6-含CO_2_离子液体系统相行为及其在反应与分离中的应用进展
- 格式:pdf
- 大小:448.54 KB
- 文档页数:9
第19卷第11期 武汉科技学院学报Vol.19 No.11 2006年11月 JOURNAL OF WUHAN UNIVERSITY OF SCIENCE AND ENGINEERING Nov. 2006离子液体及其在偶联反应中的应用侯建国(南昌理工学院生物环境工程系,江西南昌 330013)摘要:离子液体易于循环利用从而减少对环境的污染,已从许多实验得到证实。
而离子液体中的偶联反应是合成C-C键最有效方法之一,近几年来一直是催化化学和有机合成的研究热点。
本文简要介绍离子液体的分类、物理化学特性、合成,及离子液体在偶联反应中的应用。
关键词:离子液体;绿色溶剂;分类;合成;物理化学特性;偶联反应;应用中图分类号:O6 文献标识码:A 文章编号:1009-5160(2006)-0038-04挥发性的有机溶剂可影响全球气候变化、城市空气质量变坏、人类疾病等等。
Montreal协议的签署导致迫切需要对化学过程进行重新评价。
典型例子是荷兰的DuPont Hypalon工厂最近由于使用氟代烃溶剂而被关闭。
目前有4种方案可选择:(1)无溶剂合成;(2)用水作溶剂;(3)用超临界流体作溶剂;(4)用离子液体作溶剂。
其中离子液体是近年来绿色化学的研究热点之一,因为离子液体在工业有机化学品的清洁合成方面显示出潜在的应用前景。
1 离子液体的种类及特性1.1 离子液体的种类1914年发现了最早的离子液体 [ EtNH3][NO3](熔点12)℃。
20世纪40年代英国科学家无意中将氯化烷基吡啶和无水三氯化铝混合时制备一种高导电性的不挥发室温离子液体后,对离子液体的合成及其应用才开始进行广泛研究。
那时,化工学者研究最多的是二烷基咪唑或烷基吡啶的卤化物与 AlCl3或AlBr3的混合物,这些混合物表现出低共熔点,并表现出有意义的化学性质如超酯性,主要用于电化学和化学反应中。
它既作溶剂同时也可作催化剂,但其热稳定性差、在空中化学性质不稳定,使用较不方便。
离子液体在有机合成中的应用摘要:室温下的离子液体作为一种绿色、环保、可替代传统有机溶剂的新型溶剂受到了极大关注。
总结了近年来离子液体在有机合成反应中的研究新进展, 包括氧化反应、还原反应、Fr iedel Crafts 应、Diels Alder 反应、H eck 反应、硝化反应及其它合成反应。
关键词:绿色化学; 离子液体; 有机合成引言:离子液体离子液体由带正电的离子和带负电的离子构成,在- 100~ 200 之间均呈液体状态。
与典型的有机溶剂相比, 离子液体具有无味、无恶臭、无污染、不易燃、易与产物分离、使用方便、易回收、可多次循环使用等优点, 此外还具有优良的可设计性, 可以通过分子设计获得具有特殊功能的离子液体。
因此, 离子液体是传统挥发性溶剂的理想替代品, 能有效地避免使用传统有机溶剂所造成的环境、健康、安全以及设备腐蚀等问题, 是名副其实的、环境友好的绿色溶剂, 适合于清洁技术和可持续发展的要求, 已经被人们广泛认可和接受。
1 含有手性阳离子的手性离子液体1.1 咪唑盐类CIL利用手性试剂作为反应底物立体选择性地合成手性产物的不对称诱导反应已被很多研究者关注. 早在1975 年, Seebach 和Oei[1]首次将手性的氨基醚作为反应介质, 应用于酮的电化学还原反应中, 尽管产量很低,但是该方法促进了手性溶剂的进一步发展和研究.近些年来, 由于天然氨基酸易得、种类多等优点,它作为手性源并将手性中心引入到阳离子来合成CIL 已经引起了人们广泛的兴趣. 该方法可以克服手性试剂价格昂贵、难以合成等缺点, 而且合成出的离子液体种类比较多. 2003 年, Bao 等[2]首次报道了用天然手性氨基酸合成带有侧链的咪唑类手性离子液体(Scheme 1). 首先是利用氨基酸1 与醛反应生成咪唑环后酯化得到酯2,接着用四氢铝锂还原酯得到咪唑类的醇3, 3 与溴乙烷发生烷基化反应得到咪唑类手性离子液体4, 总产率为30%~33%. 