)已知:整式A=(n2–1)2+(2n)2,整式B>0.尝试化简整式A发现 A=B2.求整式B.联想由上可知,B2=(n2–1)2+(2n)2,当n>1时,n2–1,2n,B为直角三角形的三边长,如图10.填写下表中B的值:{解析}本题考查了整式的运算、开平方等知识.尝试:先乘方,再合并同类项;发现:先分解因式,再开方;联想:当2n=8时,n=4,此时B= n 2+1=42+1=17;当n 2-1=35时,n=6,此时B= 62+1=36+1=37.{答案}解: 解:尝试 A =n 4-2n 2+1+4n 2=n 4+2n 2+1. 发现 ∵A=n 4+2n 2+1=(n 2+1)2. 又A=B 2,B >0,∴B= n 2+1.联想 勾股数I 17;勾股数II=37. {分值}9{章节:[1-16-1]二次根式} {考点:算术平方根} {考点:整式加减} {考点:完全平方公式} {考点:代数式求值} {难度:3-中等难度} {类别:高度原创}{题目}22.(2019年河北)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种,从中随机拿出一个球,已知P (一次拿到8元球)=12. (1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图11)求乙组两次都拿到8元球的概率.图10Bn 2–12n{解析}本题考查了众数、中位数及概率的计算.(1)先由“P (一次拿到8元球)=12”求得价格为8元的球的个数,再求众数;(2)①先分别求出原来4个球价格和剩余3个球价格的中位数,再进行比较;②先填表表示所有可能的结果,再求概率.{答案}解:解:(1)∵P (一次拿到8元球)=12,∴8元球的个数为4×12=2. ∴众数是8.(2)①相同.∵所剩3个球价格是8,8,9,∴中位数是8.∵原4个球价格是7,8,8,9,∴中位数是8,∴相同.∴P (乙组两次都拿到8元球)=49. {分值}9{章节:[1-25-2]用列举法求概率}{考点:中位数}{考点:众数}{考点:两步事件放回}{考点:概率的意义}{类别:高度原创}{难度:3-中等难度}{题目}23.(2019年河北)如图12,△ABC 和△ADE 中,AB =AD =6,BC =DE ,∠B =∠D =30°,边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧,I 为△APC 的内心.(1)求证:∠BAD =∠CAE ;(2)设AP =x ,请用含x 的式子表示PD ,并求PD 的最大值;(3)当AB ⊥AC 时,∠AIC 的取值范围为m°<∠AEC<n°,分别直接..写出m ,n 的值.图12备用图{解析}本题考查了全等三角形的判定、线段的最值、三角形内心的性质等知识.(1)根据“SAS ”证明△ABC ≌△ADE ,从而得到∠BAC=∠DAE ,问题得证;(2)因为PD=AD-AP=6-x ,所以当x 最小时PD 最大,根据“垂线段最短”可知当AP ⊥BC 时x 最小;(3)根据三角形内心的性质可知∠AIC=90°+12∠APC.∵点P 不与点B 重合,∴∠APC >30°,∴∠AIC >105°,即m=105; ∵ 点P 不与点C 重合,∴∠APC <120°,∴∠AIC <150°,即n=150.{答案}解: 解:(1)证明:∵AB=AD ,∠B=∠D ,BC=DE ,∴△ABC ≌△ADE.∴∠BAC=∠DAE ,∴∠BAC-∠DAC=∠DAE-∠DAC ,∴∠BAD=∠CAE.(2)PD=6-x.如图,当AD ⊥BC 时x 最小,PD 最大.∵∠B=30°,AB=6,∴x=12AB=12×6=3, ∴PD 的最大值为3.(3)m=105,n=150.{分值}9{章节:[1-24-2-2]直线和圆的位置关系}{考点:一次函数的性质}{考点:垂线段的定义}{考点:全等三角形的判定SAS}{考点:三角形的内切圆与内心}{考点:含30度角的直角三角形}{类别:高度原创}{难度:4-较高难度}{题目}24.(2019年河北)长为300m 的春游队伍,以v (m/s )的速度向东行进.如图13-1和13-2,当队伍排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v (m/s ),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t (s ),排头与O 的距离为S 头(m ).(1)当v =2时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 头的值;在甲从排头返回到排尾过程中,设甲与位置O 的距离为S 甲(m ),求S 甲与t 的函数关系式(不写t 的取值范围);(2)设甲这次往返队伍的总时间为T (s ),求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程.图13-2图13-1尾头甲{解析}本题是一道函数应用题,综合考查了一次函数和反比例函数.(1)①根据“S 头=队伍长度+排头走的路程”列函数关系式即可.②当甲从排尾赶到排头过程时,甲走的路程=S 头,据此列方程求得t=150,进而求得S 头=600;在甲从排头返回到排尾过程中,甲的行驶时间为t-150,根据“S 甲=600-甲走的路程”列函数关系式即可.(2)利用(1)问的方法可求得甲从排尾赶到排头的用时t 1=400v ,而甲从排头赶到排尾的用时t 2=3001002v v v=+,故T= t 1+t 2=400v ,问题得解. {答案}解: 解:(1)①排头走的路程为2t ,则S 头=2t+300;②甲从排尾赶到排头时,有4t=2t+300,解得t=150.此时,S 头=2×150+300=600.甲从排头返回的时间为t-150,则S 甲=600-4(t-150)=-4t+1200.(2)设甲从排尾赶到排头用时为t 1,则2vt 1=vt 1+300,∴t 1=400v . 同样甲返回到排尾用时为t 2=100v .∴T= t 1+t 2=400v . 队伍行进的路程是Tv=400v·v=400(km). {分值}10{章节:[1-26-2]实际问题与反比例函数}{考点:一次函数与行程问题}{考点:生活中的反比例函数的应用}{类别:高度原创}{难度:5-高难度}{题目}25.(2019年河北)如图14-1和14-2, ABCD 中,AB =3,BC =15,tan ∠DAB =43.点P 为AB 延长线上一点.过点A 作⊙O 切CP 于点P .设BP =x .(1)如图14-1,x 为何值时,圆心O 落在AP 上?若此时⊙O 交AD 于点E ,直接指出PE 与BC 的位置关系;(2)当x =4时,如图14-2,⊙O 与AC 交于点Q ,求∠CAP 的度数,并通过计算比较弦AP 与劣弧»PQ长度的大小; (3)当⊙O 与线段AD 只有一个公共点时,直接..写出x 的取值范围. 图14-1图14-2{解析}本题是一道与圆有关的压轴题,综合考查了平行四边形的性质、锐角三角函数、切线的性质等知识.(1)在△BPC 中,由⊙O 切CP 于点P 可得∠BPC=90°,由AD ∥BC 可得tan ∠CBP= tan ∠DAB=43,又有BC=15,解这个直角三角形即可;由AP 是⊙O 的直径可得PE ⊥AD ,又有AD ∥BC ,故PE ⊥BC.(2)作CK ⊥AB 于点K ,利用(1)中的方法可求得CK 和BK 的长,进而得到AK=CK ,故∠CAP=45°;连接OP,作OH ⊥AP 于点H ,易证Rt △HOP ∽Rt △KPC ,利用相似三角形的性质可求得半径OP 的长;连接OQ ,根据圆周角定理可求得∠POQ 的度数,进而根据弧长公式求得»PQ l 即可;(3)当⊙O 切AD 于点A 时,⊙O 与线段AD 恰好只有一个公共点,求出此时x 的值即可.{答案}解: (1)⊙O 切CP 于点P ,∴OP ⊥PC ,即∠CPB=90°.由□ABCD 得AD ∥BC ,∴∠CBP=∠DAB.∴tan ∠CBP= tan ∠DAB =43. 在Rt △CBP 中,43PC BP =,设PC=4k ,BP=3k ,则BC=5k. ∵BC=15,∴5k=15,解得k=3.∴PC=4×3=12,BP=3×3=9,∴x=9.垂直.(2)如图2,连接OP,OQ.作CK ⊥AB 于点K ,OH ⊥AP 于点H.同(1)法得CK=12.∵AK=AB+BK=12,∴CK=AK.∴∠CAP=∠ACK=45°.∵AP=7,∴HP=1722AP =. 又∵PK=5,∴PC=13.∵∠HOP=90°-∠OPH=∠CPK ,∴Rt △HOP ∽Rt △KPC. ∴OP PH PC CK =,即721312OP =,解得OP=9124. ∵∠POQ=2∠PAQ=90°,∴»9148PQ l π=. ∵9148π<7,∴»PQ l <AP,即AP >»PQ l . (3)x ≥18.{分值}10{章节:[1-28-1-2]解直角三角形}{考点:相似三角形的判定(两边夹角)}{考点:相似三角形的性质}{考点:平行四边形边的性质}{考点:勾股定理}{考点:等腰直角三角形}{考点:切线的性质}{考点:弧长的计算}{类别:高度原创}{类别:发现探究}备用图{难度:5-高难度}{题目}26.(2019年河北)如图15,若b 是正数,直线l :y =b 与y 轴交于点A ;直线a :y =x –b 与y 轴交于点B ;抛物线L :y =–x 2+bx 的顶点为C ,且L 与x 轴右交点为D .