初二数学下册四边形综合测试题及答案
- 格式:doc
- 大小:7.17 MB
- 文档页数:131
八年级数学〔下册〕四边形综合测试题和答案八年级数学下册四边形综合测试题〔一〕(时间45分钟.共100分)姓名:___________ 班级:_____________ 得分:_______________一、选择题〔每题5分.共30分〕°° C、1620° D、1800° 2、能判定四边形ABCD为平行四边形的题设是〔〕.〔A〕AB∥CD.AD=BC; 〔B〕∠A=∠B.∠C=∠D; 〔C〕AB=CD.AD=BC; 〔D〕AB=AD.CB=CD 3、以下图案中既是轴对称图形又是中心对称图形的是( ).(A) (B) (C) (D)4、菱形ABCD的对角线长分别为6cm和8cm.那么菱形的面积为〔〕 A.12.B.24C.36D.48 5.以下说法不正确的选项是〔〕⊥AB.E为垂足.如果∠∠BCE?〔〕A.55B.35C.25D.30二、填空题〔每题5分.共30分〕BD相交于点O.过点O的直线分别交AD和BC于点E、F.AB?2,BC?3.那么图中阴影局部的面积为.□ABCD与□EBCF关于BC所在直线对称.∠ABE=90°.那么∠F =°. .10、如图4.把一张矩形纸片ABCD沿EF折叠后.点C,D分别落在C?,D?的位置上.EC?交AD于点G.那么△EFG形状为∥BC,?B?45?,?C?90?,AD?1,BC?411、如图那么AB=∠⊥AC交AC于点F.假设BE=2.那么CF长为三、解答题〔每题10分.共40分〕13、〔10分〕:如图7.E、F是平行四边行ABCD的对角线AC上的两点.AE=CF。
求证:∠CDF=∠ABE14、〔10分〕如图8.把正方形ABCD绕着点A.按顺时针方向旋转得到正方形AEFG.边FG与BC交于点H.求证:HC=HF.. .△⊥△AB外角∠⊥AN.垂足为点E.猜测四边形ADCE的形状.并给予证明.′E.求证:四边形CDC′E是菱形.“拓展创新〞时间30分钟.共50分.一、选择及填空题〔每题5分.共10分〕 1、如图11.在菱形ABCD中.∠BAD =80°∠CDE=_________度. .AECF是等腰梯形.以下结论中不一定正确...的是〔〕.〔A〕AE=FC 〔B〕AD=BC 〔C〕∠AEB=∠CFD 〔D〕BE=AF 二、填空题〔每题5分.共10分〕 3、如图13.:平行四边形ABCD中.?BCD的平分线CE交边AD于EG=_______ cm .4、将矩形纸片ABCD按如图14所示的方式折叠.得到菱形AECF.假设AB=9.那么AC的长为 _________三、解答题〔每题15分.共30分〕“任画一个△△△ABC与它的中心对称图形拼成了一个什么形状的特殊四边形?并说明理由.〞于是大家讨论开了.小亮说:“拼成的是平行四边形〞;小华说:“拼成的是矩形〞;小强说:“拼成的是菱形〞;小红说:“拼成的是正方形〞;其他同学也说出了自己的看法……你赞同他们中的谁的观点?为什么?假设都不赞同.请说出你的观点〔画出图形〕.并说明理由. .⊥AD交BC于F,通过一番研究之后得出两条重要结论:〔1〕S?APB?S?CPD?S?APD?S?BPC.〔2)PA2?PC2?PB2?PD2; 1〕请你写出小东探究的过程.2〕当P在矩形外时.如图15-2.上述两个结论是否仍成立?假设成立.请说明理由;假设不成立.请写出你猜测的结论〔不必证明〕. .。
人教版八年级数学下册平行四边形测试卷一、选择题1.菱形具有而矩形不具有的性质是()A.对角线互相平分 B.四条边都相等C.对角相等D.邻角互补2.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有()A.1个 B.2个 C.3个 D.4个3.能判定一个四边形是菱形的条件是()A.对角线相等且互相垂直B.对角线相等且互相平分C.对角线互相垂直 D.对角线互相垂直平分4.正方形、菱形、矩形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分一组对角5.若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形6.下列说法中,不正确的是()A.有三个角是直角的四边形是矩形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形7.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°二、填空题8.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=,DC=cm.9.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.10.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.11.如图,△ABC中,EF是它的中位线,M、N分别是EB、CF的中点,若BC=8cm,那么EF=cm,MN=cm.12.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的边长为cm和cm.13.在▱ABCD中,若添加一个条件,则四边形ABCD是矩形;若添加一个条件,则四边形ABCD是菱形.14.如图,在等腰梯形ABCD中,AD∥BC,AD=6cm,BC=8cm,∠B=60°,则AB =cm.三、解答题15.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.16.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.17.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.18.如图:已知在△ABC中,AB=AC,D为BC上任意一点,DE∥AC交AB于E,DF∥AB交AC于F,求证:DE+DF=AC.19.如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.参考答案1.菱形具有而矩形不具有的性质是()A.对角线互相平分 B.四条边都相等C.对角相等D.邻角互补【考点】矩形的性质;菱形的性质.【专题】选择题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A 不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选B.【点评】考查菱形和矩形的基本性质.2.关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有()A.1个 B.2个 C.3个 D.4个【考点】平行四边形的判定.【专题】选择题.【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.按照平行四边形的判定方法进行判断即可.【解答】解:①符合平行四边形的定义,故①正确;②两组对边分别相等,符合平行四边形的判定条件,故②正确;③由一组对边平行且相等,符合平行四边形的判定条件,故③正确;④对角线互相平分的四边形是平行四边形,故④错误;所以正确的结论有三个:①②③,故选C.【点评】本题考查了平行四边形的判定,熟练掌握平行四边形的定义和判定方法是解答此类题目的关键.3.能判定一个四边形是菱形的条件是()A.对角线相等且互相垂直B.对角线相等且互相平分C.对角线互相垂直D.对角线互相垂直平分【考点】菱形的判定.【专题】选择题.【分析】根据菱形的判定方法:对角线互相垂直平分来判断即可.【解答】解:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.只有D能判定为是菱形,故选D.【点评】本题考查菱形对角线互相垂直平分的判定.4.正方形、菱形、矩形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分一组对角【考点】正方形的性质;菱形的性质;矩形的性质.【专题】选择题.【分析】根据正方形、菱形、矩形对角线的性质,分析求解即可求得答案.【解答】解:∵正方形的对角线互相平分,互相垂直,相等且平分一组对角,菱形的对角线互相平分,互相垂直且平分一组对角,矩形的对角线互相平分且相等,∴正方形、菱形、矩形都具有的性质是:对角线互相平分.故选B.【点评】此题考查了正方形、菱形、矩形的性质.此题比较简单,注意熟记正方形、菱形、矩形对角线的性质是解此题的关键.5.若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形 D.对角线相等的四边形【考点】矩形的判定;三角形中位线定理.【专题】选择题.【分析】此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】解:已知:如图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD;故选B.【点评】本题主要利用了矩形的性质和三角形中位线定理来求解.6.下列说法中,不正确的是()A.有三个角是直角的四边形是矩形B.对角线相等的四边形是矩形C.对角线互相垂直的矩形是正方形D.对角线互相垂直的平行四边形是菱形【考点】矩形的判定;菱形的判定;正方形的判定.【专题】选择题.【分析】根据各四边形的性质对各个选项进行分析从而得出最后答案.【解答】解:A、正确,有三个角是直角的四边形是矩形是矩形的判定定理;B、错误,对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形;C、正确,对角线互相垂直的矩形是正方形;D、正确,对角线互相垂直的平行四边形是菱形.故选B.【点评】考查了对四边形性质与判定的综合运用,特殊四边形之间的相互关系是考查重点.7.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°【考点】矩形的性质;三角形内角和定理.【专题】选择题.【分析】本题首先根据∠ADE:∠EDC=3:2可推出∠ADE以及∠EDC的度数,然后求出△ODC各角的度数便可求出∠BDE.【解答】解:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°﹣36°=54°,根据矩形的性质可得∠DOC=180°﹣2×54°=72°所以∠BDE=180°﹣∠DOC﹣∠DEO=18°故选B.【点评】本题考查的是三角形内角和定理以及矩形的性质,难度一般.8.平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=,DC=cm.【考点】平行四边形的性质.【专题】填空题.【分析】根据平行四边形的性质:平行四边形的对边相等且平行,即可求得.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=30cm,∴∠A+∠B=180°,∵∠A=50°,∴∠B=130°.故答案为130°,30.【点评】此题考查了平行四边形的性质:平行四边形的对边相等且平行.解题时注意数形结合思想的应用.9.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=cm.【考点】平行四边形的性质.【专题】填空题.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC 的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.【解答】解:如图∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=4cm,BC=6cm.∵AB=CD,∴CD=4cm故答案为:4.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.10.菱形的两条对角线分别是6cm,8cm,则菱形的边长为cm,面积为cm2.【考点】菱形的性质.【专题】填空题.【分析】根据菱形的性质利用勾股定理可求得菱形的边长,根据面积公式可求得菱形的面积.【解答】解:菱形的两条对角线分别是6cm,8cm,得到两条对角线相交所构成的直角三角形的两直角边是×6=3cm和×8=4cm,那么它的斜边即菱形的边长=5cm,面积为6×8×=24cm2.故答案为5,24.【点评】本题考查的是菱形的性质以及其面积的计算方法的运用.11.如图,△ABC中,EF是它的中位线,M、N分别是EB、CF的中点,若BC=8cm,那么EF=cm,MN=cm.【考点】三角形中位线定理;梯形中位线定理.【专题】填空题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出EF的长,再利用梯形的中位线等于两底和的一半求出MN的长度.【解答】解:∵EF是△ABC的中位线,BC=8cm,∴EF=BC=×8=4cm,∵M、N分别是EB、CF的中点,∴MN=(EF+BC)=(4+8)=6cm.故答案为4,6.【点评】本题主要利用三角形的中位线定理和梯形的中位线定理求解,熟练掌握定理是解题的关键.12.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的边长为cm和cm.【考点】矩形的性质.【专题】填空题.【分析】根据矩形的性质得出∠ABC=90°,AB=DC,AD=BC,AC=BD,AC=2AO=2CO,BD=2BO=2DO,求出AO=BO=4cm,得出△AOB是等边三角形,推出AB=AO=4cm,在Rt△ABC中,由勾股定理求出BC即可.