这些手性离子液体的熔点为5~16 ℃, 它们可作为溶剂应用于不对称反应中.Luo 等[3]利用L-脯氨酸为原料合成了含四氢吡咯的咪唑类手性离子液体(Scheme 2). 首先用LiAlH4 还原L-脯氨酸5, 然后用叔丁氧羰基保护氮得到相应的脯氨醇6, 6 在甲苯磺酰氯作用下引入一个咪唑环得到7, 7 依次与溴丁烷进行烷基化反应、与NaX 进行阴离子交换得到含有叔丁氧羰基的咪唑盐离子液体8, 8 通过脱保护基得到四氢吡咯取代的咪唑类手性离子液体9. 其中阴离子Br-和BF4−咪唑类CIL 产率较高, 且具有很高的非对映异构选择性(syn∶anti=99∶1)和对映选择性(98%ee). 利用天然手性氨基化合物作为起始物合成咪唑类手性离子液体还见很多报道[4~9].2008 年, Siyutkin 研究小组[10]报道了合成(S)-脯氨酸修饰的含四氢吡咯的咪唑类手性离子液体(Scheme 3).合成分为四步: 首先以(2S,4S)-N-Cbz-4-羟脯氨酸苯甲酯10 为原料, 与溴戊酸发生酯化反应生成相应的酯11; 然后11 与十二烷基咪唑反应生成12; 12 脱去保护基团得到13; 13 分别与四氟硼酸根和六氟硼酸根发生阴离子交换分别得到亲水和疏水性的手性离子液体14a 和14b.这两种具有不同水溶性的CIL 可作为催化剂, 应用于对硝基苯甲醛与环己酮的不对称羟醛缩合反应, 其中带有疏水性六氟硼酸根阴离子的手性离子液体14b的PF6−盐有着很高的转化率和选择性, 而且循环使用五次其催化活性和选择性不受影响.2008 年, Zhang 等[11]报道了合成一种手性中心位于四氢吡咯环上的咪唑类功能化CIL (Scheme 4). 该合成反应分为三步: 第一步, 氯代丙磺酰氯(15)与(S)-2-氨基-1-N-叔丁氧羰基吡咯烷(16)反应生成17; 第二步, 在CH3CN 溶液中17 与碘化钠先发生碘化反应后再与1-甲基咪唑发生烷基化反应得到手性离子液体18, 产率为86%; 第三步, 18 脱去保护基BOC 再与NTf2−发生阴离子交换得到目标手性离子液体19, 产率为66%. 用类似方法以(S)-2-氨基-1-N-叔丁氧羰基吡咯烷(16)与氯代丙磺酰氯(20)为原料可合成手性离子液体23, 产率为66%.19 和23 在室温下均为粘性液体, 19 可溶于一般溶剂中,但不溶于乙醚和己烷; 23 溶于极性溶剂中. 在不同溶剂中, 19 和23 可催化剂异丁醛与反-β-硝基苯乙烯的不对称Michael 加成反应, 产率高达99%, ee 高达85%, syn∶anti 高达97∶3. 这两种CIL 循环使用5 次对映选择性不发生改变.Scheme 42009 年, 该研究小组[12]又报道了合成离子液体固载的(S)-四氢吡咯磺胺咪唑类手性离子液体(Scheme 5).首先在三甲基胺和二氯甲烷里(S)-2-氨基-1-N-叔丁氧羰基(24)与N-甲基-2-咪唑磺酰氯(24)反应生成26, 在乙酸乙酯溶剂中26 与Me3OBF4 反应生成手性离子液体27,27 脱保护基BOC 得到目标手性离子液体28, 产率为82%. 目标手性离子液体28 可以催化环己酮与反-β-硝2 离子液体的合成离子液体种类繁多,改变阳离子和阴离子的不同组合,可以设计合成出不同的离子液体。
用于CO_(2)分离的含氨基酸盐促进传递膜研究进展
马玉磊;魏静;银登国;冯超;杜文韬;黄娅;代忠德
【期刊名称】《膜科学与技术》
【年(卷),期】2024(44)2
【摘要】膜分离法由于其高度模块化、占地面积小、化学排放低或无化学排放和易于操作等优势,被广泛认为是有前途的CO_(2)分离技术.然而,对于气体分离,大多数聚合物膜遵循溶解-扩散机制,因此需要在气体渗透性和选择性之间进行权衡,使CO_(2)分离膜在工业应用中受到限制.而促进传递膜被认为是克服这一限制的有效解决方案.本文综述了用于CO_(2)捕集的含氨基酸盐促进传递膜的研究进展,并针对目前存在的问题,对未来含氨基酸盐的促进传递膜的发展方向提出了建议.