(1)若AB =8,求b 的值,并求此时L 的对称轴与a 的交点坐标;(2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设x 0≠0,点(x 0,y 1),(x 0,y 2),(x 0,y 3)分别在l ,a 和L 上,且y 3是y 1,y 2的平均数,求点(x 0,0)与点D 间距离;(4)在L 和a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b =2019和2019.5时“美点”的个数.{解析}本题是一道与函数图像有关的压轴题,综合考查一次函数和二次函数的图像.(1)先求得点A 和点B 的坐标,再由AB=8可求得b 的值;由L 的函数关系式求得它的对称轴,再将其代入直线a 的函数关系式即可.(2)点C 与l 的距离等于b 减去点C 的纵坐标.(3)先由y 3=122y y +求得x 0,再由L 的函数关系式求得点D 的坐标,进而得到点(x 0,0)与点D 的距离.(4)先求出当L 与a 相交时x 的取值范围,再求出此范围内L 上的“美点”个数与a 上的“美点”个数.{答案}解:(1)当x=0时,y=x-b=-b,∴点B (0,b ).∵AB=8,A (b,0).∴b-(-b )=8,解得b=4.∴L 为y=-x 2+4x,∴L 的对称轴为x=2.当x=2时,y=x-4=-2.∴L 的对称轴于a 的交点为(2,-2).(2)∵y=-(x-2b )2+24b ,∴L 的顶点C 为(2b ,24b ). ∵点C 在l 下方,∴C 与l 的距离为b-24b =-14(b-2)2+1≤1. ∴点C 与l 距离的最大值为1.(3)由题意得y 3=122y y +,即y 1+y 2=2y 3,得b+x 0-b=2(-x 02+bx 0), 解得x 0=0或x 0=b-12. 当x 0≠0,∴x 0= b-12. 对于L ,当y=0时,0=-x 2+bx,即0=-x (x-b ),解得x 1=0,x 2=b.∵b >0,∴右交点D 为(b,0).∴点(x 0,0)与点D 的距离为b-(b-12)=12.图15(4)4040,1010.{分值}12{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质} {考点:算术平均数}{考点:一次函数的图象}{考点:含参系数的二次函数问题}{考点:解一元二次方程-因式分解法}{类别:高度原创}{类别:发现探究}{类别:新定义}{难度:5-高难度}。
2019年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2019年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
类型二图形规律1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.+=根木棍,【详解】解:第①个图案用了459+⨯=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.2.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341=⨯-;…,所以第⑦个图案中圆圈的个数为37120⨯-=;故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n 个图案的规律为31n -是解题的关键.3.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是A.B.C.D.【答案】D【解析】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有,故选D.【名师点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.4.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()A.()31.34B.()31,34-C.()32,35D.()32,0【答案】A 【分析】根据图象可得移动3次完成一个循环,从而可得出点坐标的规律()323n A n n --,.【详解】解:∵()121A -,,()412A -,,()703A ,,()1014A ,,L ,∴()323n A n n --,,∵1003342=⨯-,则34n =,∴()1003134A ,,故选:A.【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律.5.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.A.40452πB.2023π【答案】A【分析】曲线11112DA B C D A …是由一段段得到1114(1)22n n AD AA n -==⨯-+,7.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C 【分析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,∴则第⑥个图案中菱形的个数为:()126111+⨯-=,故C 正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.8.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202【分析】观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.【解析】根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.9.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.21【分析】根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为1+2+3+4+……+n,据此可得第⑤个图案中黑色三角形的个数.【解析】∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.10.观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.11.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.12.在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11AOB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为()A.()202020202,32--B.()202120212,32C.()202020202,2⨯D.()201120212,2-【答案】C【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.【详解】解:由题意,点A 每6次绕原点循环一周,20216371......5÷= ,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=3222-⨯-,()2020202020212,2A ∴,故选:C.【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.13.如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n 个正方形多个小正方形.【分析】观察不难发现,所需要的小正方形的个数都是平方数,然后根据相应的序数与正方形的个数的关系找出规律解答即可.【解析】∵第1个正方形需要4个小正方形,4=22,第2个正方形需要9个小正方形,9=32,第3个正方形需要16个小正方形,16=42,…,∴第n+1个正方形有(n+1+1)2个小正方形,第n 个正方形有(n+1)2个小正方形,故拼成的第n+1个正方形比第n 个正方形多(n+2)2﹣(n+1)2=2n+3个小正方形.故答案为:2n+3.【答案】66n +/66n +【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,a a a a ++++= ()2143212n n n n n n +-18.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有__________个〇.【答案】6058【解析】由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,…∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.【答案】()2023,3-【分析】先确定前几个点的坐标,然后归纳规律,按规律解答即可.【详解】解:由图形可得:()()2352,0,3,0,A A A 如图:过1A 作1A B x ⊥轴,∵12,OA A20.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=__________.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2-1=3个.第3幅图中有2×3-1=5个.第4幅图中有2×4-1=7个.…可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n-1)个.当图中有2019个菱形时,2n-1=2019,n=1010,故答案为:1010.【名师点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.21.