七年级数学有理数的乘方7
- 格式:pptx
- 大小:534.83 KB
- 文档页数:9
教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。
2.已知一个数,会求出它的正整数指数幂,渗透转化思想。
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。
教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)其中一种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2某2个,1.5小时后分裂成2某2某2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an 中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。
说明:(1)举例94来说明概念及读法。
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。
(4)乘方是一种运算,幂是乘方运算的结果。
(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值。
(2)注意(-2)4与-24的区别。
根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)(3; (2)(-)3;(3)(-)4;(4)-;(5)-22某(-3)2;(6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念。
七年级数学《有理数的乘方》教案设计(最新5篇)七年级数学《有理数的乘方》教案设计篇一教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。
2.已知一个数,会求出它的正整数指数幂,渗透转化思想。
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。
教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2某2个,1.5小时后分裂成2某2某2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a 叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。
说明:(1)举例94来说明概念及读法。
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。
(4)乘方是一种运算,幂是乘方运算的结果。
(三)应用迁移,巩固提高(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值。
(2)注意(-2)4与-24的区别。
七年级数学上册有理数的乘方有理数的乘方是数学中一个重要的概念,它在数学运算和实际问题中都有着广泛的应用。
本文将介绍有理数的乘方的定义、规则以及解答习题的方法。
一、有理数的乘方定义及性质1. 定义:对于任意的有理数a和正整数n,a的n次方记为a^n,它表示将a连乘n次的结果。
当n为0时,任何非零有理数a的0次方都等于1,即a^0 = 1。
2. 性质:a. 乘方的运算性质:对于任意的有理数a、b和正整数m、n,有以下规则:(a) a^m × a^n = a^(m + n)(b) (a^m)^n = a^(m × n)(c) a^m ÷ a^n = a^(m - n)b. 乘方的特殊性质:(a) 任何数的1次方都等于该数本身,即a^1 = a。
(b) 非零数的负次方等于该数的倒数的正次方,即a^(-m) = 1 / (a^m)。
二、有理数的乘方计算方法1. 同底数的乘方计算:当底数相同时,可以直接将指数进行运算。
例如:计算2^3 × 2^4。
解:由乘方的运算性质(a)得知,2^3 × 2^4 = 2^(3 + 4) = 2^7。
2. 乘方与乘法的关系:乘方运算可以转化为多次乘法运算。
例如:计算3^4。
解:3^4 = 3 × 3 × 3 × 3 = 81。
3. 有理数的乘方与整数指数的乘法:有理数的乘方可以转化为整数指数的乘法。
例如:计算(-5)^3。
解:(-5)^3 = (-5) × (-5) × (-5) = -125。
4. 有理数的乘方与分数指数的开方:有理数的分数指数可以转化为开方。
例如:计算4^(2/3)。
解:4^(2/3)等于将4开3次方再平方。
4开3次方得到2,再平方得到4。
三、解答习题例题:计算下列各式的值。
1. 5^2 + 3 × 4^2 - (-2)^3解:由乘方的计算方法可得,5^2 + 3 × 4^2 - (-2)^3 = 25 + 3 × 16 - (-8) = 25 + 48 + 8 = 81。