【总页数】12页(P165-176)
【作者】马玉磊;魏静;银登国;冯超;杜文韬;黄娅;代忠德
【作者单位】四川大学建筑与环境学院;国家烟气脱硫工程技术研究中心;四川省碳中和技术创新中心;四川大学碳中和未来技术学院;东方电气集团东方锅炉股份有限公司;成都信息工程大学资源与环境学院
【正文语种】中文
【中图分类】TQ028;TQ31
【相关文献】
1.基于促进传递机理的一氧化碳分离膜研究进展
2.氨基酸离子液体/Pebax膜的制备及CO_(2)分离测试
3.陶瓷碳酸盐双相膜分离CO_(2)的研究进展
4.沸石膜在分
离烟气中CO_(2)的挑战:沸石与载体间结合力研究进展5.UiO-66-NH_(2)/聚醚酰亚胺中空纤维膜的制备及其用于CO_(2)分离的研究
因版权原因,仅展示原文概要,查看原文内容请购买。
文献检索综述论文双水相萃取分离技术的研究进展及应用学院:化学与生物工程学院专业:化学工程与工艺学生:李鸣昊年级: 2012级学号:201207547 指导老师:杨西摘要双水相萃取技术是一种新兴的生物分离技术,近年来发展迅猛,因其与传统的液液萃取方法相比有其独特的优点,故双水相萃取技术的发展和应用受到了越来越多的研究专家的重视。
本文综述了双水相萃取技术的基本原理、特点及应用,并对双水相萃取技术现阶段存在的问题和未来发展趋势做出简单论述。
关键词双水相体系萃取技术分离技术1 前言近年来,随着分离技术在生命科学、天然药物提纯及各类抗生素药物生产等方面应用的需求和发展,一种新型的液液分离技术—双水相萃取技术应运而生。
双水相萃取技术又称水溶液两相分配技术,是利用组分在两水相间分配的差异而进行组分的分离提纯的技术。
由于双水相萃取分离过程具有条件温和、可调节因素多、易于放大、可连续操作且不存在有机溶剂残留等优点,已被广泛用于生物物质的分离和提纯。
在1956年,瑞典的Albertsson 首次运用了双水相萃取技术来提取生物物质,开始对ATPS(双水相系统)进行比较系统的研究,测定了许多ATPS的相图,考察了蛋白质、核酸、病毒、细胞及细胞颗粒在ATPS中的分配行为,为发展双水相萃取技术打下了坚实的基础。
目前,双水相萃取技术已被广泛地应用于医药化学、细胞生物学、生物化工和食品工业等领域,是一项拥有广阔应用前景的新型分离技术。
本文将就双水相萃取技术的原理、应用和发展情况作一简述。
2 双水相萃取原理双水相萃取与水—有机相萃取的原理相似,都是依据物质在两相间的选择性分配。
当萃取体系的性质不同时,物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。
溶质(包括蛋白质等大分子物质、稀有金属以及贵金属的络合物、中草药成分等)在双水相体系中服从Nernst[ 1]分配定律:K= C上/ C下(其中K为分配系数,C上和C下分别为被分离物质在上、下相的浓度)系统固定时,分配系数为一常数,与溶质的浓度无关。
双水相萃取分离技术的研究进展及应用1 前言近年来,随着分离技术在生命科学、天然药物提纯及各类抗生素药物生产等方面应用的需求和发展,一种新型的液液分离技术—双水相萃取技术应运而生。
双水相萃取技术又称水溶液两相分配技术,是利用组分在两水相间分配的差异而进行组分的分离提纯的技术。
由于双水相萃取分离过程具有条件温和、可调节因素多、易于放大、可连续操作且不存在有机溶剂残留等优点,已被广泛用于生物物质的分离和提纯。
在1956年,瑞典的Albertsson 首次运用了双水相萃取技术来提取生物物质,开始对ATPS(双水相系统)进行比较系统的研究,测定了许多ATPS的相图,考察了蛋白质、核酸、病毒、细胞及细胞颗粒在ATPS中的分配行为,为发展双水相萃取技术打下了坚实的基础。
目前,双水相萃取技术已被广泛地应用于医药化学、细胞生物学、生物化工和食品工业等领域,是一项拥有广阔应用前景的新型分离技术。