观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.【答案】202223【分析】过点1A 作1A M x ⊥轴,先求出130AOM ∠=︒,再根据等边三角形的性质、()12,0A ,12OA ∴=,当2x =时,233y =,即M ⎛ ⎝23.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为()12n n+,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,第n个图形中的黑色圆点的个数为()1 2n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,,其中每3个数中,都有2个能被3整除,33÷2=161,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.24.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:1(1) 2n n-.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有12019190 2⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n条直线相交最多有1(1) 2n n-.25.如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.【答案】2n+1【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,拼成第n个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.26.如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3+ +n=()12n n +,列一元二次方程求解可得.【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∴第n 个图形中黑色三角形的个数为1+2+3+4+5+ +n=()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去),∴第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n.27.如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶点A 位于x 轴上,顶点B,D 位于y 轴上,O 为坐标原点,则OBOA的值为__________.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n-1,…,则顶点F 2019的坐标为__________.【答案】(1)12;(2)606255(,【解析】(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴OB DCOA BC=,∵DC=1,BC=2,∴OB OA =12,故答案为:12.(2过C 作CM⊥y 轴于M,过M 1作M 1N⊥x 轴,过F 作FN 1⊥x轴.根据勾股定理易证得BD ==CM=OA=5,DM=OB=AN=5,∴C(5),∵AF=3,M 1F=BC=2,∴AM 1=AF-M 1F=3-2=1,∴△BOA≌ANM 1(AAS),∴NM 1=OA=255,∵NM 1∥FN 1,∴1111251553M N AM FN AF FN ==,,∴FN 1=655,∴AN 1=355,∴ON 1=OA+AN 1=253555555+=,∴F(555,655),同理,F 1(857555,F 2(55,),F 3(1459555,),F 4(55,),…F 2019),即(【名师点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键28.如图,正方形1ABCB 中,AB =,AB 与直线l 所夹锐角为60︒,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ,…,依此规律,则线段20202021A A =________.【答案】202033【分析】利用tan30°计算出30°角所对直角边,乘以2得到斜边,计算3次,找出其中的规律即可.【详解】∵AB 与直线l 所夹锐角为60︒,正方形1ABCB 中,AB =,∴∠11B AA =30°,∴11B A =1B A 3=1,∴1113=2=2(3AA -;∵11B A =1,∠122B A A =30°,∴22B A =11B A tan30°=33133⨯=,∴21123=23A A -⨯;∴线段20202021A A =202112020332(33-⨯=,故答案为:20203)3.【点睛】本题考查了正方形的性质,特殊角三角函数值,含30°角的直角三角形的性质,规律思考,熟练进行计算,抓住指数的变化这个突破口求解是解题的关键.29.如图,菱形ABCD 中,120ABC ∠=︒,1AB =,延长CD 至1A ,使1DA CD =,以1AC 为一边,在BC 的延长线上作菱形111ACC D ,连接1AA ,得到1ADA ∆;再延长11C D 至2A ,使1211D A C D =,以21A C 为一边,在1CC 的延长线上作菱形2122A C C D ,连接12A A ,得到112A D A ∆……按此规律,得到202020202021A D A ∆,记1ADA ∆的面积为1S ,112A D A ∆的面积为2S ……202020202021A D A ∆的面积为2021S ,则2021S =_____.【答案】40382【分析】由题意易得60,1BCD AB AD CD ∠=︒===,则有1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,进而根据等边三角形的面积公式可得134S =,2S =242n n S -=,然后问题可求解.【详解】解:∵四边形ABCD 是菱形,∴1AB AD CD ===,//,//AD BC AB CD ,∵120ABC ∠=︒,∴60BCD ∠=︒,∴160ADA BCD ∠=∠=︒,∵1DA CD =,∴1DA AD =,∴1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,过点B 作BE⊥CD 于点E,如图所示:∴sin 2BE BC BCD =⋅∠=,∴1121133244A D BE A S D =⋅==,同理可得:2222133244S A D ==⨯=,2233233444S A D ==⨯=∴由此规律可得:242n n S -=,∴2202144038202122S ⨯-==⋅;故答案为40382【点睛】本题主要考查菱形的性质、等边三角形的性质与判定及三角函数,熟练掌握菱形的性质、等边三角形的性质与判定及三角函数是解题的关键.30.将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.【答案】875【分析】设第n 个“龟图”中有a n 个“〇”(n 为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“a n =n 2−n+5(n 为正整数)”,再代入n=30即可得出结论.【详解】解:设第n 个“龟图”中有a n 个“〇”(n 为正整数).观察图形,可知:a 1=1+2+2=5,a 2=1+3+12+2=7,a 3=1+4+22+2=11,a 4=1+5+32+2=17,…,∴a n =1+(n+1)+(n −1)2+2=n 2−n+5(n 为正整数),∴a 30=302−30+5=875.故答案是:875.【点睛】本题考查了规律型:图形的变化类,根据各图形中“〇”个数的变化找出变化规律“a n =n 2−n+5(n 为正整数)”是解题的关键.31.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n个图形中三角形个数是_______.n n+-【答案】21【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42 (2)n n+-.∴上下两部分统一规律为:21n n+-.故答案为:21【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究32.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).【分析】根据图形的变化发现规律,即可用含n的代数式表示.【解析】第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即7=3×2+1第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n 个图案有(3n+1)个三角形.故答案为:(3n+1).33.如图,四边形ABCD 是矩形,延长DA 到点E,使AE=DA,连接EB,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)【分析】先求得△EF 1D 的面积为1,再根据等高的三角形面积比等于底边的比可得EF 1F 2的面积,EF 2F 3的面积,…,EF n﹣1F n 的面积,以及△BCF n 的面积,再根据面积的和差关系即可求解.【解析】∵AE=DA,点F 1是CD 的中点,矩形ABCD 的面积等于2,∴△EF 1D 和△EAB 的面积都等于1,∵点F 2是CF 1的中点,∴△EF 1F 2的面积等于12,同理可得△EF n﹣1F n 的面积为12n−1,∵△BCF n 的面积为2×12n ÷2=12n,∴△EF n B 的面积为2+1﹣1−12−⋯−12n−1−12n =2﹣(1−12n )=2n +12n.故答案为:2n +12n.。