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,AB=DC,AD=BC,AC=BD,AC=2AO=2CO,BD=2BO=2DO,∵AC=BD=8cm,∴AO=BO=4cm,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=4cm,在Rt△ABC中,由勾股定理得:BC===4,即矩形的边长是4cm,4cm,4cm,4cm,故答案为:4;4.【点评】本题考查了矩形性质,等边三角形的性质和判定,勾股定理的应用,注意:矩形的对角线互相平分且相等.13.在▱ABCD中,若添加一个条件,则四边形ABCD是矩形;若添加一个条件,则四边形ABCD是菱形.【考点】矩形的判定;平行四边形的性质;菱形的判定.【专题】填空题.【分析】根据矩形是对角线相等的平行四边形,菱形是邻边相等的平行四边形可得.【解答】解:在▱ABCD中,若添加一个条件AC=BD,则四边形ABCD是矩形;若添加一个条件AB=BC,则四边形ABCD是菱形.故答案为:AC=BD;AB=BC.【点评】本题主要考查的是矩形和菱形的判定定理.但需要注意的是本题的知识点是关于平行四边形、矩形、菱形之间的关系.14.如图,在等腰梯形ABCD中,AD∥BC,AD=6cm,BC=8cm,∠B=60°,则AB= cm.【考点】平行四边形的判定.【专题】填空题.【分析】过A作AE∥DC,可得到平行四边形AECD,从而可求得BE的长,由已知可得到△ABE是等边三角形,此时再求AB就不难求得了.【解答】解:等腰梯形ABCD中,AD∥BC,作AE∥DC,则四边形AECD是平行四边形,因而AB=AE,CE=AD,再由∠B=60°得到△ABE是等边三角形,AE=2cm,AB=2cm.【点评】此题考查平行四边形的判定及梯形中常见的辅助线的作法.15.如图,在平行四边形ABCD中,E、F是AC上的两点,且AE=CF.求证:DE=BF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】解答题.【分析】由平行四边形的性质得AD=CB,∠DAE=∠BCF,再由已知条件,可得△ADE≌△CBF,进而得出结论.【解答】证明:在平行四边形ABCD中,则AD=CB,∠DAE=∠BCF,又AE=CF,∴△ADE≌△CBF(SAS),∴DE=BF.【点评】本题主要考查平行四边形的性质及全等三角形的判定问题,应熟练掌握.16.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.【考点】菱形的性质.【专题】解答题.【分析】(1)由在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm,可求得△ABO是含30°角的直角三角形,AB=2cm,继而求得AC与BD的长;(2)由菱形的面积等于其对角线积的一半,即可求得答案.【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC与∠BAD的度数比为1:2,∴∠ABC=×180°=60°,∴∠ABO=∠ABC=30°,∵菱形ABCD的周长是8cm.∴AB=2cm,∴OA=AB=1cm,∴OB==,∴AC=2OA=2cm,BD=2OB=2cm;(2)S菱形ABCD=AC•BD=×2×2=2(cm2).【点评】此题考查了菱形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.17.如图所示,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠1=∠2,OB=6(1)求∠BOC的度数;(2)求△DOC的周长.【考点】矩形的性质.【专题】解答题.【分析】(1)AE⊥BD,∠1+∠ABD=∠ADB+∠ABD,得出∠ACB=∠ADB=∠2=∠1=30°,可知△AOB为等边三角形,继而求出∠BOC的度数;(2)由(1)知,△DOC≌△AOB,OD=OC=CD=OB,继而求出△DOC的周长.【解答】解:(1)∵四边形ABCD为矩形,AE⊥BD,∴∠1+∠ABD=∠ADB+∠ABD=∠2+∠ABD=90°,∴∠ACB=∠ADB=∠2=∠1=30°,又AO=BO,∴△AOB为等边三角形,∴∠BOC=120°;(2)由(1)知,△DOC≌△AOB,∴△DOC为等边三角形,∴OD=OC=CD=OB=6,∴△DOC的周长=3×6=18.【点评】本题考查矩形的性质,难度适中,解题关键是根据矩形的性质求出∠1=∠2=∠ACB=30°.18.如图:已知在△ABC中,AB=AC,D为BC上任意一点,DE∥AC交AB于E,DF∥AB交AC于F,求证:DE+DF=AC.【考点】平行四边形的判定与性质;等腰三角形的性质.【专题】解答题.【分析】由题意可得四边形AEDF是平行四边形,得DE=AF再由等腰三角形的性质及平行线可得DF=CF,进而可求出其结论.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DE=AF,又AB=AC,∴∠B=∠C,∵DF∥AB,∴∠CDF=∠B,∴∠CDF=∠C,∴DF=CF,∴AC=AF+FC=DE+DF.【点评】本题主要考查平行四边形的判定及性质以及等腰三角形的性质问题,能够熟练求解.19.如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.求证:AB与EF互相平分.【考点】菱形的性质;平行四边形的判定与性质.【专题】解答题.【分析】由菱形的性质可证AC⊥BD,又已知EF⊥AC,所以AG=BG,GE=BD,AD∥BC,可证四边形EDBF为平行四边形,可证GE=GF,即证结论.【解答】证明:连接BD,AF,BE,在菱形ABCD中,AC⊥BD∵EF⊥AC,∴EF∥BD,又ED∥FB,∴四边形EDBF是平行四边形,DE=BF,∵E为AD的中点,∴AE=ED,∴AE=BF,又AE∥BF,∴四边形AEBF为平行四边形,即AB与EF互相平分.【点评】本题是简单的推理证明题,主要考查菱形的性质,同时综合利用平行四边形的判定方法及中位线的性质.。
八年级数学(下册)四边形综合测试题和答案八年级数学下册四边形综合测试题(一)(时间45分钟.共100分)姓名:___________ 班级:_____________ 得分:_______________一、选择题(每题5分.共30分)1、十二边形的内角和为() A.1080° B.1360° C、1620° D、1800°2、能判定四边形ABCD为平行四边形的题设是().(A)AB∥CD.AD=BC; (B)∠A=∠B.∠C=∠D; (C)AB=CD.AD=BC; (D)AB=AD.CB=CD 3、下列图案中既是轴对称图形又是中心对称图形的是( ).(A) (B) (C) (D)4、菱形ABCD的对角线长分别为6cm和8cm.则菱形的面积为() A.12.B.24C.36D.48 5.下列说法不正确的是()(A)对角线相等且互相平分的四边形是矩形;(B)对角线互相垂直平分的四边形是菱形; (C)对角线垂直的菱形是正方形;(D)底边上的两角相等的梯形是等腰梯形 6、如图1.在平行四边形ABCD中.CE⊥AB.E为垂足.如果∠A?125.则∠BCE?()A.55B.35C.25D.30二、填空题(每题5分.共30分)7、顺次连结任意四边形各边中点所得到的四边形一定是__ ___. 8、如图2.矩形ABCD的对角线AC和BD相交于点O.过点O的直线分别交AD和BC于点E、F.AB?2,BC?3.则图中阴影部分的面积为.9、如图3.若□ABCD与□EBCF关于BC所在直线对称.∠ABE=90°.则∠F =°. .10、如图4.把一张矩形纸片ABCD沿EF折叠后.点C,D分别落在C?,D?的位置上.EC?交AD于点G.则△EFG形状为ABCD中.AD∥BC,?B?45?,?C?90?,AD?1,BC?411、如图5.在梯形则AB=12.如图6.AC是正方形ABCD的对角线.AE平分∠BAC.EF⊥AC交AC于点F.若BE=2.则CF长为三、解答题(每题10分.共40分)(10分)已知:如图7.E、F是平行四边行ABCD的对角线AC上的两点.AE=CF。
北师大版八年级下册第六章《平行四边形》常考综合题专练(一)1.如图1,在平行四边形ABCD中,过点A作AE⊥BC交BC于点E,连接ED,且ED平分∠AEC.(1)求证:AE=BC;(2)如图2,过点C作CF⊥DE交DE于点F,连接AF,BF,猜想△ABF的形状并证明.2.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC=,CD=BD,求AD的长.3.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.4.【教材呈现】如图是华师版九年级上册数学教材第80页的第3题,请完成这道题的证明.【结论应用】(1)如图②,在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F.求证:∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.5.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.6.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.7.如图,在平行四边形ABCD中,M、N分别是AD,BC的中点,连接AN、CM.(1)求证:△ABN≌△CDM;(2)连接MN,过点C作CE⊥MN于点E,连接DN,交OM于点O交CE于点P,若∠AND=90°,PE=1,∠1=∠2,求AN的长.8.已知:在▱ABCD中,点E是边AD上一点,点F是线段AE的中点,连接BF并延长BF至点G,使FG=BF,连接DG、EG.(1)如图1,求证:四边形CDGE是平行四边形;(2)如图2,当DA平分∠CDG时,在不添加任何辅助线的情况下,请直接写出图2中与AB相等的线段(AB除外).9.如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.10.如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:BM=DN;(2)求证:四边形AECF为平行四边形.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵AE⊥BC,∴∠AEC=90°,又∵ED平分∠AEC,∴∠ADE=∠CED=45°,∴∠AED=∠ADE,∴AE=AD,∴AE=BC;(2)△ABF是等腰直角三角形,证明:∵CF⊥DE,∴∠CFE=90°,又∵∠CEF=45°,∴∠ECF=45°,∴∠FEC=∠FCE=∠AEF,∴EF=CF,在△AEF和△BCF中,,∴△AEF≌△BCF(SAS),∴AF=BF,∠AFE=∠BFC,∴∠AFE﹣∠BFE=∠BFC﹣∠BFE,即∠AFB=∠EFC=90°,∴△ABF是等腰直角三角形.2.(1)证明:∵AB∥CE,∴∠CAD=∠ACE,∠ADE=∠CED.∵F是AC中点,∴AF=CF.在△AFD与△CFE中,.∴△AFD≌△CFE(AAS),∴AD=CE,∴四边形ADCE是平行四边形;(2)解:过点C作CG⊥AB于点G.∵CD=BD,∠B=30°,∴∠DCB=∠B=30°,∴∠CDA=60°.在△ACG中,∠AGC=90°,,∠CAG=45°,∴.在△CGD中,∠DGC=90°,∠CDG=60°,,∴GD=1,∴.3.(1)证明:∵AE为∠BAD的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DFA.∴∠DAF=∠DFA.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.4.【教材呈现】证明:∵P是BD的中点,M是DC的中点,∴PM=BC,同理,PN=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM,【结论应用】(1)证明:∵P是BD的中点,M是DC的中点,∴PM∥BC,∴∠PMN=∠F,同理,∠PNM=∠AEN,∵∠PMN=∠PNM,∴∠AEN=∠F;(2)解:∵PN∥AD,∴∠PNB=∠A,∵∠DPN是△PNB的一个外角,∴∠DPN=∠PNB+∠ABD=∠A+∠ABD,∵PM∥BC,∴∠MPD=∠DBC,∴∠MPN=∠DPN+∠MPD=∠A+∠ABD+∠DBC=∠A+∠ABC=122°,∵PM=PN,∴∠PMN=×(180°﹣122°)=29°,∴∠F=∠PMN=29°,故答案为:29°.5.(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.6.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴AG=AD=2,∴DG==2,∴BD===2.7.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠CDM,∵M、N分别是AD,BC的中点,∴BN=DM,在△ABN和△CDM中,,∴△ABN≌△CDM(SAS);(2)解:∵M是AD的中点,∠AND=90°,∴MN=MD=AD,∴∠1=∠MND,∵AD∥BC,∴∠1=∠CND,∵∠1=∠2,∴∠MND=∠CND=∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴CN==,∵N是BC的中点,∴AD=BC=CN=,∴AN=AD×sin∠1=4=.8.解:(1)∵点F是线段AE的中点,∴AF=EF,在△ABF和△EGF中,,∴△ABF≌△EGF(SAS),∴AB=GE,∠ABF=∠FGE,∴AB∥GE,又∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴GE=CD,GE∥DC,∴四边形CDGE是平行四边形;(2)图2中与AB相等的线段为:GE,GD,DC,CE.理由:∵DA平分∠CDG,∴∠CDE=∠GDE,由(1)可得,GE∥CD,∴∠CDE=∠GED,∴∠GDE=∠GED,∴GE=GD,又∵四边形CDGE是平行四边形,∴四边形CDGE是菱形,∴CD=DG=GE=CE,又∵AB=CD,∴图2中与AB相等的线段为:GE,GD,DC,CE.9.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.10.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AM⊥BC,CN⊥AD,∴AM∥CN,∴四边形AMCN为平行四边形,∴CM=AN,∴BC﹣CM=AD﹣AN,即BM=DN;(2)∵AD∥BC,∴∠ADB=∠CBD,∵AM⊥BC,CN⊥AD,∴∠EMB=∠FND=90°,在△BME和△DNF中,,∴△BME≌△DBF(ASA),∴EM=DF,∵四边形AMCN为平行四边形,∴AM=CN,AM∥CN,∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形.。