本文将就双水相萃取技术的原理、应用和发展情况作一简述。
2 双水相萃取原理双水相萃取与水—有机相萃取的原理相似,都是依据物质在两相间的选择性分配。
当萃取体系的性质不同时,物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。
溶质(包括蛋白质等大分子物质、稀有金属以及贵金属的络合物、中草药成分等)在双水相体系中服从Nernst[ 1]分配定律:K= C上/ C下(其中K为分配系数,C上和C下分别为被分离物质在上、下相的浓度)系统固定时,分配系数为一常数,与溶质的浓度无关。
当目标物质进入双水相体系后,在上相和下相间进行选择性分配,这种分配关系与常规的萃取分配关系相比,表现出更大或更小的分配系数。
如各种类型的细胞粒子、噬菌体的分配系数都大于100或者小于0101,因此为物质分离提供了可能。
水溶性两相的形成条件和定量关系常用相图来表示,以PEG/ Dextran体系的相图为例(图1[2 ] ),这两种聚合物都能与水无限混合,当它们的组成在图1曲线的上方时(用M点表示)体系就会分成两相,分别有不同的组成和密度,轻相(或称上相)组成用T点表示,重相(或称下相)组成用B表示。
新型绿色分离体系———离子液体双水相及其在生物分离中的应用巴晓革, 林锦兴, 邱召法(山东药品食品职业学院,山东威海264210)摘 要:近几年来,离子液体双水相作为一种新型绿色分离体系越来越受到关注。
离子液体双水相具有粘度低、分相快、不易乳化以及对生物物质萃取率高等优点。
介绍了离子液体双水相的机理以及它在生物分离中的一些应用。
关键词:双水相;离子液体;生物分离中图分类号:O 645 文献标识码:A 文章编号:036726358(2007)042240203Aqueous T w o 2phase System Based or I onic Liquids and TheirApplications in BioseparationBA X iao 2ge , LI N Jin 2xing , QI U Zhao 2fa(Shandong Drug and Food Vocational College ,Shandong Weihai 264210,China )Abstract :In recent years ,aqueous tw o 2phase system based ionic liquids are gaining wide recognition as novel ‘greener ’separation systems.Aqueous tw o 2phase system based ionic liquids have s ome unique advantages ,such as lower viscosity ,very quickly phase separation ,not easily emulsification ,as well as g ood extractability for bioproducts.This review presents as accound of s ome of the recent reports on aqueous tw o 2phase system based ionic liquids and Their applications in extraction and separation of bioproducts.K ey w ords :aqueous tw o 2phase ;ionic liquids ;bioseparation收稿日期:2006212213;修回日期:2007202228作者简介:巴晓革,女,副教授,长期从事物理化学教学及科研工作。