2019年河北省中考数学试卷(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年河北省中考数学试卷(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年河北省中考数学试卷(含解析)的全部内容。
2019年河北省中考数学试卷一、选择题(本大题有16个小题,共42分,1—10小题各3分,11—16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形为正多边形的是()A.B.C.D.2.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3 B.﹣3 C.﹣D.+3.如图,从点C观测点D的仰角是()A.∠DAB B.∠DCE C.∠DCA D.∠ADC4.语句“x的与x的和不超过5"可以表示为()A.+x≤5B.+x≥5C.≤5D.+x=55.如图,菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°6.小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.47.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB8.一次抽奖活动特等奖的中奖率为,把用科学记数法表示为()A.5×10﹣4B.5×10﹣5C.2×10﹣4D.2×10﹣59.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.210.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.11.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④ B.③→④→①→②C.①→②一④→③ D.②→④→③→①12.如图,函数y=的图象所在坐标系的原点是()A.点M B.点N C.点P D.点Q13.如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④14.图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x15.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根16.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n."甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=13.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.下列正确的是()A.甲的思路错,他的n值对B.乙的思路和他的n值都对C.甲和丙的n值都对D.甲、乙的思路都错,而丙的思路对二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.若7﹣2×7﹣1×70=7p,则p的值为.18.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.19.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.21.(9分)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2﹣12n B勾股数组Ⅰ/8勾股数组Ⅱ35/22.(9分)某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿23.(9分)如图,△ABC和△ADE中,AB=AD=6,BC=DE,∠B=∠D=30°,边AD与边BC交于点P(不与点B,C重合),点B,E在AD异侧,I为△APC的内心.(1)求证:∠BAD=∠CAE;(2)设AP=x,请用含x的式子表示PD,并求PD的最大值;(3)当AB⊥AC时,∠AIC的取值范围为m°<∠AIC<n°,分别直接写出m,n的值.24.(10分)长为300m的春游队伍,以v(m/s)的速度向东行进,如图1和图2,当队伍排尾行进到位置O时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v(m/s),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O开始行进的时间为t(s),排头与O的距离为S头(m).(1)当v=2时,解答:①求S头与t的函数关系式(不写t的取值范围);②当甲赶到排头位置时,求S的值;在甲从排头返回到排尾过程中,设甲与位置O的距离为S甲(m),求S甲与t的函数关系式(不写t的取值范围)(2)设甲这次往返队伍的总时间为T(s),求T与v的函数关系式(不写v的取值范围),并写出队伍在此过程中行进的路程.25.(10分)如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A作⊙O切CP于点P,设BP=x.(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧长度的大小;(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.26.(12分)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点",分别直接写出b=2019和b=2019。
专题复习(二)函数解答题函数部分是河北中考的重点,本文从一次函数、反比例函数二次函数进行总结。
一次函数在河北近七年中考中,每年设置两道题,题型为选择题或解答题,本节常考的知识点有:1. 一次函数的图像及性质;2一次函数的解析式的确定;3一次函数实际应用;4一次函数和几何图形结合。
反比例函数在河北近七年中考中,每年设置一道题,其中选择题4次,解答题3次。
本节常考的知识点有:1反比例函数的图像及性质;2反比例函数的综合应用。
二次函数在河北近七年中考中,每年设置两道题,题型为选择题或解答题,每年设置1或2题。
本节常考的知识点有:1. 二次函数的图像及性质;2二次函数中系数a,b,c 的意义;3二次函数图像平移的规律;4二次函数的实际应用;5二次函数与几何图形综合题。
下面将从七方面对函数专题进行解析。
类型1.一次函数及一次函数应用例1、如图,过点(0,-2)的直线l 1:y 1=kx +b(k≠0)与直线l 2:y 2=x +1交于点P(2,m). (1)写出使得y 1<y 2的x 的取值范围;(2)求点P 的坐标和直线l 1的解析式.解:(1)当x <2时,y 1<y 2.(2)把P(2,m)代入y 2=x +1,得m =2+1=3.∴P(2,3).把P(2,3)和(0,-2)分别代入y 1=kx +b ,得⎩⎪⎨⎪⎧2k +b =3,b =-2.解得⎩⎪⎨⎪⎧k =52,b =-2.∴直线l 1的解析式为y 1=52x -2.例2.(2019唐山开平区一模)为了迎接世园会在某市召开,花园小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.(1)若购买树苗共用21 000元,问甲、乙两种树苗应各买多少株?(2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为0.2和0.6,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和不低于90而且费用最低? 解:(1)设甲种树苗买x 株,则乙种树苗买(300-x)株. 60x +90(300-x)=21 000,解得x =200. 则300-x =100.答:甲种树苗买200株,乙种树苗买100株.(2)∵买x 株甲种树苗,∴0.2x +0.6(300-x)≥90.解得x≤225. 此时费用y =60x +90(300-x)=-30x +27 000. ∵y 是x 的一次函数,y 随x 的增大而减小,∴当x 最大=225时,y 最小=-30×225+27 000=20 250(元).即买225株甲种树苗,75株乙种树苗时,该小区的空气净化指数之和不低于90,费用最低为20 250元. 例3.(2019保定一模)已知某商品每件的成本为20元,第x 天(x≤90)的售价和销量分别为y 元/件和(180-2x)件,设第x 天该商品的销售利润为w 元,请根据所给图像解决下列问题: (1)求出w 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少? (3)该商品在销售过程中,共有多少天当天的销售利润不低于4 200元? 解:(1)当1≤x≤50时,设y 与x 的函数关系式为y =kx +b ,∵当x =1时,y =31,当x =50,y =80,∴⎩⎪⎨⎪⎧k +b =31,50k +b =80. 解得⎩⎪⎨⎪⎧k =1,b =30.∴y =x +30.