《有理数的乘方》知识全解【课标要求】理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).能运用有理数的运算解决简单的问题.【知识结构】有理数乘方的意义及相关概念有理数乘方的符号法则有理数的混合运算【内容解析】1.有理数乘方的意义:求n个相同因数的积的运算,叫做乘方.2.底数、指数、幂:在a n中,a叫做底数,n叫做指数,a n的结果叫幂.3.a n的读法:a n读作“a的n次方”或“a的n次幂”.4.有理数乘方的书写:底数与同行中其它数字一样大小,指数写在底数的右上角,写小些.负数、分数做底数时,负数、分数要带括号.5.有理数乘方的符号法则:负数的奇数次幂是负数,负数的偶数次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.注意:1的任何次幂都是1,(–1)的奇数次幂等于–1,(–1)的偶数次幂等于1.6.用计算器计算乘方时,指数的转换键是“∧”.7.有理数混合运算的运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.加减是第一级运算,乘除是第二级运算,乘方与开方是第三级运算,运算时,先算高级运算,再算低一级的运算.【重点难点】有理数乘方的意义及运算是本节课的教学重点,本小节的另一个重点是依据运算法则和运算顺序进行有理数的混合运算,教师要精选适量的练习以提升学生的运算能力.有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点.可以实施通过补充一些计算问题和提高题,帮助学生突破难点.【教法导引】1.教师教学应该以学生的认知发展水平和已有的经验为基础,根据新课程标准提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展”的理念,力求“自主探索、动手实践、合作交流”成为学生学习的主要方式.在小学已学的正方形面积,正方体体积的基础上进一步探究棋盘、拉面、细胞分裂等实际问题,在师生的互动中生成对乘方的理解.2.在引入例1之前,创设与例题有关的问题,让学生讨论交流,教师鼓励学生积极发言,为学生提供表现的机会,使学生在这个环节中弄清底数与指数之间的相互关系,认识到“a n等于多少的问题”是可以通过转化为乘法运算来实现的,从中体会转化的思想,为引入例题的学习做好铺垫.3.教师要预设学生的易错点,应强调指出.如–32与(–3)2的区别;底数为负数或分数时的书写要明了;“–1”的幂的特征可以进行归纳;及时纠正学生在运算顺序上的错误等.4.课程标准强调“学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程”.教师在进行本节教学时,要放手学生自己去领悟、归纳、熟练.教师放手学生操作,把课堂还给学生,如在寻找“–2,4,–8,16,–32…的规律是千万让学生自主探索.【学法建议】1.“自主探索、动手实践、合作交流”为学生学习的主要方式.2.要认真观察,仔细比较,善于发现,正确归纳.像–42与(–4)2的区别要细细领悟.3.多动手计算,不能盲目依赖计算器.4.正确理解概念.乘方是一种运算,幂是乘方的结果,底数是相乘时的因数,指数是相乘时因数的个数,指数是1就是指只有一个因数,所以一个数可以看作这个数本身的一次方.5.练习时,要紧扣运算顺序与意义、法则,出现负号时千万多加小心.在进行混合运算时,可以采取多种方法来检验自己的运算结果的正确性.对于比较复杂的运算,先笔算,再用计算器进行验证.。
有理数的乘方教案篇一一、学什么1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。
2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。
二、怎样学归纳概念n个a相乘aaa= ,读作:。
其中n表示因数的个数。
求相同因数的积的运算叫作乘方。
乘方运算的结果叫幂。
例1:计算(1)26(2)73(3)(3)4(4)(4)3例2:(1)()5(2)()3(3)()4【想一想】1.(1)10,(1)7,()4,()5是正数还是负数?2、负数的幂的符号如何确定?思考题:1、(a2)2+(b+3)2=0,求a和b的值。
2、计算(2)2009+(2)20某某3、在右边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三学怎样1、其中一种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这种细菌由1个可分裂成()A8个B16个C4个D32个2、一根长1cm的绳子,第一次剪去一半。
第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( )A()3mB()5mC()6mD()12m3、(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。
4、计算(1)(3)3(2)(0.8)2(3)02004(4)12004(5)104(6)()5(7)-()3(8)43(9)32(3)3+(2)223(10)-18(3)25、已知(a2)2+,b5,=0,求(a)3(b)2.2.6有理数的乘方(第2课时)一、学什么会用科学计数法表示绝对值较大的数。
二、怎样学定义:一般地,一个大于10的数可以写成的形式,其中,n是正整数,这种记数法称为科学记数法。
例题教学例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。
截至20某某年12月人们最后一次收到它发回的信号时,它已飞离地球1220000000 0km。
用科学记数法表示这个距离。
例2:用科学记数法表示下列各数。
第07讲有理数的乘方学习目标1.理解有理数的乘方的意义,会进行有理数的乘方运算.2.了解底数、指数和幂的概念,能说出一个乘方运算的底数、指数和幂,会求一个数的正整数指数幂.3.会用科学记数法表示较大的数,感受用科学记数法表示数带来的方便.考点考频1.能说出一个乘方运算关法的底数、指数、幂(常考点)2.会求一个数的正整数指数幂。