离子液体在二氧化碳捕集中的应用及国内外研究进展。
离子液体在二氧化碳捕集中的应用及国内外研究进展二氧化碳的排放是导致全球气候变暖的主要原因之一。
为了减少二氧化碳的排放并寻找可持续的能源替代品,离子液体作为一种新型的溶剂被广泛研究用于二氧化碳捕集和储存。
离子液体是一类由离子组成的具有较低的蒸汽压和热稳定性的液体。
它们具有独特的物理和化学性质,可以与二氧化碳进行高效的化学吸附和物理吸附。
离子液体可以通过调整结构和功能化来增强其二氧化碳吸附性能。
此外,离子液体还具有较高的稳定性和可重复使用性,可以有效地在二氧化碳的捕集和储存过程中循环使用。
在国内外的研究中,离子液体在二氧化碳捕集方面取得了显著的进展。
一些研究表明,通过调整离子液体的阳离子和阴离子的结构,可以显著提高其吸附二氧化碳的容量和选择性。
例如,引入含氮基团的离子液体可以增强二氧化碳与离子液体之间的相互作用,从而提高吸附性能。
同时,研究人员还通过改变离子液体的结构,提高其在低温下的吸附性能,以适应不同的应用需求。
此外,离子液体在二氧化碳捕集方面的研究还涉及到催化转化和储存等方面。
离子液体可以作为催化剂载体,用于催化二氧化碳的转化为有机化合物。
同时,离子液体还可以与其他材料结合使用,实现二氧化碳的储存和转化。
然而,离子液体在二氧化碳捕集中还存在一些挑战和问题。
首先,离子液体的制备成本较高,限制了其大规模应用。
其次,离子液体对二氧化碳的吸附速率较慢,需要进一步提高吸附效率。
此外,离子液体的生态和环境影响尚需进一步研究和评估。
总体而言,离子液体在二氧化碳捕集中具有广阔的应用前景,但仍需要进一步的研究和开发。
通过不断改进离子液体的结构和性能,可以实现更高效、经济和可持续的二氧化碳捕集技术,为应对气候变化和能源转型提供有力支持。
离子液体及其应用离子液体是指在室温或接近室温下呈现液态的、完全由阴阳离子所组成的盐,也称为低温熔融盐。
可制成离子液体/聚合物电解质,作为双电层器和电池的电解质。
如高温下的KCI, KOH呈液体状态,此时它们就是离子液体。
在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。
在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。
某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。
离子液体种类繁多,改变阳离子、阴离子的不同组合,可以设计合成出不同的离子液体。
离子液体的合成大体上有两种基本方法:直接合成法和两步合成法。
直接合成法是指通过酸碱中和反应或季胺化反应等一步合成离子液体,操作经济简便,没有副产物,产品易纯化。
直接法难以得到目标离子液体,必须使用两步合成法。
两步法制备离子液体的应用很多。
常用的四氟硼酸盐和六氟磷酸盐类离子液体的制备通常采用两步法。
首先,通过季胺化反应制备出含目标阳离子的卤盐;然后用目标阴离子置换出卤素离子或加入Lewis酸来得到目标离子液体。
在第二步反应中,使用金属盐MY(常用的是AgY),HY或NH4Y时,产生Ag盐沉淀或胺盐、HX气体容易被除去,加入强质子酸HY,反应要求在低温搅拌条件下进行,然后多次水洗至中性,用有机溶剂提取离子液体,最后真空除去有机溶剂得到纯净的离子液体。
近年来,离子液体作为一类新型的绿色介质,引起全球学术界和工业界的高度重视。
离子液体的特点也越来越多的为大家所熟知。
不挥发、不可燃、导电性强、室温下离子液体的粘度很大(通常比传统的有机溶剂高1~3个数量级,离子液体内部的范德华力与氢键的相互作用决定其粘度。
)、热容大、蒸汽压小、性质稳定,对许多无机盐和有机物有良好的溶解性。