∴当1≤x≤50时,w =(x +30-20)(180-2x)=-2x 2+160x +1 800; 当50≤x≤90时,w =(80-20)(180-2x)=-120x +10 800. (2)当1≤x≤50时,w =-2x 2+160x +1 800=-2(x -40)2+5 000, ∴当x =40时,W 最大5 000.当50≤x≤90时,w =-120x +10 800, ∵w 随x 的增大而减小, ∴x =50时,w 最大=4 800.综上所述,该商品第40天时,当天销售利润最大,最大利润是5 000元. (3)当1≤x<50时,y =-2x 2+160x +1 800=4 200,解得x =20或60. 因此利润不低于4 200元的天数是20≤x<50,共30天. 当50≤x≤90时,y =-120x +10 800=4 200,解得x =55. 因此利润不低于4 200元的天数是50≤x≤55,共6天.∴该商品在销售过程中,共有36天当天的销售利润不低于4 200元.针对性训练1.(益阳)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.2.(2019河北模拟经典四)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地的路程y(千米)与行驶时间x(小时)的函数关系图像.(1)甲、丙两地距离1_050千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.3.(2019河北考试说明)煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1 000吨煤炭要全部运往A,B两厂,通过了解获得A,B两厂的有关信息如下表(表中运费栏“元/(吨千米)”表示:每吨煤炭运送1千米所需的费用):(1)写出总运费y(单位:元)与运往A厂的煤炭量x(单位:吨)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费(可用含a的代数式表示).4.(2019保定模拟)甲、乙两列火车分别从A,B两城同时相向匀速驶出,甲车开往终点B城,乙车开往终点A城,乙车比甲车早到达终点,如图是两车相距的路程d(千米)与行驶时间t(小时)的函数的图像.(1)经过2小时两车相遇; (2)A ,B 两城相距600千米路程; (3)分别求出甲、乙两车的速度;(4)分别求出甲车距A 城s 甲,乙车距A 城的路程s 乙与t 的函数关系式(不必写出t 的范围); (5)当两车相距200千米路程时,求t 的值.5.(2019保定模拟)有甲、乙两个探测气球同时出发且匀速上升,甲气球从海拔5 m 处出发,上升速度为1 m/min ,乙气球从海拔15 m 处出发,上升速度为0.5 m/min.设气球上升时间为x min ,气球的海拔高度为y m.(1)分别写出甲气球的海拔高度y 甲、乙气球的海拔高度y 乙与x 的函数关系式(不必写出x 的取值范围); (2)气球上升多少分钟时,两个气球位于同一高度?(3)气球上升多少分钟时,两个气球所在位置的海拔高度相差5 m?(4)若甲气球由于燃料消耗过快,上升40 min 后,减速为0.3 m/min 继续匀速上升,乙气球速度保持不变,设两个气球的海拔高度差为h ,请确定当40≤x≤80时,h 最多为多少米?答案1、解:(1)P 2(3,3).(2)设直线l 所表示的一次函数的表达式为y =kx +b(k≠0),∵点P 1(2,1),P 2(3,3)在直线l 上,∴⎩⎪⎨⎪⎧2k +b =1,3k +b =3.解得⎩⎪⎨⎪⎧k =2,b =-3. ∴直线l 所表示的一次函数的表达式为y =2x -3.(3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9),∵2×6-3=9,∴点P 3在直线l 上2、解:当0≤x≤3时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为y =kx +b ,把(0,900),(3,0)代入得⎩⎪⎨⎪⎧b =900,3k +b =0.解得⎩⎪⎨⎪⎧k =-300,b =900.∴y =-300x +900.高速列车的速度为900÷3=300(千米/小时), 150÷300=0.5(小时),3+0.5=3.5(小时).∴当3<x≤3.5时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为y =k 1x +b 1,把(3,0),(3.5,150)代入得⎩⎪⎨⎪⎧3k 1+b 1=0,3.5k 1+b 1=150.解得⎩⎪⎨⎪⎧k 1=300,b 1=-900.∴y =300x -900.∴y =⎩⎪⎨⎪⎧-300x +900(0≤x≤3),300x -900(3<x≤3.5).3、解:(1)总运费y 元与运往A 厂的煤炭量x 吨之间的函数关系式为y =(90-150a)x +150 000a ,其中200≤x≤600.(2)当0<a <0.6时,90-150a >0,y 随x 的增大而增大. ∴当x =200时,y 最小=(90-150a)×200+150 000a =120 000a +18 000. 此时,1 000-x =1 000-200=800. 当a =0.6时,y =90 000, 此时,不论如何,总运费是一样的.当a >0.6时,90-150a <0,y 随x 的增大而减少. 又∵运往A 厂总吨数不超过600吨, ∴当x =600时,y 最小=(90-150a)×600+150 000a =60 000a +54 000. 此时,1 000-x =1 000-600=400.答:当0<a <0.6时,运往A 厂200吨,B 厂800吨时,总运费最低,最低运费(120 000a +18 000)元;当a >0.6时,运往A 厂600吨,B 厂400吨时,总运费最低,最低运费(60 000a +54 000)元;当a =0.6时,不论如何,总运费是一样的.4、解:(3)设甲车的速度为v 甲,乙车的速度为v 乙. 此题意,得v 甲=6005=120(千米/时).∴v 乙=6002-v 甲=180(千米/时). (4)s 甲=120t ,s 乙=600-180t.(5)①当两车相遇前,两车相距200千米时,则有300t =600-200,解得t =43,②当两车相遇后,两车相距200千米/时,则有300t =600+200,解得t =83.∴当两车相距200千米路程时,t 的值为43或83.5、解:(1)y 甲=x +5,y 乙=0.5x +15. (2)当y 甲=y 乙时,x +5=0.5x +15.解得x =20. ∴气球上升20 min 时,两个气球位于同一高度.(3)当乙气球在上方时,y 乙-y 甲=5,即0.5x +15-(x +5)=5.解得x =10. 当甲气球在上方时,y 甲-y 乙=5,即x +5-(0.5x +15)=5.解得x =30. ∴气球上升10 min 或30 min 时,两个气球所在位置的海拔高度相差5 m. (4)设减速后甲气球的高度为y 甲减. 当x =40时,y 甲=x +5=45,∴y 甲减=0.3(x -40)+45=0.3x +33(x≥40).由0.3x +33=0.5x +15,解得x =90,故出发90 min 两气球再次位于同一高度. ∴40≤x ≤80时,甲气球一直在乙气球的上方.∴h =y 甲减-y 乙=(0.3x +33)-(0.5x +15)=-0.2x +18. ∵-0.2<0,∴函数值h 随x 的增大而减少. 当x =40时,h =-0.2x +18=-0.2×40+18=10. ∴当40≤x≤80时,两气球的海拔高度差h 最多为10 m. 类型2一次函数应用综合例1.(石家庄模拟)将如图所示的长方体石块(a >b >c)放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm 3/s ,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图1至图3所示,在这三种情况下,水桶内的水深h cm 与注水时间t s 的函数关系如图4至图6所示,根据图像完成下列问题:(1)请分别将三种放置方式的示意图和与之相对应的函数关系图像用线连接起来; (2)求图5中直线CD 的函数关系式; (3)求圆柱形水槽的底面积S.解:(1)图1与图4相对应,图2与图6相对应,图3与图5相对应,连线略. (2)由题意可知C 点的坐标为(45,9),D 点的坐标为(53,10), 设直线CD 的函数关系式为h =kt +b ,∴⎩⎪⎨⎪⎧9=45k +b ,10=53k +b.解得⎩⎪⎨⎪⎧k =18,b =278.∴直线CD 的函数关系式为h =18t +278.(3)由图4、5和6可知水槽的高为10 cm ;由图2和图6可知石块的长a =10 cm ;由图3和图5可知石块的宽b =9 cm ;由图1和图4可知石块的高c =6 cm.∴石块的体积为abc =540 cm 3,根据图4和图6可得⎩⎪⎨⎪⎧53v =10S -540,21v =6S -540,解得⎩⎪⎨⎪⎧v =20,S =160.∴S =160 cm 2. 针对性训练1.(张家口模拟)王老师想骑摩托车送甲、乙两位同学去会场参加演出,由于摩托车后座只能坐一人,为了节约时间,王老师骑摩托车先带乙出发,同时,甲步行出发.已知甲、乙的步行速度都是 5 km/h ,摩托车的速度是45 km/h. 