(必考点)3.会用科学记数法表示较大的数。
(必考点)知识点1有理数的乘方(重点;掌握)1.求n个相同因数的积的运算,叫做乘方.乘方运算的结果叫做幂,相同因数叫做底数,相同因数的个数叫做指数.如图.2.a n读作a的n次方,a n看作是a的n次方的结果时,也可以读作a的n次幂.3.正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数,0的任何正整数次幂都得0.特别地,一个数的二次方,也称为这个数的平方;一个数的三次方,也称为这个数的立方.[特别提醒](1)要分清乘方表示的意义,如:(-2)5表示5个-2相乘的积、-25表示5个2相乘的积的相反数、-(-2)5表示5个-2相乘的积的相反数.(2)要注意书写分数的乘方时,底数要加括号.如:(− 23)4表示4个 − 23相乘的积、− 243表示4个2相乘的积的13的相反数.(3)一个数可以看作是它本身的一次方,指数1通常省略不写.例如,51通常写作5,a1写作a.例1把下列各式用幂的形式表示,并指出其底数和指数.(1)(-2021)×(-2021)×(-2021);(2)(+ 25 )×(+25 )×(+25 )×(+25 );(3)- 23 ×23 ×23 ×23 ×23 .【答案】(1)3;(2)4;(3)5练习1把下列各式用幂的形式表示,并说出其底数、指数.(1)2×2×2×2×2×2;(2)(-3)×(-3)×(-3)×(-3)×(-3)(3)(- 13 )×(-13 )×(-13 )(4)-13 ×13 ×13 .【答案】解:(1)26.底数是2,指数是6. (2)(-3)5,底数是-3,指数是5.(3)(- 13 ),底数是-13 ,指数是3.(4)-( 13 )底数是13 .指数是3.知识点2有理数幂的符号法则(重点;掌握)(1)正数的任何次幂都是正数;(2)负数的奇数次幂是负数,负数的偶数次幂是正数;(3)0的任何正整数次幂都等于0.[特别提醒]判断乘方符号的步骤:一看底数(正数、负数、0);二看指数(奇数次幂、偶数次幂).例2不做运算,判断下列各运算结果的正负.(-5)11,(-4)20,(-1.5)2021,(4)7,-(-6)29.3【答案】负;正;负;正;正知识点3科学记数法(重点;掌握)1.科学记数法的表示形式为a×10n试,其中1≤a < 10,n为整数.2.n的确定方法如下:方法一:整数位数减去1.如3900是一个四位数,用科学记数法表示为3.9×103,则n = 4-1 = 3.方法二:看小数点移动的位数,小数点向左移动了几位n就等于几.如3900用科学记数法表示为3.9×103,显然从3900到3.9小数点向左移动了3位,所以n = 3.3.用科学记数法表示数时,数的大小没有变化,只是数的书写形式发生了变化、这也是判断科学记数法表示是否正确的标准.4.若原数有“-”号,不能将“-”号丢掉.例3(2019·苏州中考)苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A.0.26×108B.2.6×108C.26×106D.2.6×107【答案】D练习3(2019·盐城中考)正在建设中的北京大兴国际机场规划建设面积约1400000平方米的航站楼,数据1400000用科学记数法应表示为()A.0.14×108B.1.4×107C.1.4×106D.14×105【答案】C—— 题型总结 ——题型1根据乘方的法则计算例1计算.(1)(-0.2)3;(2)-54;(3)-(-2)6(4)-( 23 )3;(5)- 223 ;(6)-|- 12 |4.【答案】 (1)-1 125 ;(2)-625;(3)-64;(4)- 8 27 ;(5)- 43;(6)- 1 16。
有理数的乘方(3种题型)1.掌握有理数乘方的意义,正确判断幂的底数,掌握乘方运算的符号法则;2.理解科学记数法的表示,会正确算出科学记数法表示的数的结果;一.有理数的乘方(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.(将a n看作是a的n次方的结果时,也可以读作a的n次幂.)(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.(3)方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.二.非负数的性质:偶次方偶次方具有非负性.任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0时,则其中的每一项都必须等于0.三.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.一.有理数的乘方(共11小题)1.(2022秋•鼓楼区校级期末)下列各组数中,相等的是()A.+32与+23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.|﹣3|3与(﹣3)3【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵32=9,23=8,故选项A不符合题意,∵﹣23=﹣8,(﹣2)3=﹣8,故选项B符合题意,∵﹣32=﹣9,(﹣3)2=9,故选项C不符合题意,∵|﹣3|3=27,(﹣3)3=﹣27,故选项D不符合题意.故选:B.【点评】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.2.