人教版八年级数学下册第十八章《平行四边形》综合测试卷一、单选题(共30分)1.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AD =BCB .AB =CDC .AD ∥BC D .∥A =∥C 2.如图,在∥ABCD 中,连接AC ,∥ABC =∥CAD =45°,AB =2,则BC 的长是( )A 2B .2C .2D .43.如图,在长方形ABCD 中无重叠放入面积分别为216cm 和212cm 的两张正方形纸片,则图中空白部分的面积为( )2cmA .1683-B .1283-+C .843-D .423- 4.如图,已知平行四边形ABCD 的对角线AC ,BD 交于点O ,且AC =8,BD =10,则边AB 的长可以是( )A .1B .8C .10D .125.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,4),(1,1),以这三点为平行四边形的三个顶点,则第四个顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,矩形ABCD 和矩形CEFG ,AB =1,BC =CG =2,CE =4,点P 在边GF 上,点Q 在边CE 上,且PF =CQ ,连结AC 和PQ ,M ,N 分别是AC ,PQ 的中点,则MN 的长为( )A .3B .6C 37D 17 7.如图,菱形ABCD 对角线AC ,BD 交于点O ,15ACB ∠=︒,过点C 作CE AD ⊥交AD 的延长线于点E .若菱形ABCD 的面积为4,则菱形的边长为( )A .22B .2C .2D .48.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .5D .10 9.如图,在矩形ABCD 内有一点F ,FB 与FC 分别平分∥ABC 和∥BCD ,点E 为矩形ABCD 外一点,连接BE ,CE .现添加下列条件:∥EB ∥CF ,CE ∥BF ;∥BE =CE ,BE =BF ;∥BE ∥CF ,CE ∥BE ;∥BE =CE ,CE ∥BF ,其中能判定四边形BECF 是正方形的共有( )A .1个B .2个C .3个D .4个 10.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当∥CDE 的周长最小时,求点E 的坐标( )A .(一3,0)B .(3,0)C .(0,0)D .(1,0)二、填空题(共24分)11.在菱形ABCD 中,∥BAD =72°,点F 是对角线AC 上(不与点A ,C 重合)一动点,当ADF 是等腰三角形时,则∥AFD 的度数为_____.12.如图,在ABC 中,点M 为BC 的中点,AD 平分,BAC ∠且BD AD ⊥于点D ,延长BD 交AC 于点,N 若12,18AB AC ==,则MD =_______________________.13.如图,在Rt ∥ABC 中,∥ABC =90º,D 、E 、F 分别为AB 、BC 、CA 的中点,若BF =6,则DE =_____.14.平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,∥AOB 的周长比∥BOC 的周长为8cm ,则AB 的长为_____cm .15.如图,在平行四边形ABCD 中,BF 平分∥ABC ,交AD 于点F ,CE 平分∥BCD ,交AD 于点E ,AB =8,BC =12,则EF 的长为__________.16.如图在Rt △ABC 中,∥ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作平行四边形CDEB ,当AD =_____,平行四边形CDEB 为菱形.17.如图,在平行四边形ABCD 中,AB =10,AD =6,AC ∥BC .则BD =_____.18.如图所示,在ΔABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE =DF ,给出下列条件:∥BE ∥EC ;∥BF∥EC ;∥AB =AC∥从中选择一个条件使四边形BECF 是菱形,你认为这个条件是____(只填写序号).三、解答题(共66分)19.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点,E F 分别为,OB OD 的中点,连接,AE CF .求证:AE CF .20.如图,∥ABCD 的对角线AC 、BD 交于点O ,E 、F 是对角线AC 上两点,AE =CF .求证:四边形DEBF 是平行四边形.21.如图,将∥ABCD 的边AB 延长至点E ,使BE=AB ,连接DE 、EC 、BD 、DE 交BC 于点O .(1)求证:∥ABD∥∥BEC ;(2)若∥BOD=2∥A ,求证:四边形BECD 是矩形.22.如图,在ABC ∆中,AD 是高,E F 、分别是AB AC 、的中点.(1)EF 与AD 有怎样的位置关系?证明你的结论;(2)若6,4BC AD ==,求四边形AEDF 的面积.23.如图,等边AEF ∆的顶点E ,F 在矩形ABCD 的边BC ,CD 上,且45CEF ∠=. 求证:矩形ABCD 是正方形.24.如图,在正方形ABCD 中,点E 、F 分别在边BC 和CD 上,且BE CF =,连接AE 、BF ,其相交于点G ,将BCF △沿BF 翻折得到BC F '△,延长FC '交BA 延长线于点H .(1)求证:AE BF =;(2)若3AB =,2EC BE =,求BH 的长.25.如图,在▱ABCD 中,AE∥BC ,AF∥CD ,垂足分别为E ,F ,且BE=DF (1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.26.如图,在矩形ABCD 中,AB =15,E 是BC 上的一点,将∥ABE 沿着AE 折叠,点B 刚好落在CD 边上点G 处;点F 在DG 上,将∥ADF 沿着AF 折叠,点D 刚好落在AG 上点H 处,且CE =45BE , (1)求AD 的长;(2)求FG 的长27.如图,BD是∥ABC的角平分线,过点作DE//BC交AB于点E,DF//AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∥ABC=60°,∥ACB=45°,CD=6,求菱形BEDF的边长.28.(1)如图1,正方形ABCD中,E为边CD上一点,连接AE,过点A作AF∥AE 交CB的延长线于F,猜想AE与AF的数量关系,并说明理由;(2)如图2,在(1)的条件下,连接AC,过点A作AM∥AC交CB的延长线于M,观察并猜想CE与MF的数量关系,并说明理由;(3)解决问题:王师傅有一块如图所示的板材余料,其中∥A=∥C=90°,AB=AD.王师傅想切一刀后把它拼成正方形.请你帮王师傅在图3中画出剪拼的示意图.参考答案:1.A2.C3.B4.B5.C6.C7.A8.A9.D10.D11.108°或72°12.313.614.1915.416.7517.1318.∥22.(1)EF 垂直平分AD ;(2)6AEDF S 四边形. 24.5.25.S 平行四边形ABCD =24 26.(1)AD = 9;(2)FG =7.5 27.(2)628.(1)AE=AF (2)CE=MF ,。
八年级数学下册第二十二章四边形专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变2、如图,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设PA x,点D到直线PA的距离为y,且y关于x的函数图象如图所示,则当PCD和PAB△的面积相等时,y的值为()A B C D3、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x >y ),则下列四个说法:①x 2+y 2=49,②x ﹣y =2,③2xy +4=49,④x +y =9.其中说法正确的是( )A .②③B .①②③C .②④D .①②④4、如图,在▱ABCD 中,点E 在边BC 上,连接AE ,EM ⊥AE ,垂足为E ,交CD 于点M .AF ⊥BC ,垂足为F .BH ⊥AE ,垂足为H ,交AF 于点N ,连接AC 、NE .若AE =BN ,AN =CE ,则下列结论中正确的有( )个.①ANB CEA ≌△△;②ABC 是等腰直角三角形;③NFE 是等腰直角三角形;④ANE ECM ≌△△;⑤AD EC =+.A .1B .3C .4D .55、如图,五边形ABCDE 中,320A B E ∠∠+∠=︒十,CP ,DP 分别平分BCD ∠,CDE ∠,则CPD ∠=( )A .60°B .72°C .70°D .78°6、在平行四边形ABCD 中,∠A ∶∠ B ∶∠ C ∶∠ D 的值可以是( )A .1∶2∶3∶4B .1∶2∶2∶1C .2∶2∶1∶1D .1∶2∶1∶27、在Rt △ABC 中,∠B =90°,D ,E ,F 分别是边BC ,CA ,AB 的中点,AB =6,BC =8,则四边形AEDF 的周长是( )A .18B .16C .14D .128、正方形具有而矩形不一定具有的性质是( )A .四个角相等B .对角线互相垂直C .对角互补D .对角线相等9、若n 边形每个内角都为156°,那么n 等于( )A .8B .12C .15D .1610、如图,在平行四边形ABCD 中,AE 平分BAD ∠,交CD 边于E ,3AD =,5AB =,则EC 的长为( )A .1B .2C .3D .5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,A 、B 、C 均为一个正十边形的顶点,则∠ACB=_____°.2、如图,90,ACB AC BC ∠=︒=,D 为ABC 外一点,且,AD BD DE AC =⊥交CA 的延长线于E 点,若1,3AE ED ==,则BC =_______.3、如图,将长方形ABCD 沿AE ,EF 翻折使其B 、C 重合于点H ,点D 落在点G 的位置,HE 与AD 交于点P ,连接HF ,当6AB =,18BC =时,则P 到HF 的距离是______.4、过某个多边形一个顶点的所有对角线,将此多边形分成7个三角形,则此多边形的边数______.5、如图,菱形ABCD 的边长为4,∠BAD =120°,E 是边CD 的中点,F 是边AD 上的一个动点,将线段EF 绕着点E 顺时针旋转60°得到线段EF ',连接AF '、BF ',则△ABF '的周长的最小值是________________.三、解答题(5小题,每小题10分,共计50分)1、已知正方形ABCD 与正方形EFGH ,AB a ,()EF b b a =<.(1)如图1,若点C 和点H 重合,点E 在线段CB 上,点G 在线段DC 的延长线上,连接AC 、AG 、CG ,将阴影部分三角形ACG 的面积记作S ,则S = (用含有a 、b 的代数式表示).(2)如图2,若点B 与点E 重合,点H 在线段BC 上,点F 在线段AB 的延长线上,连接AC 、AG 、CG ,将阴影部分三角形ACG 的面积记作S ,则S = (用含有a 、b 的代数式表示).(3)如图3,若将正方形EFGH 沿正方形ABCD 的边BC 所在直线平移,使得点E 、H 在线段BC 上(点H 不与点C 重合、点E 不与点B 重合),连接AC 、AG 、CG ,设CH x =,将阴影部分三角形ACG 的面积记作S ,则S = (用含有a 、b 、x 的代数式表示).