预设方案(1)方案1:王老师将乙送到会场后,回去接甲,再将甲送到会场,图1中折线AB -BC -CD 和折线AC -CD 分别表示王老师、甲在上述过程中,离会场的距离y(km)与王老师所用时间x(h)之间的函数关系. ①学校与会场的距离为15km ;②求出点C 的坐标,并说明它的实际意义;(2)方案2:王老师骑摩托车行驶a(h)后,将乙放下,让乙步行去会场,同时王老师回去接甲并将甲送到会场,图2中折线AB -BC -CD 、折线AC -CD 和折线AB -BE 分别表示王老师、甲、乙在上述过程中,离会场的距离y(km)与王老师所用时间x(h)之间的函数关系.求a 的值;(3)你能否设计一个方案,使甲、乙两位同学在最短时间内都赶到会场,请你直接写出这个最短时间,并在图3中画出这个设计方案的大致图像.(不需要写出具体的方案设计)图32.(2019黑龙江齐齐哈尔12分)如图所示,在平面直角坐标系中,过点A (﹣,0)的两条直线分别交y 轴于B 、C 两点,且B 、C 两点的纵坐标分别是一元二次方程x 2﹣2x ﹣3=0的两个根(1)求线段BC 的长度;(2)试问:直线AC 与直线AB 是否垂直?请说明理由; (3)若点D 在直线AC 上,且DB=DC ,求点D 的坐标;(4)在(3)的条件下,直线BD 上是否存在点P ,使以A 、B 、P 三点为顶点的三角形是等腰三角形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.答案1、解:(1)方法一:设王老师把乙送到会场后,再经过m h 与甲相遇. (45+5)m =15-5×13.解得m =415.13+415=35(h),15-5×35=12(km),即C(35,12). 点C 的实际意义为王老师在出发35h 后,在距离会场12 km 处接甲.方法二:BC 对应的函数关系式为y =45x -15. AC 对应的函数关系式为y =-5x +15. BC 与AC 的交点C 的坐标为(35,12).点C 的实际意义为王老师在出发35h 后,在距离会场12 km 处接到甲.(2)方法一:设王老师把乙放下后,再经过n h 与甲相遇.(45+5)n =45a -5a.解得n =45a.由于王老师骑摩托车一共行驶56 h ,可得方程15-5(a +45a)=45×[56-(a +45a)].解得a =516.方法二:根据题意,得B(a ,15-45a),C(95a ,15-9a).∴CD 对应的函数关系式为y =-45x +72a +15.将(56,0)代入,解得a =516.(3)79 h .图像如图3所示.2、【解答】(1)∵x 2﹣2x ﹣3=0, ∴x=3或x=﹣1,∴B (0,3),C (0,﹣1),∴BC=4,(2)∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴OA2=OBOC,∵∠AOC=∠BOA=90°,∴△AOC∽△BOA,∴∠CAO=∠ABO,∴∠CAO+∠BAO=∠ABO+∠BAO=90°,∴∠BAC=90°,∴AC⊥AB;(3)设直线AC的解析式为y=kx+b,把A(﹣,0)和C(0,﹣1)代入y=kx+b,∴,解得:,∴直线AC的解析式为:y=﹣x﹣1,∵DB=DC,∴点D在线段BC的垂直平分线上,∴D的纵坐标为1,∴把y=1代入y=﹣x﹣1,∴x=﹣2,∴D的坐标为(﹣2,1),(4)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,把B(0,3)和D(﹣2,1)代入y=mx+n,∴,解得,∴直线BD的解析式为:y=x+3,令y=0代入y=x+3,∴x=﹣3,∴E(﹣3,0),∴OE=3,∴tan∠BEC==,∴∠BEO=30°,同理可求得:∠ABO=30°,∴∠ABE=30°,当PA=AB时,如图1,此时,∠BEA=∠ABE=30°,∴EA=AB,∴P与E重合,∴P的坐标为(﹣3,0),当PA=PB时,如图2,此时,∠PAB=∠PBA=30°,∵∠ABE=∠ABO=30°,∴∠PAB=∠ABO,∴PA∥BC,∴∠PAO=90°,∴点P的横坐标为﹣,令x=﹣代入y=x+3,∴y=2,∴P(﹣,2),当PB=AB时,如图3,∴由勾股定理可求得:AB=2,EB=6,若点P在y轴左侧时,记此时点P为P1,过点P1作P1F⊥x轴于点F,∴P1B=AB=2,∴EP1=6﹣2,∴sin∠BEO=,∴FP1=3﹣,令y=3﹣代入y=x+3,∴x=﹣3,∴P1(﹣3,3﹣),若点P在y轴的右侧时,记此时点P为P2,过点P2作P2G⊥x轴于点G,∴P2B=AB=2,∴EP2=6+2,∴sin∠BEO=,∴GP2=3+,令y=3+代入y=x+3,∴x=3,∴P2(3,3+),综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).类型3、反比例函数例1.(2019山东省菏泽市3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD【考点】反比例函数系数k的几何意义;等腰直角三角形.【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=6.∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×6=3.故选D.【点评】本题考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.故选D.例2.(2019福建龙岩4分)反比例函数y=﹣的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则x1与x2的大小关系。
专题二 借助数学模型解决实际问题一次函数模型1. 用待定系数法求一次函数的解析式例1 (2016,河北)某商店通过调低价格的方式促销n 个不同的玩具,调整后的单价y (元)已知这个玩具调整后的单价都大于2元.(1)求y 与x 之间的函数关系式,并确定x 的取值范围;(2)某个玩具调整前的单价是108元,顾客购买这个玩具省了多少元?(3)这n 个玩具调整前、后的平均单价分别为x ,y ,猜想x 与y 之间的关系式,并写出推导过程.【思路分析】(1)已知y 与x 之间的函数类型,可利用待定系数法,由表中所给的两组数据列方程组解得.(2)已知自变量x 的值为108,求对应的函数值,再求调整前、后的单价差.(3)利用平均数公式求得.解:(1)设y =kx +b .依题意,得⎩⎪⎨⎪⎧4=6k +b ,59=72k +b .解得⎩⎪⎨⎪⎧k =56,b =-1.∴y =56x -1.依题意,得56x -1>2.解得x >185,即x 的取值范围为x >185.(2)将x =108代入y =56x -1,得y =56×108-1=89.108-89=19(元),∴顾客购买这个玩具省了19元. (3) y =56x -1.推导过程:由(1)知y 1=56x 1-1,y 2=56x 2-1,…,y n =56x n -1,∴y =1n(y 1+y 2+…+y n )=1n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫56x 1-1+⎝ ⎛⎭⎪⎫56x 2-1+…+⎝ ⎛⎭⎪⎫56x n -1 =1n ⎣⎢⎡⎦⎥⎤56(x 1+x 2+…+x n )-n =56·1n (x 1+x 2+…+x n )-1 =56x -1. 针对训练1 如图①,长为60 km 的某段线路AB 上有甲、乙两车,分别从南站A 和北站B 同时出发相向而行,到达B ,A 后立刻返回到出发站停止,速度均为30 km/h.设甲车、乙车距南站A 的路程分别为y 甲 km ,y 乙 km ,行驶时间为t h.训练1题图(1)如图②,已画出y 甲与t 之间的函数图象,其中a = 60 ,b = 2 ,c = 4 ; (2)分别写出0≤t ≤2及2<t ≤4时,y 乙关于t 的函数解析式;(3)在图②中补画y 乙与t 之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.【思路分析】 (1)由函数图象的数据,根据行程问题的数量关系就可以求出结论.(2)当0≤t ≤2时,设y 乙关于t 的函数解析式为y 乙=kt +b ;当2<t ≤4时,设y 乙关于t 的函数解析式为y 乙=k 1t +b 1.用待定系数法就可以求出结论.(3)通过描点法画出函数图象即可.解:(1)60 2 4(2)当0≤t ≤2时,设y 乙关于t 的函数解析式为y 乙=kt +b .由题意,得⎩⎪⎨⎪⎧60=b ,0=2k +b .解得⎩⎪⎨⎪⎧k =-30,b =60. ∴y 乙=-30t +60.当2<t ≤4时,设y 乙关于t 的函数解析式为y 乙=k 1t +b 1.由题意,得⎩⎪⎨⎪⎧0=2k 1+b 1,60=4k 1+b 1.解得⎩⎪⎨⎪⎧k 1=30,b 1=-60.∴y 乙=30t -60.(3)y 乙与t 的函数图象如答图所示.训练1答图因为两个图象有两个交点,所以在整个行驶过程中两车相遇的次数为2. 2. 借助等式求一次函数的解析式例2 (2009,河北节选)某公司装修需用A 型板材240块、B 型板材180块,A 型板材的规格是60 cm ×30 cm ,B 型板材的规格是40 cm ×30 cm.现只能购得规格是150 cm ×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(如图所示的是裁法一的裁剪示意图)z 张,且所裁出的A ,B 两种型号的板材刚好够用.(1)上表中,m = 0 ,n = 3 ;(2)分别求出y 关于x 和z 关于x 的函数解析式.例2题图【思路分析】 (1)按裁法二裁剪时,2块A 型板材的长为120 cm.150-120=30(cm),所以无法裁出B 型板材.按裁法三裁剪时,3块B 型板材的长为120 cm ,120<150,而4块B 型板材的长为160 cm ,160>150,所以无法裁出4块B 型板材.