(4)如图4,若将正方形EFGH 沿正方形ABCD 的边BC 所在直线平移,使得点H 、E 在BC 的延长线上,连接AC 、AG 、CG ,设CH x =,将阴影部分三角形ACG 的面积记作S ,则S = (用含有a 、b 、x 的代数式表示).2、在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,3)C m ,以点A ,B ,C 为顶点的平行四边形有三个,记第四个顶点分别为1D ,2D ,3D ,如图所示.(1)若1m =-,则点1D ,2D ,3D 的坐标分别是( ),( ),( );(2)若△123D D D 是以12D D 为底的等腰三角形,①直接写出m 的值; ②若直线12y x b =+与△123D D D 有公共点,求b 的取值范围.(3)若直线y x =与△123D D D 有公共点,求m 的取值范围.3、如图,OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,10OA =,8OC =,在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处.(1)直接写出B 点的坐标____________________;(2)求D 、E 两点的坐标.4、如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AB =5cm ,∠BOC =120°,求矩形对角线的长.5、已知在ABC 与CDE △中,,,AB CD B D ACE B =∠=∠∠=∠,点B C D 、、在同一直线上,射线AH EI 、分别平分BAC CED ∠∠、.(1)如图1,试说明AC CE =的理由;(2)如图2,当AH EI 、交于点G 时,设,B AGE αβ∠=∠=,求β与α的数量关系,并说明理由;(3)当AH EI ∥时,求B 的度数.-参考答案-一、单选题1、D【解析】【分析】连接AE ,根据11,22ADE ADE ABCD DEGF S S S S ==矩形,推出ABCD DEGF S S =矩形,由此得到答案. 【详解】解:连接AE ,∵11,22ADE ADE ABCD DEGF S S S S ==矩形,∴ABCD DEGF S S =矩形,故选:D . .【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE 是解题的关键.2、D【解析】【分析】先结合图象分析出矩形AD 和AB 边长分别为4和3,当△PCD 和△PAB 的面积相等时可知P 点为BC 中点,利用面积相等求解y 值.【详解】解:当P 点在AB 上运动时,D 点到AP 的距离不变始终是AD 长,从图象可以看出AD =4,当P 点到达B 点时,从图象看出x =3,即AB =3.当△PCD 和△PAB 的面积相等时,P 点在BC 中点处,此时△ADP 面积为143=62⨯⨯,在Rt △ABP 中,AP由面积相等可知:162⨯⨯=AP y ,解得y = 故选:D .【点睛】本题主要考查了函数图形的认识,分析图象找到对应的矩形的边长,解决动点问题就是“动中找静”,结合图象找到“折点处的数据真正含义”便可解决问题.3、B【解析】【分析】根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.【详解】如图所示,∵△ABC 是直角三角形,∴根据勾股定理:22249x y AB +==,故①正确;由图可知2x y CE -==,故②正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 列出等式为144492xy ⨯⨯+=,即2449xy +=,故③正确;由2449xy +=可得245xy =,又∵2249x y +=, 两式相加得:2224945x xy y ++=+,整理得:()294x y +=,9x y +=≠,故④错误;故正确的是①②③.故答案选B .【点睛】本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.4、C【解析】【分析】证出∠NBF =∠EAF =∠MEC ,再证明△NBF ≌△EAF (AAS ),得出BF =AF ,NF =EF ,证明△ANB ≌△CEA 得出∠CAE =∠ABN ,推出∠ABF =∠FAC =45°;再证明△ANE ≌△ECM 得出CM =NE ,由NF,得出AF+EC ,即可得出结论. 【详解】解:∵BH ⊥AE ,AF ⊥BC ,AE ⊥EM ,∴∠AEB +∠NBF =∠AEB +∠EAF =∠AEB +∠MEC =90°,∴∠NBF =∠EAF =∠MEC ,在△NBF 和△EAF 中,NBF EAF BFN EFA AE BN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△NBF ≌△EAF (AAS );∴BF =AF ,NF =EF ,∴∠ABC =45°,∠ENF =45°,∴△NFE 是等腰直角三角形,故③正确;∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC,∴∠ANB=∠CEA,在△ANB和△CEA中,AN CEANB CEABN AE=⎧⎪∠=∠⎨⎪=⎩,∴△ANB≌△CEA(SAS),故①正确;∵AN=CE,NF=EF,∴BF=AF=FC,又∵AF⊥BC,∠ABC=45°,∴△ABC是等腰直角三角形,故②正确;在▱ABCD中,CD∥AB,且△ABC、△NFE都是等腰直角三角形,∴∠ACD=∠BAC=90°,∠ACB=∠FNE=45°,∴∠ANE=∠BCD=135°,在△ANE和△ECM中,MEC EAFAN ECANE ECM∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ANE≌△ECM(ASA),故④正确;∴CM=NE,又∵NF,∴AF+EC,∴AD=BC=2AF+2EC,故⑤错误.综上,①②③④正确,共4个,故选:C.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定和性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.5、C【解析】【分析】根据五边形的内角和等于540︒,由320A B E ∠+∠+∠=︒,可求BCD CDE ∠+∠的度数,再根据角平分线的定义可得PDC ∠与PCD ∠的角度和,进一步求得CPD ∠的度数.【详解】 解:五边形的内角和等于540︒,320A B E ∠+∠+∠=︒,540320220BCD CDE ∴∠+∠=︒-︒=︒,BCD ∠、CDE ∠的平分线在五边形内相交于点O ,1()1102PDC PCD BCD CDE ∴∠+∠=∠+∠=︒, 18011070CPD ∴∠=︒-︒=︒.故选:C .【点睛】本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.6、D【解析】略7、B【解析】略8、B【解析】略9、C【解析】【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:由题意可知:n 边形每个外角的度数是:180°-156°=24°,则n =360°÷24°=15.故选:C .【点睛】本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.10、B【解析】【分析】先由平行四边形的性质得//BA CD ,5CD AB ==,再证3DE AD ==,即可求解.【详解】 解:四边形ABCD 是平行四边形,//BA CD ∴,5CD AB ==,DEA EAB ∴∠=∠,AE ∵平分DAB ∠,DAE EAB ∴∠=∠,DAE DEA ∴∠=∠,3DE AD ∴==,532EC CD DE ∴=-=-=,故选:B .【点睛】本题考查了平行四边形的性质,等腰三角形的判定等知识,解题的关键是灵活应用这些知识解决问题.二、填空题1、18【解析】【分析】根据正多边形外角和和内角和的性质,得DAE ∠、144BAE E F ∠=∠=∠=︒;根据四边形内角和的性质,计算得EAC ∠;根据五边形内角和的性质,计算得ABC ∠,再根据三角形外角的性质计算,即可得到答案.【详解】如图,延长BA∵正十边形 ∴3603610DAE ︒∠==︒,正十边形内角()102180=14410-⨯︒=︒,即144BAE E F ∠=∠=∠=︒ 根据题意,得四边形ACFE 内角和为:360︒,且EAC FCA ∠=∠ ∴360362E F EAC FCA ︒-∠-∠∠=∠==︒ ∴72DAC DAE EAC ∠=∠+∠=︒根据题意,得五边形ABCFE 内角和为:()52180540=-⨯︒=︒,且ABC FCB ∠=∠ ∴540542BAE E F ABC FCB ︒-∠-∠-∠∠=∠==︒ ∴725418ACB DAC ABC ∠=∠-∠=︒-︒=︒故答案为:18.【点睛】本题考查了正多边形、三角形外角的知识;解题的关键是熟练掌握正多边形外角和、正多边形内角和的性质,从而完成求解.2、2【解析】【分析】过点D 作DM ⊥CB 于M ,证出∠DAE=∠DBM ,判定△ADE ≌△BDM ,得到DM=DE =3,证明四边形CEDM 是矩形,得到CE=DM =3,由A E =1,求出BC=AC =2.【详解】解:∵DE ⊥AC ,∴∠E=∠C=90°,∴CB ED ∥,过点D作DM⊥CB于M,则∠M=90°=∠E,∵AD=BD,∴∠BAD=∠ABD,∵AC=BC,∴∠CAB=∠CBA,∴∠DAE=∠DBM,∴△ADE≌△BDM,∴DM=DE=3,∵∠E=∠C=∠M =90°,∴四边形CEDM是矩形,∴CE=DM=3,∵A E=1,∴BC=AC=2,故答案为:2.【点睛】此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE≌△BDM是解题的关键.3、15√6161【解析】【分析】连接FC ,过点H 作HH ⊥HH ,过点P 作HH ⊥HH ,线段PM 长度即为所求,根据折叠及矩形的性质可得∆HHH ≅∆HHH ,∆HHH ≅∆HHH ,∠HHH =∠H =90°,∠HHH =∠HHH =90°,∠H =∠H =90°,HH =HH =18,由全等三角形及平行线的判定得出HH =HH =6,HH =HH =6,HH ∥HH ,点A 、H 、G 三点共线,且12AG =,点H 为AG 中点,设HH =H ,则GF x =,HH =18−H ,利用勾股定理可得5GF =,13AF =,由三角形中位线的判定及性质可得HH =52,HH =HH =132,最后在两个三角形HH ∆HHH 与∆HHH 中,利用等面积法求解即可得.【详解】解:如图所示:连接FC ,过点H 作HH ⊥HH ,过点P 作HH ⊥HH ,线段PM 长度即为所求,∵长方形ABCD 沿AE ,EF 翻折使其B 、C 重合于点H ,点D 落在点G 的位置,∴∆HHH ≅∆HHH ,∆HHH ≅∆HHH ,∠HHH =∠H =90°,∠HHH =∠HHH =90°,∠H =∠H =90°,HH =HH =18,∴HH =HH =6,HH =HH =6,HH ∥HH ,∴点A 、H 、G 三点共线,且HH =HH +HH =12,点H 为AG 中点,设HH =H ,则GF x =,HH =18−H ,在Rt AGF 中,HH 2+HH 2=HH 2,即122+H 2=(18−H )2,解得:5x =,∴5GF =,13AF =,∵HH ∥HH 且点H 为AG 中点,∴HP 为AGF 中位线,∴HH =12HH =52,HH =HH =12HH =132, 在HH ∆HHH 中, HH =√HH 2+HH 2=√61,H ∆HHH =12·HH ·HH =12·HH ·HH ,即12×6×52=12×132×HH , ∴HH =3013, ∴H ∆HHH =12·HH ·HH =12·HH ·HH ,即12×132×3013=12×√61×HH , 解得:HH =15√6161, 故答案为:15√6161. 【点睛】题目主要考查矩形及图形折叠的性质,全等三角形的性质及平行线的判定,中位线的判定和性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.4、9【解析】【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.【详解】解:由题意得,n-2=7,解得:n=9,即这个多边形是九边形.故答案为:9.【点睛】本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.5、【解析】【分析】取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,利用全等三角形的性质证明∠F'GA=60°,点F'的轨迹为射线GF',易得A、E关于GF'对称,推出AF'=EF',得到BF'+AF'=BF'+EF'≥BE,求出BE即可解决周长最小问题.【详解】解:取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,∵四边形ABCD为菱形,∴AB=AD,∵∠BAD =120°,∴∠CAD =60°,∴△ACD 为等边三角形,又∵DE =DG ,∴△DEG 也为等边三角形.∴DE =GE ,∵∠DEG =60°=∠FEF ',∴∠DEG ﹣∠FEG =∠FEF '﹣∠FEG ,即∠DEF =∠GEF ',由线段EF 绕着点E 顺时针旋转60°得到线段EF ', 所以EF =EF '.在△DEF 和△GEF '中,DE GE DEF GEF EF EF '=⎧⎪∠=∠⎨='⎪⎩, ∴△DEF ≌△GEF '(SAS ).∴∠EGF '=∠EDF =60°,∴∠F 'GA =180°﹣60°﹣60°=60°, 则点F '的运动轨迹为射线GF '.观察图形,可得A ,E 关于GF '对称,∴AF '=EF ',∴BF '+AF '=BF '+EF '≥BE ,在Rt△BCH 中,∵∠H =90°,BC =4,∠BCH =60°,∴12,2CH BC BH ===,在Rt△BEH 中,BE∴BF '+EF∴△ABF '的周长的最小值为AB +BF '+EF '=故答案为:【点睛】本题考查了旋转变换,菱形的性质,解直角三角形,全等三角形的判定与性质,勾股定理,等边三角形等知识,解题关键在于学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.三、解答题1、 (1)12ab (2)212a (3)1()2a b x + (4)1()2a xb -2、 (1)-3,3,1,3,-3,-1(2)①-2;②15b ≤≤(3)m 1≥或3m ≤-【解析】【分析】(1)分别以AC 、BC 、AB 为对角线,利用平行四边形以及平移的性质可得点1D ,2D ,3D 的坐标;(2)①根据平行公理得1D ,A 、3D 在同一直线上,2D 、B 、3D 在同一直线上,可得AB 是等腰三角形△123D D D 的中位线,求出22D C AB ==,即可得m 的值;②由①求得的m 的值可得1D ,3D 的坐标,分别求出直线12y x b =+过点1D ,3D 时b 的值即可求解; (3)由题意用m 表示出点1D ,2D ,3D 的坐标,画出图形,求出直线y x =与△123D D D 交于点2D ,3D 时m 的值即可求解.(1)解:(3,1)A -,(1,1)B -,1(3)2AB ∴=---=,//AB x 轴.以AC 为对角线时,四边形ABCD 是平行四边形,//CD AB ∴,CD AB =,∴将(1,3)C -向左平移2个单位长度可得D ,即1(3,3)D -;以BC 为对角线时,四边形ABDC 是平行四边形,//CD AB ∴,CD AB =,∴将(1,3)C -向右平移2个单位长度可得D ,即2(1,3)D ;以AB 为对角线时,四边形ACBD 是平行四边形,∴对角线AB 的中点与CD 的中点重合, AB 的中点为(2,1)-,(1,3)C -,3(3,1)D ∴--.故答案为:()3,3-,(1,3),(3,1)--;(2)解:①如图,若△123D D D 是以12D D 为底的等腰三角形,四边形1ABCD ,2ABD C ,3ACBD 是平行四边形,13////BC AD AD ∴,23////AC BD BD ,12AB CD D C ==,1D ∴、A 、3D 在同一直线上,2D 、B 、3D 在同一直线上,1212AB D D =,AB ∴是等腰三角形△123D D D 的中位线,12//AB D D ∴,312CD D D ⊥, (3,1)A -,(1,1)B -,(,3)C m ,22D C AB ∴==,2m ∴=-;②由①得2m =,1(4,3)D ∴-,3(2,1)D --. 当直线12y x b =+过点1D 时,13(4)2b =⨯-+,解得:5b =,当直线12y x b =+过点3D 时,11(2)2b -=⨯-+,解得:0b =,b ∴的取值范围为05b ; (3)解:如图,(3,1)A -,(1,1)B -,(,3)C m ,1(2,3)D m ∴-,2(2,3)D m +.连接AB 、3CD 交于点E ,四边形3ACBD 是平行四边形,∴点C 、3D 关于点E 对称,3(4,1)D m ∴---,直线y x =与△123D D D 有公共点,当直线y x =与△123D D D 交于点2D ,23m +=,解得:1m =,1m ∴时,直线y x =与△123D D D 有公共点;当直线y x =与△123D D D 交于点3D ,41m --=-,解得:3m =-,3m ∴-时,直线y x =与△123D D D 有公共点;综上,m 的取值范围为1m 或3m -.【点睛】本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.3、 (1)(10,8)(2)D (0,5),E (4,8)【解析】【分析】(1)根据10OA =,8OC =,可得B 点的坐标;(2)根据折叠的性质,可得AE =AO ,OD =ED ,根据勾股定理,可得EB 的长,根据线段的和差,可得CE 的长,可得E 点坐标;再根据勾股定理,可得OD 的长,可得D 点坐标;(1)解:∵10OA =,8OC =,∴B 点的坐标(10,8),故答案为:(10,8);(2)解:依题意可知,折痕AD 是四边形OAED 的对称轴,在Rt △ABE 中,AE =AO =10,AB =OC =8,由勾股定理,得BE ,CE =BC -BE =10-6=4,E (4,8).在Rt △DCE 中,由勾股定理,得DC 2+CE 2=DE 2,又∵DE =OD ,CD =8-OD ,(8-OD )2+42=OD 2,解得OD =5,D (0,5).所以D(0,5),E(4,8);【点睛】本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.4、10cm【解析】【分析】根据矩形性质得出∠ABC=90°,AC=BD,OA=OC=12AC,OB=OD=12BD,推出OA=OB,求出等边三角形AOB,求出OA=OB=AB=5,即可得出答案.【详解】解:∵∠BOC=120°,∴∠AOB=180°﹣120°=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,OA=OC=12AC,OB=OD=12BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=5cm,∴OA=OB=AB=5cm,∴AC=2AO=10cm,BD=AC=10cm.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.5、 (1)理由见解析(2)32180αβ-=︒,理由见解析(3)60B ∠=︒【解析】【分析】(1)ACD ACE ECD A B ∠=∠+∠=∠+∠,B ACE ∠=∠,A ECD ∠=∠可知ABC CDE △≌△,进而可说明AC CE =;(2)如图1所示,连接GC 并延长至点K ,AH EI 、分别平分BAC DEC ∠∠、,则设,CAH BAH a CEI DEI b ∠=∠=∠=∠=,ACK ∠为ACG 的外角,ACK a AGC ∠=+∠,同理ECK b EGC ∠=+∠,ACE ACK ECK B α=∠+∠=∠=,得a b αβ+=-;又由(1)中证明可知2ECD BAC a ∠=∠=,180ECD DEC D ∠+∠+∠=︒,进而可得到结果;(3)如图2所示,过点C 作//MN AH ,则////MN AH EI ,,CAH ACM a CEI ECM b ∠=∠=∠=∠=ACE ACM ECM a b α∠=∠+∠=+=,可得a b α=+,由(1)中证明可得2,ECD BAC a D B α∠=∠=∠=∠=,在CED 中, 180ECD CED D ∠+∠+∠=︒,即22180a b α++=︒,进而可得到结果.(1)证明:ACD ACE ECD A B ∠=∠+∠=∠+∠又B ACE ∠=∠A ECD ∴∠=∠在ABC 和CDE △中B D AB CD A ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC CDE ASA ∴△≌△AC CE ∴=.(2)解:32180αβ-=︒.理由如下:如图1所示,连接GC 并延长至点KAH EI 、分别平分BAC DEC ∠∠、则设,CAH BAH a CEI DEI b ∠=∠=∠=∠=ACK ∠为ACG 的外角ACK a AGC ∴∠=+∠同理可得ECK b EGC ∠=+∠ACE ACK ECK B α∴∠=∠+∠=∠=()()a AGC b EGC a b AGE a b β=+∠++∠=++∠=++即a b αβ=++a b αβ∴+=-.又由(1)中证明可知2ECD BAC a ∠=∠=由三角形内角和公式可得180ECD DEC D ∠+∠+∠=︒即22180a b α++=︒2()180a b α∴++=︒32180αβ∴-=︒.(3)解:当//AH EI 时,如图2所示,过点C 作//MN AH ,则////MN AH EI,CAH ACM a CEI ECM b ∴∠=∠=∠=∠=ACE ACM ECM a b α∴∠=∠+∠=+=,即a b α=+由(1)中证明可得2,ECD BAC a D B α∠=∠=∠=∠=在CED 中,根据三角形内角和定理有180ECD CED D ∠+∠+∠=︒即22180a b α++=︒即2()180a b α+=-︒即3180α=︒,解得:60α=︒故60B ∠=︒.【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接GC 并延长,利用三角形外角性质证得a b αβ+=-是解题的关键.。
京改版八年级数学下册第十五章四边形专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在正方形有ABCD 中,E 是AB 上的动点,(不与A 、B 重合),连结DE ,点A 关于DE 的对称点为F ,连结EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH ,那么BHAE 的值为( )A .1BCD .22、在平面直角坐标系中,点()4,1A -关于原点对称的点的坐标是( )A .()41-,B .()4,1C .()4,1-D .()4,1--3、下列图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.4、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA C的坐标为()A.1)B.(1,1)C.(1D.,1)5、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.不能确定6、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A .AB =BE B .DE ⊥DC C .∠ADB =90°D .CE ⊥DE7、如图,在六边形ABCDEF 中,若1290∠+∠=︒,则3456∠+∠+∠+∠=( )A .180°B .240°C .270°D .360°8、如图,四边形ABCD 中,∠A =60°,AD =2,AB =3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为( )A B C D 9、平面直角坐标系内与点P ()2,3-关于原点对称的点的坐标是( )A .()3,2-B .()2,3C .()2,3-D .()2,3--10、如图,菱形ABCD 中,60C ∠=°,2AB =.以A 为圆心,AB 长为半径画BD ,点P 为菱形内一点,连PA ,PB ,PD .若PA PB =,且120APB ∠=︒,则图中阴影部分的面积为( )A .23y π= B .23y π= C .23y π= D .23y π=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四边形ABCD 和四边形OMNP 都是边长为4的正方形,点O 是正方形ABCD 对角线的交点,正方形OMNP 绕点O 旋转过程中分别交AB ,BC 于点E ,F ,则四边形OEBF 的面积为______.2、如图,在矩形ABCD 中,=8AB ,=5AD ,点E 是线段CD 上的一点(不与点D ,C 重合),将△BCE 沿BE 折叠,使得点C 落在'C 处,当△'C CD 为等腰三角形时,CE 的长为___________.3、一个正多边形的每个外角都等于45°,那么这个正多边形的内角和为______度.4、如图,△ABC 中,D 、E 分别是AB 、AC 的中点,若DE =4cm ,则BC =_____cm .5、如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB上,将△ABC沿DE对折,恰好能使点A和点C重合.若x轴上有一点P,使△AEP为等腰三角形,则点P的坐标为________.三、解答题(5小题,每小题10分,共计50分)1、(教材重现)如图是数学教材第135页的部分截图.在多边形中,三角形是最基本的图形.如图4.4.5所示,每一个多边形都可以分割成若干个三角形.数一数每个多边形中三角形的个数,你能发现什么规律?在多边形中,连接不相邻的两个顶点,所得到的线段称为多边形的对角线.(问题思考)结合如图思考,从多边形的一个顶点出发,可以得到的对角线的数量,并填写表:(问题探究)n边形有n个顶点,每个顶点分别连接对角线后,每条对角线重复连接了一次,由此可推导出,n边形共有对角线(用含有n的代数式表示).(问题拓展)(1)已知平面上4个点,任意三点不在同一直线上,一共可以连接条线段.(2)已知平面上共有15个点,任意三点不在同一直线上,一共可以连接条线段.(3)已知平面上共有x个点,任意三点不在同一直线上,一共可以连接条线段(用含有x 的代数式表示,不必化简).2、如图,将矩形1111DCBA沿EF折叠,使1B点落在11A D边上的B点处;再将矩形1111DCBA沿BG折叠,使1D点落在D点处且BD过F点.