(2)由题意,得共需用A 型板材240块、B 型板材180块.所以x +2y =240,2x +3z =180.然后即可求出解析式.解:(1)0 3(2)由题意,得共需用A 型板材240块、 B 型板材180块.∴x +2y =240,2x +3z =180.∴y =-12x +120,z =-23x +60.针对训练2 一手机经销商计划购进某品牌的A 型、B 型、C 型三款手机共60部,恰好用完购机款61 000元.设购进A 型手机x 部,B 型手机y 部.三款手机的进价如下表:(1)用含x ,y 的式子表示购进C 型手机的部数; (2)求出y 关于x 的函数解析式.【思路分析】 (1)由A 型、B 型、C 型三款手机共60部和A ,B 型手机的部数可表示出C型手机的部数.(2)根据购机款列出等式可表示出x,y之间的关系.解:(1)60-x-y.(2)根据题意,得900x+1 200y+1 100(60-x-y)=61 000.整理,得y=2x-50.3. 字母系数的一次函数最值问题例3 煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1 000 t煤炭要全部运往A,B两厂,通过了解获得A,B两厂的有关信息如下表:((1)写出总运费(元)关于运往A厂的煤炭量(t)的函数解析式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费.(可用含a的代数式表示)【思路分析】 (1)根据总费用=运往A厂所需的费用+运往B厂所需的费用.整理后可得出y关于x的函数解析式.(2)根据一次函数的性质算出所求方案的费用.解:(1)∵运往A厂x t,∴运往B厂(1 000-x)t.依题意,得y=200×0.45x+150a·(1 000-x)=90x+150 000a-150ax=(90-150a)x+150 000a.依题意,得1 000-x≤800.解得x≥200.∵x≤600,∴200≤x≤600.∴y=(90-150a)x+150 000a(200≤x≤600).(2)当0<a<0.6时,90-150a>0,y随x的增大而增大.∴当x=200时,y最小=(90-150a)×200+150 000a=120 000a+18 000.此时1 000-x=1 000-200=800.当a>0.6时,90-150a<0,y随x的增大而减小.∴当x=600时,y最小=(90-150a)×600+150 000a=60 000a+54 000.此时1 000-x=1 000-600=400.当a=0.6时,y=90 000,此时,不论如何分配运往A厂,B厂的煤炭量,总运费都是一样的.综上所述,当0<a<0.6时,运往A厂200 t,B厂800 t,总运费最少,最少总运费为(120 000a+18 000)元;当a>0.6时,运往A厂600 t,B厂400 t,总运费最少,最少总运费为(60 000a+54 000)元;当a=0.6时,总运费为90 000元.针对训练3 (2018,湘西州,导学号5892921)某商店销售A型和B型两种电脑,其中A 型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数解析式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大总利润是多少元?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台.若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.【思路分析】 (1)根据“总利润=A 型电脑每台利润×A 型电脑数量+B 型电脑每台利润×B 型电脑数量”可得函数解析式.(2)根据“B 型电脑的进货量不超过A 型电脑的2倍且电脑数量为整数”求得x 的取值范围,再结合(1)所求函数解析式及一次函数的性质求解可得.(3)根据题意,得y =(400+a )x +500(100-x ),即y =(a -100)x +50 000,3313≤x ≤60.分三种情况讨论:①当0<a <100时,y 随x 的增大而减小;②当a =100时,y =50 000;③当100<a <200时,y 随x 的增大而增大.分别进行求解.解:(1)根据题意,得y =400x +500(100-x )=-100x +50 000. (2)∵100-x ≤2x ,∴x ≥3313.∵y =-100x +50 000中,k =-100<0, ∴y 随x 的增大而减小. ∵x 为正数,∴当x =34时,100-x =66,y 最大=46 600.答:该商店购进A 型电脑34台、B 型电脑66台,才能使销售总利润最大,最大总利润是46 600元.(3)根据题意,得y =(400+a )x +500(100-x ),即y =(a -100)x +50 000,3313≤x ≤60.①当0<a <100时,y 随x 的增大而减小, 所以当x =34时,y 取得最大值,即商店购进34台A 型电脑和66台B 型电脑时,销售总利润最大. ②当a =100时,a -100=0, 所以y =50 000,即商店购进A 型电脑数量满足3313≤x ≤60的整数时,均获得最大利润.③当100<a <200时,y 随x 的增大而增大, 所以当x =60时,y 取得最大值,即商店购进60台A 型电脑和40台B 型电脑时,销售总利润最大.二次函数模型1. 借助图象信息求函数解析式例4 (2018,河北,导学号5892921)如图所示的是轮滑场地的截面示意图,平台AB 距x 轴(水平)18 m ,与y 轴交于点B ,与滑道y =kx(x ≥1)交于点A ,且AB =1 m .运动员(看成点)在BA 方向获得速度v m/s 后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (m)与飞出时间t (s)的平方成正比,且t =1时h =5,M ,A 的水平距离是vt m.(1)求k 的值,并用t 表示h ;(2)设v =5.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 之间的关系式(不写x 的取值范围),及y =13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5 m/s ,v 乙 m/s.当甲距x 轴1.8 m ,且乙位于甲右侧超过4.5 m 的位置时,直接写出t 的值及v 乙的取值范围.例4题图【思路分析】 (1)用待定系数法解题即可.(2)根据题意,分别用t 表示x ,y ,再用代入消元法得出y 与x 之间的关系式,然后再求运动员与正下方滑道的竖直距离.(3)把y =1.8代入,解方程求出t 的值.求出甲距x 轴1.8 m 时的横坐标,根据题意求出乙位于甲右侧超过4.5 m 时的v 乙的取值范围.解:(1)∵点A (1,18)在滑道y =k x上, ∴18=k1.∴k =18.设h =at 2.把t =1,h =5代入,得5=a ·12. 解得a =5.∴h =5t 2.(2)∵v =5,AB =1, ∴x =AB +vt =5t +1.∵h =5t 2,OB =18,∴y =OB -h =-5t 2+18. 由x =5t +1,得t =15(x -1).∴y =-5⎣⎢⎡⎦⎥⎤15(x -1)2+18=-15(x -1)2+18.当y =13时,13=-15(x -1)2+18.解得x =6或x =-4. ∵x ≥1, ∴x =6.把x =6代入y =18x,解得y =3.所以y =13时运动员与正下方滑道的竖直距离是13-3=10(m). (3)把y =1.8代入y =-5t 2+18,得t 2=8125.解得t =1.8或t =-1.8(负值舍去). ∴x =5t +1=10.由题意,得1+1.8v 乙-10>4.5. ∴v 乙>7.5.针对训练4 (2018,石家庄43中模拟)某海域内有一艘渔船发生故障,海事救援船接到求救信号后立即从港口出发沿直线匀速前往救援,与故障渔船会合后立即将其拖回.如图,折线段O →A →B 表示救援船在整个航行过程中离港口的距离y (n mile)随航行时间x (min)的变化规律.抛物线y =ax 2+k 表示故障渔船在漂移过程中离港口的距离y (n mile)随漂移时间x (min)的变化规律.已知救援船返程速度是前往速度的23.根据图象提供的信息,解答下列问题:(1)救援船行驶了 16 n mile 与故障渔船会合; (2)求该救援船的前往速度;(3)若该故障渔船在发出求救信号后40 min 内得不到营救就会有危险,请问救援船的前往速度每小时至少是多少海里,才能保证故障渔船的安全?训练4题图【思路分析】 (1)根据图象即可得出答案.(2)设该救援船的前往速度为v n mile/min ,则返程速度为23v n mile/min.由题意,得16v +16=1623v ,求出方程的解即可.(3)求出抛物线的解析式,把x =40代入求出y 的值,再用y 的值除以时间求出速度即可.解:(1)16(2)设该救援船的前往速度为v n mile/min ,则返程速度为23v n mile/min.由题意,得16v +16=1623v .解得v =0.5.答:该救援船的前往速度为0.5 n mile/min. (3)由(2)知t =16÷0.5=32. ∴A (32,16).将A (32,16),C (0,12)的坐标分别代入y =ax 2+k ,得⎩⎪⎨⎪⎧16=a ·322+k ,12=k . 解得⎩⎪⎨⎪⎧a =1256,k =12.∴y =1256x 2+12.把x =40代入,得y =1256×402+12=734.734÷4060=2198(n mile). 