(1)求证:四边形BEFG是平行四边形;(2)当1B FE∠是多少度时,四边形BEFG为菱形?试说明理由.3、如图1,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的另一条直线483y x=-+交x轴正半轴于点C.(1)写出C点坐标;(2)若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴正半轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求出点G的坐标.4、如图,在长方形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,将∠B沿直线AE折叠,使点B落在点B'处.(1)如图1,当点E与点C重合时,CB'与AD交于点F,求证:FA=FC;(2)如图2,当点E不与点C重合,且点B'在对角线AC上时,求CE的长.5、在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E 按逆时针排列),点E的位置随点P的位置变化而变化.(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是,BC与CE的位置关系是;(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=BE=APE的面积.-参考答案-一、单选题1、B【分析】作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【详解】解:如图,在线段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵DF DC DG DG=⎧⎨=⎩,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED +∠BEH =∠AED +∠1=90°,DE =EH ,∴∠1=∠BEH ,在△DME 和△EBH 中,∵1DM BE BEHDE EH =⎧⎪∠=∠⎨⎪=⎩,∴△DME ≌△EBH (SAS ),∴EM =BH ,Rt △AEM 中,∠A =90°,AM =AE ,∴EM ,∴BH ,即BHAE.故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.2、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点()4,1A -关于原点对称的点的坐标是:4,1,故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.3、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.4、B【分析】作CD⊥x轴,根据菱形的性质得到OC=OA Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.【详解】:作CD⊥x轴于点D,则∠CDO=90°,∵四边形OABC是菱形,OA∴OC=OA又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B.【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.5、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得∠=∠+∠∠=∠+∠,再根据四边形的内角和等于360°,即可求解.BMD B F CNE A E,【详解】解:设BE与DF交于点M,BE与AC交于点N,∵,BMD B F CNE A E ∠=∠+∠∠=∠+∠ ,∴A B C D E F BMD CNE C D ∠+∠+∠+∠+∠+∠=∠+∠+∠+∠ ,∵360BMD CNE C D ∠+∠+∠+∠=︒,∴360A B C D E F ∠+∠+∠+∠+∠+∠=︒ .故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.6、B【分析】先证明四边形BCED 为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,且AD =BC ,又∵AD =DE ,∴DE ∥BC ,且DE =BC ,∴四边形BCED 为平行四边形,A 、∵AB =BE ,DE =AD ,∴BD ⊥AE ,∴□DBCE 为矩形,故本选项不符合题意;B 、∵DE ⊥DC ,∴∠EDB =90°+∠CDB >90°,∴四边形DBCE 不能为矩形,故本选项符合题意;C 、∵∠ADB =90°,∴∠EDB =90°,∴□DBCE 为矩形,故本选项不符合题意;D 、∵CE ⊥DE ,∴∠CED =90°,∴□DBCE 为矩形,故本选项不符合题意.故选:B .【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED 为平行四边形是解题的关键.7、C【分析】根据多边形外角和360︒求解即可.【详解】解:123456360∠+∠+∠+∠+∠+∠=︒ ,1290∠+∠=︒()345636012270∴∠+∠+∠+∠=︒-∠+∠=︒,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和360︒是解题的关键.【分析】DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,根据三角形的中位线定理得出EF=12此时根据勾股定理求得DN,从而求得EF的最大值.连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:∵ED=EM,MF=FN,DN,∴EF=12∴DN最大时,EF最大,∴N与B重合时DN=DB最大,在R t△ADH中,∵∠A=60°ADH∴∠=︒30=1,DH=∴AH=2×12∴BH=AB﹣AH=3﹣1=2,∴DBDB,∴EF max=12∴EF【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF =12DN 是解题的关键.9、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:由题意,得点P (-2,3)关于原点对称的点的坐标是(2,-3),故选:C .【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.10、C【分析】过点P 作PM AB ⊥交于点M ,由菱形ABCD 得60DAB C ∠=∠=︒,2AB AD ==,由PA PB =,120APB ∠=︒得112AM AB ==,1602APM APB ∠=∠=︒,故可得30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,根据SAS 证明ABP ADP ≅,求出PM =ABP ADP ABD S S S S =--阴扇形.【详解】如图,过点P 作PM AB ⊥交于点M ,∵四边形ABCD 是菱形,∴60DAB C ∠=∠=︒,2AB AD ==,∵PA PB =,120APB ∠=︒, ∴112AM AB ==,1602APM APB ∠=∠=︒, ∴30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,在ABP △与ADP △中,AB AD PAB PAD AP AP =⎧⎪∠=∠⎨⎪=⎩, ∴()ABP ADP SAS ≅,∴ABP ADP S S =△△,在Rt AMP △中,30PAM ∠=︒,∴2AP PM =,222AP PM AM =+,即2241PM PM =+,解得:PM =∴260211222360223ABP ADPABD S S S S ππ⋅=--=-⨯⨯=阴扇形故选:C .【点睛】此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.二、填空题1、4【分析】过点O 作OG ⊥AB ,垂足为G ,过点O 作OH ⊥BC ,垂足为H ,把四边形OEBF 的面积转化为正方形OGBH的面积,等于正方形ABCD 面积的14. 【详解】如图,过点O 作OG ⊥AB ,垂足为G ,过点O 作OH ⊥BC ,垂足为H ,∵四边形ABCD 的对角线交点为O ,∴OA =OC ,∠ABC =90°,AB =BC ,∴OG ∥BC ,OH ∥AB ,∴四边形OGBH 是矩形,OG =OH =1122AB CB =,∠GOH =90°, ∴22211==()(4)22OGBH S OG AB =⨯四边形=4,∵∠FOH +∠FOG =90°,∠EOG +∠FOG =90°,∴∠FOH =∠EOG ,∵∠OGE =∠OHF =90°,OG =OH ,∴△OGE ≌△OHF ,∴=OGE OHF S S △△,∴=OGBH OEBF S S 四边形四边形,∴OEBF S 四边形=4,故答案为:4.【点睛】本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键.2、52或203【分析】根据题意分C D C C ''=,CC CD '=,DC DC '=三种情况讨论,构造直角三角形,利用勾股定理解决问题.【详解】解:∵四边形ABCD 是矩形∴90C ∠=︒,8,5CD AB BC AD ====∵将△BCE 沿BE 折叠,使得点C 落在'C 处,∴BCE BC E '≌,90C E CE BC E BCE ''∴=∠=∠=︒,BC BC '=,设CE x =,则8DE CD x x =-=-①当C D C C ''=时,如图过点C '作,C F CD C G BC ''⊥⊥,则四边形C GCF '为矩形 C D C C ''=142C G DF FC CD '∴====,4EF x =- 在Rt BC G '中3BG =532C F CG '∴==-=在Rt C FE '中222C E C F EF ''=+即()22224x x =+- 解得52x = 52CE ∴= ②当CC CD '=时,如图,设,CC BE '交于点O ,设OE y =,BC BC EC EC ''==BE ∴垂直平分CC '11422OC OC CC CD ''∴====3OB在Rt OCE 中222OE OC CE +=即2224y x +=在Rt BCE 中,222BE BC CE =+即()2223+5y x =+联立()22222243+5y x y x ⎧+=⎪⎨=+⎪⎩,解得203163x y ⎧=⎪⎪⎨⎪=⎪⎩ 203EC ∴= ③当DC DC '=时,如图,又BC BC '=DB ∴垂直平分CC ',BC BC EC EC ''==BE ∴垂直平分CC '此时,D E 重合,不符合题意 综上所述,203=EC 或52 故答案为:52或203【点睛】 本题考查了矩形的性质,勾股定理,等腰三角形的性质与判定,垂直平分线的性质,分类讨论是解题的关键.3、1080【分析】利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】解:∵正多边形的每一个外角都等于45︒,∴正多边形的边数为360°÷45°=8,所有这个正多边形的内角和为(8-2)×180°=1080°.故答案为:1080.【点睛】本题考查了多边形内角与外角等知识,熟知多边形内角和定理(n﹣2)•180 °(n≥3)和多边形的外角和等于360°是解题关键.4、8【分析】运用三角形的中位线的知识解答即可.【详解】解:∵△ABC中,D、E分别是AB、AC的中点∴DE是△ABC的中位线,∴BC=2DE=8cm.故答案是8.【点睛】本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键.5、(8,0)或(-2,0)-2,0)或(8,0)【分析】由矩形的性质可得BC=OA =3,AB=OC=9,∠B=90°=∠OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解.【详解】解:∵四边形OABC矩形,且点A(3,0),点C(0,9),∴BC=OA =3,AB=OC=9,∠B=90°=∠OAE,∵将△ABC沿DE对折,恰好能使点A与点C重合.∴AE =CE ,∵CE 2=BC 2+BE 2,∴CE 2=9+(9-CE )2,∴CE =5,∴AE =5,∵△AEP 为等腰三角形,且∠EAP =90°,∴AE =AP =5,∴点E 坐标(8,0)或(-2,0)故答案为:(8,0)或(-2,0)【点睛】本题考查了翻折变换,等腰三角形的性质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE 的长是本题的关键.三、解答题1、规律为:多边形的边数减去2,就是多边形中的三角形的个数; 2条,3条,9条,3n -条;(3)2n n -条;(1)6;(2)105;(3)()12x x - 【分析】通过观察多边形边数与其分割的三角形个数,即可发现规律利用规律,多边形的边数3-=一个顶点出发的对角线数,直接填写表格即可先求出所有顶点得到的对角线之和,最后除以2即可得到n 边形的对角线条数(1)根据题意,四边形一个顶点可以得到一条,四个点共4条,再去除一半,加上四个点单独连接的4条线段,即可得到答案.(2)根据规律可以发现:十五边形的每个点可以得到12条,15点有180条,去掉一半,加上15个点组成的十五边形的的15条边,即可得到答案.(3)通过上述两小题,即可以找到对应的规律,利用规律进行求解即可.【详解】由图可以直接发现:多边形的边数与其分割的三角形个数相差2,故规律为:多边形的边数减去2,就是多边形中的三角形的个数.利用上图规律,便可以知道从五边形的一个顶点出发,得到2条对角线;六边形的一个顶点出发,得到3条对角线;十二边形的一个顶点出发,得到9条对角线;n边形的一个顶点出发,得到3n-条对角线.n边形的一个顶点可以得到3n-条对角线,故n个顶点共有(3)n n-,由于每条对角线重复连接了一次,故n边形共有(3)2n n-条对角线(1)解:有四个点可以组成四边形,每个点可以得到1条对角线,四个点共4条,每条对角线重复连接了一次,∴对角线条数为2,四边形的边数为4,∴一共可以连接2+4=6条线段.(2)解:有15个点可以组成十五边形,每个点可以得到12条对角线,四个点共180条,每条对角线重复连接了一次,∴对角线条数为90,四边形的边数为15,∴一共可以连接90+15=105条线段.(3)解:由前面题的规律可知:有x个点可以组成x边形,每个点可以得到3x-条对角线,四个点共(3)x x-条,每条对角线重复连接了一次,∴对角线条数为(3)2x x-,四边形的边数为x ,∴一共可以连接()()3122x x x x x --+=条线段.【点睛】本题主要是考察了图形类的规律问题以及列代数式,根据题意,找到对角线与多边形的边数关系是解决本题的关键,另外,注意本题是问的点与点之间可连接的线段数,不要只算对角线的条数.2、(1)见解析;(2)当∠B 1FE =60°时,四边形EFGB 为菱形,理由见解析【分析】(1)由题意,1B FE FEB ∠=∠,结合1B FE BFE ∠=∠,得BE BF =,同理可得FG BF =,即BE FG =,结合BE FG ∥,依据平行四边形的判定定理即可证明四边形BEFG 是平行四边形;(2)根据菱形的性质可得BE EF =,结合(1)中结论得出BEF 为等边三角形,依据等边三角形的性质及(1)中结论即可求出角的大小.【详解】证明:(1)∵1111A D B C ∥,∴1B FE FEB ∠=∠.又∵1B FE BFE ∠=∠,∴FEB BFE ∠=∠.∴BE BF =.同理可得:FG BF =.∴BE FG =,又∵BE FG ∥,∴四边形BEFG 是平行四边形;(2)当160B FE ∠=︒时,四边形EFGB 为菱形.理由如下:∵四边形BEFG 是菱形,∴BE EF =,由(1)得:BE BF =,∴BE EF BF ==,∴BEF 为等边三角形,∴60BFE BEF ∠=∠=︒,∴160B FE ∠=︒.【点睛】题目主要考查平行四边形和菱形的判定定理和性质,矩形的折叠问题,等边三角形的性质,熟练掌握特殊四边形的判定和性质是解题关键.3、(1)点C (6,0);(2)点1224(,)55M ;(3)满足条件的点G 坐标为34(0,)7或(0,-2). 【分析】(1)直接利用直线483y x =-+,令y=0,解方程即可; (2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组2483y x y x =⎧⎪⎨=-+⎪⎩,解方程组求得交点M 的坐标; (3)分两种情形:①当n >4时,如图2-1中,点Q 落在BC 上时,点Q 落在BC 上时,过G 作MN 平行于x 轴,过点F ,Q 作该直线的垂线,分别交于M ,N .求出Q (n-4,n-2).②当n <4时,如图2-2中,同法可得Q (4-n ,n +2),代入直线BC 的解析式解方程即可解决问题.【详解】解:(1)∵直线483y x =-+交x 轴正半轴于点C . ∴当y =0时,48=03x -+, 解得x =6∴点C (6,0)故答案为(6,0);(2)连接OM 并双向延长,∵S △AMB =S △AOB ,∴点O 到AB 与点M 到AB 的距离相等,∴直线OM 平行于直线AB ,∵AB 解析式为y =2x +8,故设直线OM 解析式为:2y x =,将直线OM 的解析式与直线BC 的解析式联立得方程组得:2483y x y x =⎧⎪⎨=-+⎪⎩,解得:125245x y ⎧=⎪⎪⎨⎪=⎪⎩故点1224(,)55M ; (3)∵直线y =2x +8与x 轴交于点A ,与y 轴交于点B ,∴令y=0,2x +8=0,解得x =-4,∴A (-4,0),令x =0,则y =8∴B (0,8),∵点F 为AB 中点,点F 横坐标为()1-4+0=-22,纵坐标为()10+8=42∴F (-2,4),设G (0,n ),①当n >4时,如图2-1中,点Q 落在BC 上时,过G 作MN 平行于x 轴,过点F ,Q 作该直线的垂线,分别交于M ,N .∵四边形FGQP 是正方形,∴FG =QG ,∠FGQ =90°,∴∠MGF +∠NGQ =180°-∠FGQ=180°-90°=90°,∵FM ⊥MN ,QN ⊥MN ,∴∠M =∠N =90°,∴∠MFG +∠MGF =90°,∴∠MFG =∠NGQ ,在△FMG 和△GNQ 中,M N MFG NGQ FG GQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△FMG ≌△GNQ ,∴MG =NQ =2,FM =GN =n -4,∴Q (n -4,n -2),∵点Q 在直线483y x =-+上, ∴42(4)43n n -=--+, ∴34=7n , ∴34(0,)7G . ②当n <4时,如图2-2中,点Q 落在BC 上时,过G 作MN 平行于x 轴,过点F ,Q 作该直线的垂线,分别交于M ,N . ∵四边形FGQP 是正方形,∴FG =QG ,∠FGQ =90°,∴∠MGF +∠NGQ =180°-∠FGQ=180°-90°=90°,∵FM ⊥MN ,QN ⊥MN ,∴∠M =∠N =90°,∴∠MFG +∠MGF =90°,∴∠MFG =∠NGQ ,在△FMG 和△GNQ 中,M N MFG NGQ FG GQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△FMG ≌△GNQ ,∴MG =NQ =2,FM =GN = 4-n ,∴Q (4- n , n +2),∵点Q 在直线483y x =-+上, ∴42(4)83n n +=--+,∴n =-2,∴(0,-2)G .综上所述,满足条件的点G 坐标为34(0,)7或(0,-2). 【点睛】本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.4、(1)见解析;(2)CE=52.【分析】(1)根据平行线的性质及折叠性质证明∠FAC=∠FCA即可.(2)由题意可得90EB C'∠=,根据勾股定理求出AC=5,进而求出B'C=2,设CE= x.然后在Rt△CEB'中,根据勾股定理EC2=EB'2+B C'2列方程求解即可;【详解】解:(1)如图1,∵四边形ABCD是矩形,∴AD BC,∴∠FAC=∠ACB,∵∠ACB=∠ACF,∴∠FAC=∠FCA,∴FA=FC.(2)∵90EB C'∠=,如图2,设CE= x,∵四边形ABCD 是矩形,∴∠B =90°,∴AC 2=AB 2+BC 2= 32+42=25,∴AC =5,由折叠可知:90AB E B '∠=∠=,AB AB 3'==,4EB EB x '==-,∴B C '=5-3=2,在Rt △CEB '中,EC 2=EB '2+B C '2∴x 2=(4-x )2+22,∴x =52,∴CE =52.【点睛】本题属于矩形折叠问题,考查了矩形的性质,勾股定理,直角三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5、(1)BP =CE ,CE ⊥BC ;(2)仍然成立,见解析;(3)【分析】(1)连接AC ,根据菱形的性质和等边三角形的性质证明△BAP ≌△CAE 即可证得结论;(2)(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.【详解】解:(1)如图1,连接AC,延长CE交AD于点H,∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°;∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四边形ABCD是菱形,∴∠ABP=1∠ABC=30°,2∴∠ABP=∠ACE=30°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案为:BP=CE,CE⊥BC;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴CE⊥AD;∴(1)中的结论:BP=CE,CE⊥AD仍然成立;(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,∵四边形ABCD是菱形,∴AC⊥BD BD平分∠ABC,∵∠ABC=60°,AB=∴∠ABO=30°,AB OB=3,∴AO=12∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵BE=BC=AB=∴CE=8,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴AP∵△APE是等边三角形,∴S△AEP)2=如图4中,当点P在DB的延长线上时,同法可得AP∴S△AEP2=【点睛】此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题.。
八年级数学试题(考试时间:90分钟 满分:100分)一、填空:(每小题2分,共24分)1、对角线_____平行四边形是矩形。
2、如图⑴已知O 是□ABCD 的对角线交点,AC =24,BD =38,AD =14,那么△OBC 的周长等于_____。
3、在平行四边形ABCD 中,∠C =∠B+∠D,则∠A =___,∠D =___。
4、一个平行四边形的周长为70cm ,两边的差是10cm ,则平行四边形各边长为____cm 。
5、已知菱形的一条对角线长为12cm ,面积为30cm 2,则这个菱形的另一条对角线长为__________cm 。
6、菱形ABCD 中,∠A =60o ,对角线BD 长为7cm ,则此菱形周长_____cm 。
7,那么它的面积______。
8、如图2矩形ABCD 的两条对角线相交于O,∠AOB =60o ,AB =8,则矩形对角线的长___。
9、如图3,等腰梯形ABCD 中,AD ∥BC ,AB ∥DE ,BC =8,AB =6,AD =5则△CDE 周长___。
10、正方形的对称轴有___条11、如图4,BD 是□ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,还需增加的一个条件是______12、要从一张长为40cm ,宽为20cm 的矩形纸片中,剪出长为18cm ,宽为12cm 的矩形纸片,最多能剪出______张。
二、选择题:(每小题3分,共18分)13、在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A 、1:2:3:4B 、1:2:2:1C 、2:2:1:1D 、2:1:2:1 14、菱形和矩形一定都具有的性质是( ) A 、对角线相等 B 、对角线互相垂直 C 、对角线互相平分 D 、对角线互相平分且相等 15、下列命题中的假命题是( )A 、等腰梯形在同一底边上的两个底角相等B 、对角线相等的四边形是等腰梯形C 、等腰梯形是轴对称图形D 、等腰梯形的对角线相等16、四边形ABCD 的对角线AC 、BD 交于点O ,能判定它是正方形的是( ) A 、AO =OC ,OB =OD B 、AO =BO =CO =DO ,AC ⊥BD C 、AO =OC ,OB =OD ,AC ⊥BD D 、AO =OC =OB =OD 17、给出下列四个命题⑴一组对边平行的四边形是平行四边形 ⑵一条对角线平分一个内角的平行四边形是菱形⑶两条对角线互相垂直的矩形是正方形 ⑷顺次连接等腰梯形四边中点所得四边形是等腰梯形。