答:救援船的前往速度每小时至少是2198n mile ,才能保证故障渔船的安全.针对训练5 (导学号5892921)如图,排球运动员站在点O 处练习发球,将球从点O 正上方2 m 的A 处发出,把球看成点,其运行的高度y (m)与运行的水平距离x (m)满足关系式y =a (x -6)2+h .已知球网与点O 的水平距离为9 m ,高度为2.43 m ,球场的边界距点O 的水平距离为18 m.(1)当h =2.6时,求y 关于x 的函数解析式;(不要求写出自变量x 的取值范围) (2)求当h =2.6时,球能否越过球网,球会不会出界; (3)若球一定能越过球网,又不出边界,求h 的取值范围.训练5题图【思路分析】 (1)利用h =2.6,将点(0,2)的坐标代入解析式求出即可.(2)当x =9时,y =-160(x -6)2+2.6=2.45,进而判断球能否越过球网;当y =0时,-160(x -6)2+2.6=0,解方程即可判断球是否会出界.(3)根据球一定能越过球网,又不出边界分别列出不等式,解不等式即可得出答案.解:(1)∵h =2.6,且球从点O 正上方2 m 的A 处发出,∴抛物线y =a (x -6)2+h 过点(0,2).∴2=a ×(0-6)2+2.6.解得a =-160.∴y 关于x 的函数解析式为y =-160(x -6)2+2.6.(2)当x =9时,y =-160(x -6)2+2.6=2.45>2.43,∴球能越过球网.当y =0时,-160(x -6)2+2.6=0.解得x 1=6+239>18,x 2=6-239(舍去). 故球会出界.(3)∵y =a (x -6)2+h 过点(0,2), ∴2=36a +h . ∴a =2-h 36.若球一定能越过球网,则当x =9时,y >2.43, 即y =2-h 36×(9-6)2+h >2.43.解得h >19375.若球不出边界,则当x =18时,y ≤0,即y =2-h 36×(18-6)2+h ≤0.解得h ≥83.故若球一定能越过球网,又不出边界,则h 的取值范围是h ≥83.2. 借助表格信息求函数解析式例5 (2013,河北,导学号5892921)某公司在固定线路上运输,拟用运营指数Q 量化考核司机的工作业绩.Q =W +100,而W 的大小与运输次数n 及平均速度x (km/h)有关(不考虑其他因素),W 由两部分的和组成:一部分与x 的平方成正比,另一部分与x 的n 倍成正比.试行中得到了表中的数据.(1)用含x 和n 的式子表示(2)当x =70,Q =450时,求n 的值; (3)若n =3,要使Q 最大,确定x 的值;(4)设n =2,x =40,能否在n 增加m %(m >0),同时x 减少m %的情况下,而Q 的值仍为420?若能,求出m 的值;若不能,请说明理由.【思路分析】 (1)根据题目所给的信息,设W =k 1x 2+k 2nx ,然后根据Q =W +100,列出Q 与x ,n 之间的关系式.(2)将x =70,Q =450代入,求n 的值即可.(3)把n =3代入,确定关系式,然后求Q 最大时x 的值即可.(4)根据题意列出关系式,求出当Q =420时m 的值即可.解:(1)设W =k 1x 2+k 2nx ,则Q =k 1x 2+k 2nx +100.由表中数据,得⎩⎪⎨⎪⎧420=402k 1+2×40k 2+100,100=602k 1+1×60k 2+100. 解得⎩⎪⎨⎪⎧k 1=-110,k 2=6. ∴Q =-110x 2+6nx +100.(2)将x =70,Q =450代入Q =-110x 2+6nx +100,得450=-110×702+6×70n +100.解得n =2.(3)当n =3时,Q =-110x 2+18x +100=-110(x -90)2+910.∵-110<0,∴函数图象开口向下,有最大值,则当x =90时,Q 有最大值. ∴要使Q 最大,x =90. (4)能.由题意,得420=-110[40(1-m %)]2+6×2(1+m %)×40(1-m %)+100.解得m %=12或m %=0(舍去).∴m =50.针对训练6 (2017,成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫站的距离为x (单位:km),乘坐地铁的时间y 1(单位:min)是关于的一次函数,其关系如下表:(1)求y 1关于x (2)李华骑单车的时间y 2(单位:min)也受x 的影响,其关系可以用y 2=12x 2-11x +78来描述.求李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需的时间最短,并求出最短时间.【思路分析】 (1)根据表格中的数据,运用待定系数法,即可求得y 1关于x 的函数解析式.(2)设李华从文化宫站回到家所需的时间为y ,则y =y 1+y 2=12x 2-9x +80.根据二次函数的性质,即可得出最短时间.解:(1)设y 1关于x 的函数解析式为y 1=kx +b . 将(8,18),(9,20)代入,得⎩⎪⎨⎪⎧8k +b =18,9k +b =20, 解得⎩⎪⎨⎪⎧k =2,b =2.∴y 1关于x 的函数解析式为y 1=2x +2.(2)设李华从文化宫站回到家所需的时间为y min ,则y =y 1+y 2 =2x +2+12x 2-11x +78=12x 2-9x +80 =12(x -9)2+39.5. ∴当x =9时,y 取得最小值,最小值为39.5.所以李华应选择在B 站出地铁,才能使他从文化宫站回到家所需的时间最短,最短时间为39.5 min.3. 借助文字表述求函数解析式例6 某公司开发了一种新产品,现要在甲地或者乙地进行销售,设年销售量为x 件,其中x >0.若在甲地销售,每件售价y 元与x 件之间的函数解析式为y =-110x +100,每件成本为20元.设此时的年销售利润为w 甲元(利润=销售额-成本).若在乙地销售,受各种不确定因素的影响,每件成本为a 元(a 为常数,15≤a ≤25),每件售价为106元,销售x 件每年还需缴纳110x 2元的附加费.设此时的年销售利润为w 乙元(利润=销售额-成本-附加费).(1)当a =16且x =100时,w 乙= 8 000 ;(2)求w 甲与x 之间的函数解析式(不必写出x 的取值范围),并求当x 为何值时,w 甲最大以及最大值是多少;(3)为完成x 件的年销售任务,请你通过分析帮助公司决策,应选择在甲地还是在乙地销售才能使该公司所获年利润最大.【思路分析】 (1)利用“利润=销售额-成本-附加费”得出w 乙=(106-a )x -110x 2,代入数值求得答案即可.(2)利用“利润=销售额-成本”求得w 甲与x 之间的函数解析式,利用配方法求得最值即可.(3)先计算得到w 乙-w 甲=(26-a )x .因为15≤a ≤25,x >0,所以w 乙-w 甲>0.所以选择在乙地销售才能使该公司所获年利润最大.解:(1)8 000(2)根据题意,得w 甲=(y -20)x=⎝ ⎛⎭⎪⎫-110x +100-20x =-110x 2+80x =-110(x -400)2+16 000. 所以当x =400时,w 甲有最大值,最大值为16 000.(3)w 乙-w 甲=(106-a )x -110x 2-⎝ ⎛⎭⎪⎫-110x 2+80x =(26-a )x .∵15≤a ≤25,x >0,∴w 乙-w 甲>0.所以选择在乙地销售才能使该公司所获年利润最大.针对训练7 (2018,襄阳)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20 kg ,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4 kg.第x 天的售价为y 元/kg ,y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧mx -76m (1≤x <20,x 为正整数),n (20≤x ≤30,x 为正整数),且第12天的售价为32元/kg ,第26天的售价为25元/kg.已知种植销售蓝莓的成本是18元/kg ,每天的利润是W 元(利润=销售收入-成本).(1)m =( -12),n = 25 ; (2)销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?【思路分析】 (1)根据题意将相关数值代入即可.(2)在(1)的基础上分段表示利润,讨论最值.(3)分别用(2)中的两个函数在取值范围内讨论利润不低于870元的天数,注意天数为正整数.解:(1)-12 25(2)由题意,得第x 天的销量为20+4(x -1)=4x +16(kg). 当1≤x <20时,W =(4x +16)⎝ ⎛⎭⎪⎫-12x +38-18=-2x 2+72x +320=-2(x -18)2+968.∴当x =18时,W 最大=968.当20≤x ≤30时,W =(4x +16)(25-18)=28x +112. ∵28>0,∴W 随x 的增大而增大.∴当x =30时,W 最大=952.∵968>952,∴当x =18时,W 最大=968.所以销售蓝莓第18天时,当天的利润最大,最大利润是968元.(3)当1≤x <20时,令-2x 2+72x +320=870.解得x 1=25,x 2=11.∵抛物线W =-2x 2+72x +320的开口向下,∴当11≤x <20时,W ≥870.∵x 为正整数,∴有9天利润不低于870元.当20≤x ≤30时,令28x +112≥870.解得x ≥27114.∴27114≤x ≤30.∵x 为正整数,∴有3天利润不低于870元.综上所述,当天利润不低于870元的共有12天.。