人教版八年级下册数学第十八章平行四边形含答案一、单选题(共15题,共计45分)1、平行四边形的对角线长为x、y,一边长为11,则x、y的值可能是()A.8和14B.10和8C.10和32D.12和142、如图,点E,点F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于H,若=2,则的值为()A. B. C. D.3、下列命题中错误的是A.两组对边分别相等的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一组邻边相等的平行四边形是菱形D.对角线相等且互相垂直的四边形是正方形4、如图,在矩形ABCD中,E为AD的中点,∠BED的角平分线交BC于F.若AB=6,BC=16,则FC的长度为()A.4B.5C.6D.85、如图,把一张长方形纸片沿对角线折叠,点的对应点为,与相交于点,则下列结论不一定成立的是()A. 是等腰三角形B.C. 平分D.折叠后的图形是轴对称图形6、如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥DCB.AC=BDC.AC⊥BDD.AB=DC7、如图,在中,点E是边上的中点,G为线段上一动点,连接,交于点F,若,则的值为()A.3B.2C.D.8、如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是( )A. B.1 C. D.29、如图,在中,,,,则的面积为()A.30B.60C.65D.10、下列定理中没有逆定理的是()A.等腰三角形的两底角相等B.平行四边形的对角线互相平分C.角平分线上的点到角两边的距离相等D.全等三角形的对应角相等11、菱形ABCD的一条对角线的长为6,边AB的长是方程的一个根,则菱形ABCD的周长为( )A.16B.12C.12或16D.无法确定12、如图,正方形ABCD的边长为,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB的延长线于点F,则EF的长为()A.2B.4C.2D.413、在四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.OA=OC,OB=ODB.AD∥BC,AB∥DCC.AB=DC,AD=BC D.AB∥DC,AD=BC14、如图,已知菱形 A,B,C,D 的顶点 A(0,﹣1),∠D A C =60°.若点 P从点 A出发,沿A→B→C→D→A…的方向,在菱形的边上以每秒 1 个单位长度的速度移动,则第 2020 秒时,点 P 的坐标为()A.(2,0)B.(,0)C.(﹣,0)D.(0,1 )15、如图,等腰梯形ABCD中,AD∥BC,AE∥DC,∠B=60°,BC=3,△ABE的周长为6,则等腰梯形的周长是()A.8B.10C.12D.16二、填空题(共10题,共计30分)16、如图,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,使∠EAF=90°,tan∠AEF=,则点F与点C的最小距离为________.17、以下四个命题:①如果三角形一边的中点到其他两边距离相等,那么这个三角形一定是等腰三角形:②两条对角线互相垂直且相等的四边形是正方形:③一组数据2,4,6.4的方差是2;④△OAB与△OCD是以O为位似中心的位似图形,且位似比为1:4,已知∠OCD=90°,OC=CD.点A、C在第一象限.若点D坐标为(2, 0),则点A坐标为(,),其中正确命题有________ (填正确命题的序号即可)18、如图,矩形中,、交于点,、分别为、的中点.若,则的长为________.19、如图,正方形ABCD中,△ABC绕点A逆时针旋转到AB′C′,AB′,AC′分别交对角线BD于点EF,若AE=8,则EF•ED的值为________.20、如图,在平行四边形ABCD中,AD=2AB.F是AD的中点,作CE⊥AB, 垂足E 在线段AB上,连接EF、CF,则下列结论:(1)∠DCF+ ∠D=90°;(2)∠AEF+∠ECF=90°;(3) =2 ; (4)若∠B=80 ,则∠AEF=50°.其中一定成立的是________ (把所有正确结论的字号都填在横线上).21、如图的平面直角坐标系中,A点的坐标是(4,3)。
八年级数学下册四边形综合测试题(一)(时间45分钟,共100分)姓名:___________ 班级:_____________ 得分:_______________一、选择题(每题5分,共30分)1、十二边形的内角和为( )A.1080°B.1360° C 、1620° D 、1800° 2、能判定四边形ABCD 为平行四边形的题设是( ). (A )AB ∥CD ,AD=BC; (B )∠A=∠B ,∠C=∠D; (B )(C )AB=CD ,AD=BC; (D )AB=AD ,CB=CD3、下列图案中既是轴对称图形又是中心对称图形的是( ).(A) (B) (C) (D)4、菱形ABCD 的对角线长分别为6cm 和8cm ,则菱形的面积为( ) A.12, B.24 C.36 D.48 5.下列说法不正确的是( )(A )对角线相等且互相平分的四边形是矩形;(B )对角线互相垂直平分的四边形是菱形; (C )对角线垂直的菱形是正方形;(D )底边上的两角相等的梯形是等腰梯形 6、如图1,在平行四边形A B C D 中,C E A B⊥,E 为垂足.如果125A =∠,则B C E =∠( )A.55B.35C.25D.30二、填空题(每题5分,共30分)7、顺次连结任意四边形各边中点所得到的四边形一定是__ ___.8、如图2,矩形AB C D 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和B C 于点E 、F ,23AB BC ==,,则图中阴影部分的面积为 .9、如图3,若□ABCD 与□EBCF 关于BC 所在直线对称,∠ABE =90°,则∠F = °10、如图4,把一张矩形纸片A B C D 沿EF折叠后,点C D ,分别落在C D'',的位置上,EC '交AD 于点G .则△EFG 形状为11、如图5,在梯形A B C D 中,A DBC ∥,419045==︒=∠︒=∠BC AD C B ,,,则AB=12.如图6,AC 是正方形ABCD 的对角线,AE 平分∠BAC ,EF ⊥AC 交AC 于点F ,若BE=2,则CF 长为三、解答题(每题10分,共40分)13、(10分)已知:如图7,E 、F 是平行四边行ABCD 的对角线AC 上的两点,AE=CF 。
求证:∠CDF =∠ABE14、(10分)如图8,把正方形AB C D 绕着点A ,按顺时针方向旋转得到正方形A E F G ,边FG 与B C 交于点H .求证:HC=HF.15、(10分)已知:如图9,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△AB 外角∠CAM的平分线,CE⊥AN,垂足为点E,猜想四边形ADCE的形状,并给予证明.16、(10分)如图10,在梯形纸片ABCD中,AD//BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连结C′E.求证:四边形CDC′E是菱形.“拓展创新”时间30分钟,共50分,一、选择及填空题(每题5分,共10分)1、如图11,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点E,交AB于点F,F为垂足,连接DE,则∠CDE=_________度2.如图12,四边形ABCD是矩形,F是AD上一点,E是CB延长线上一点,且四边形AECF是等腰梯形.下列结论中不一定...正确的是().(A)AE=FC(B)AD=BC(C)∠AEB=∠CFD(D)BE=AF二、填空题(每题5分,共10分)3、如图13,已知:平行四边形ABCD中,B C D∠的平分线C E交边AD于E,∠的平分线BG交C E于F,交A B CAD于G.若AB=4cm,AD=6cm,则EG=_______ cm .4、将矩形纸片ABCD按如图14所示的方式折叠,得到菱形AECF.若AB=9,则AC的长为_________三、解答题(每题15分,共30分)5、一次数学活动课上,老师留下了这样一道题“任画一个△ABC,以BC的中点O为对称中心,作△ABC的中心对称图形,问△ABC与它的中心对称图形拼成了一个什么形状的特殊四边形?并说明理由.”于是大家讨论开了,小亮说:“拼成的是平行四边形”;小华说:“拼成的是矩形”;小强说:“拼成的是菱形”;小红说:“拼成的是正方形”;其他同学也说出了自己的看法……你赞同他们中的谁的观点?为什么?若都不赞同,请说出你的观点(画出图形),并说明理由6、如图15-1 ,已知点P 是矩形ABCD 内一点,PA 、PB 、PC 、PD 把矩形分割成四个三角形,小东对该图形进行了研究。
为了探究的需要,小东过点P 作PE ⊥AD 交BC 于F,通过一番研究之后得出两条重要结论:(1)BPAPD CPD APB S S S S ∆∆∆∆+=+,(2)2222PDPB PC PA +=+; 1)请你写出小东探究的过程.2)当P 在矩形外时,如图15-2,上述两个结论是否仍成立?若成立,请说明理由;若不成立,请写出你猜想的结论(不必证明)《“四边形”综合测试题(一)》参考答案基础巩固一、选择题1、D2、C3、A4、B5、C.6、B 二、填空题7、平行四边形 8、3. 9、45° 10、等腰三角形 11、23 12.2 三、解答题13、证明:(1)∵ ABCD 是平行四边形,∴DC=AB ,DC ∥AB,∴∠DCF=∠BAE ,∵ AE=CF , ∴△ADF ≌△CBE ,∴∠CDF =∠ABE14、如图8,把正方形A B C D 绕着点A ,按顺时针方向旋转得到正方形A E F G ,边FG 与B C 交于点H .求证:HC=HF. 解:证明:连结AH ,∵四边形A B C D ,A E F G 都是正方形.∴90B G ∠=∠=°,A G A B =,BC=GF ,又A H A H =.R t R t ()A G H A B H H L∴△≌△,H GH B =∴,∴HC=HF. 15、解:猜想四边形ADCE 是矩形。
证明:在△A BC 中, AB =AC ,AD ⊥BC . ∴ ∠BAD =∠DA C .∵ AN是△ABC外角∠CAM的平分线,∴M A E C A E∠=∠.∴ ∠DAE =∠DAC +∠CAE =⨯21180°=90°.又 ∵ AD ⊥BC ,CE ⊥AN ,∴ A D C C E A ∠=∠=90°,∴ 四边形ADCE 为矩形.16、证明:根据题意可知 DE C CDE 'ΔΔ≅ 则 '''C D C D C D E C D E C E C E =∠=∠=,,∵AD//BC ∴∠C ′DE=∠CED ,∴∠CDE=∠CED ∴CD=CE ∴CD=C ′D=C ′E=CE ∴四边形CDC ′E 为菱形“拓展创新”,二、选择题 1、60° 2、D 三、填空题3、2cm4、36 三、解答题5、解:不赞同他们的观点,因为△ABC 形状不确定,所以应分情况讨论.(1)若△ABC 中,AC AB ≠且︒≠∠90BAC 时,如图1、图2. △ABC 与它的中心对称图形拼成了一个平行四边形.理由:∵B 与C 、A 与D 关于O 对称,∴OA=OD ,OB=OC ,∴四边形ABDC 是平行四边形.(2)若△ABC 中,AC AB =且︒≠∠90BAC 时,如图3、图4. △ABC 与它的中心对称图形拼成一个菱形.理由:∵B 与C 、A 与D 关于O 对称,∴OA=OD ,OB=OC ,∵AC AB=∴四边形ABDC 是菱形.(3)若△ABC 中,AC AB ≠且︒=∠90BAC 时,如图5,△ABC 与它的中心对称图形拼成一个矩形.理由:∵B 与C 、A 与D 关于O 对称,∴OA=OD ,OB=OC ,∵AC AB ≠︒=∠90BAC ,∴四边形ABDC 是矩形.(4)若△ABC 中,AC AB =且︒=∠90BAC 时,如图6,△ABC 与它的中心对称图形拼成一个正方形.理由:∵B 与C 、A 与D 关于O 对称,∴OA=OD ,OB=OC ,∵AC AB =,︒=∠90BAC ,∴四边形ABDC 是正方形..6、1)证明:(1)∵矩形ABCD 中,PE ⊥AD ,∴四边形ABFE 和四边形CDEF 都是矩形,CDEF CPD ABFE APB S S S S 矩形矩形,2121==∆∆,∴ABCD CPD APB S S S 矩形21=+∆∆,∴BP APD CPD APB S S S S ∆∆∆∆+=+。
(2)∵矩形ABCD中,PE ⊥AD ,∴由勾股定理,得222222222222,DPE PD PF BF PB FC PF PC PE AE PA +=+=+=+=,,; ∴+++=++++=+22222222222PE PF BF PD PB FC PF PE AE PC PA ;2DE .四边形ABFE 和四边形CDEF 都是矩形,∴C DE BF AE==,,∴2222PDPB PC PA +=+ 2). 当P 在矩形外时,结论(1)不成立;应为结论PA BPC CPD APB S S S S ∆∆∆∆-=+ 结论(2)仍然成立. 理由:同1)中证明(2).2013中考数学压轴题安徽22.如图1,在△ABC 中,D 、E 、F 分别为三边的中点,G 点在边AB 上,△BDG与四边形ACDG 的周长相等,设BC =a 、AC =b 、AB =c . (1)求线段BG 的长;(2)求证:DG 平分∠EDF ;(3)连接CG ,如图2,若△BDG 与△DFG 相似,求证:BG ⊥CG .解(1)∵D 、C 、F 分别是△ABC 三边中点 ∴AB,AC , 又∵△BDG与四边形ACDG周长相等即BD +DG +BG =AC +CD +DG +AG∴BG =AC +AG ∵BG =AB -AG ∴BG =2AC AB +=2c b + (2)证明:BG =2c b +,FG =BG -BF =2c b +-22bc = ∴FG =DF ,∴∠FDG =∠FGD 又∵DE ∥AB∴∠EDG =∠FGD ∠FDG =∠EDG ∴DG 平分∠EDF (3)在△DFG 中,∠FDG =∠FGD , △DFG 是等腰三角形,∵△BDG 与△DFG 相似,∴△BDG 是等腰三角形,∴∠B =∠BGD ,∴BD =DG , 则CD = BD =DG ,∴B 、CG 、三点共圆, ∴∠BGC =90°,∴BG ⊥CG23.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x -6)2+h .已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m 。