(2022秋•盐都区期中)计算:=.【分析】根据有理数乘方法则进行计算便可.【解答】解:原式=+,故答案为:.【点评】本题考查了有理数的乘方,熟记有理数乘方法则是解题的关键.3.(2023•南京二模)与(﹣3)2的值相等的是()A.﹣32B.32C.(﹣2)3D.23【分析】将原式计算得到结果,即可作出判断.【解答】解:∵(﹣3)2=9,A.﹣32=﹣9;B.32=9;C.(﹣2)3=﹣8.D.23=8.∴与(﹣3)2的值相等的是B.故选:B.【点评】本题考查了有理数的乘方,熟练掌握乘方的意义是解题的关键.4.(2022秋•仪征市期末)若一个数的立方为﹣27,则这个数是()A.﹣3B.3C.±3D.﹣9【分析】根据有理数的乘方运算即可求出答案.【解答】解:∵(﹣3)3=﹣27,∴这个数是﹣3,故选:A.【点评】本题考查有理数的乘方运算,解题的关键是熟练运用有理数的乘方运算,本题属于基础题型.5.(2023春•泰兴市校级月考)计算:()3=.【分析】求n个相同因数积的运算,叫做乘方,由此即可计算【解答】解:()3=××=.故答案为:.【点评】本题考查有理数的乘方,关键是掌握有理数的乘方运算法则.6.(2022春•灌南县期中)已知83=a9=2b,试求b a的值.【分析】根据83=(23)3=29,即可确定a和b的值,进一步求解即可.【解答】解:∵83=a9=2b,又∵83=(23)3=29,∴a=2,b=9,∴ba=92=81.【点评】本题考查了有理数的乘方,幂的乘方等,熟练掌握这些知识是解题的关键.7.(2023•海陵区一模)﹣32的值等于()A.﹣9B.9C.6D.﹣6【分析】利用有理数的乘方判断.【解答】解:﹣32=﹣9,故选:A.【点评】本题考查了有理数的乘方,解题的关键是掌握有理数的乘方.8.(2022秋•鼓楼区校级期末)如图,A,B,C,D,E是数轴上5个点,A点表示的数为9,E点表示的数为9100,AB=BC=CD=DE,则数999所对应的点在线段上.【分析】先根据AB=BC=CD=DE,计算出每一个线段的长度,再把AB的长度与999﹣9进行比较即可.【解答】解:∵A点表示数为9,E点表示的数为9100,∴AE=9100﹣9,∵AB=BC=CD=DE,∴,∴B点表示的数为,∵=,∴>0,∴数999所对应的点在B点左侧,∴数999所对应的点在AB点之间,故答案为:AB.【点评】本题考查了数轴,掌握两点之间的距离是正确解答的前提,估算出的大小是得出正确答案的关键.9.(2023春•宿豫区期中)已知3=m5=()n,求m+n的值.【分析】根据幂的乘方、负整数指数幂解决此题.【解答】解:∵310=m5=()n,∴310=95=m5=3﹣n.∴m=9,n=﹣10.∴m+n=9+(﹣10)=﹣1.【点评】本题主要考查幂的乘方、负整数指数幂,熟练掌握幂的乘方、负整数指数幂是解决本题的关键.10.(2022秋•鼓楼区校级月考)已知|x|=5,y2=16,且x+y>0,那么x﹣y=.【分析】利用绝对值的定义,乘方运算确定x、y的可能取值,再代入数据求x﹣y的值.【解答】解:∵|x|=5,y2=16,∴x=±5,y=±4,∵x+y>0,∴x=5,y=±4,x﹣y=5﹣4=1,x﹣y=5﹣(﹣4)=9,∴x﹣y的值为1或9.故答案为:1或9.【点评】本题考查了有理数的乘方,有理数的加减,绝对值,解题的关键是掌握有理数的乘方运算,有理数的加减运算,绝对值的定义.11.(2023春•吴江区期中)规定两数a,b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,9)=,(,16)=2,(﹣2,﹣8)=;(2)有同学在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,∴(3n)x=4n即(3,4)=x,∴(3n,4n)=(3,4).②若(4,5)=a,(4,6)=b,(4,30)=c,请你尝试运用上述这种方法证明a+b=c;②猜想[(x﹣1)n,(y+1)n]+[(x﹣1)n,(y﹣2)n]=(,)(结果化成最简形式).【分析】(1)根据规定,利用乘方的运算解答即可;(2)①根据规定,利用同底数幂乘方的运算法则证明即可;②根据规定,利用同底数幂乘方的运算法则,以及多项式乘以多项式的运算法则解答即可.【解答】解:(1)∵32=9,∴(3,9)=2;∵42=16,∴(4,16)=2;∵(﹣2)3=﹣8,∴(﹣2,﹣8)=3.故答案为:2,4,3;(2)①∵(4,5)=a,(4,6)=b,(4,30)=c,∴4a=5,4b=6,4c=30,∴4a×4b=5×6=30=4c,∴4a+b=4c,即a+b=c;②设[(x﹣1)n,(y+1)n]=p,[(x﹣1)n,(y﹣2)n]=q,由上述结论,知(x﹣1)p=y+1,(x﹣1)q=y﹣2,且[(x﹣1)n,(y+1)n]+[(x﹣1)n,(y﹣2)n]=p+q,∵(x﹣1)p×(x﹣1)q=(y+1)(y﹣2),即(x﹣1)p+q=y2﹣y﹣2,∴[(x﹣1),(y2﹣y﹣2]=p+q,∴[(x﹣1)n,(y+1)n]+[(x﹣1)n,(y﹣2)n]=[(x﹣1),(y2﹣y﹣2].故答案为:(x﹣1),(y2﹣y﹣2).【点评】本题以阅读理解形式考查乘方、同底数幂的乘法、整式的乘法等运算,理解题意,掌握相关运算法则是解题的关键.二.非负数的性质:偶次方(共7小题)12.(2022秋•姑苏区校级期末)如果|a+3|+(b﹣2)2=0,则(a+b)2022的值是.【分析】根据绝对值和平方的非负性求出a,b,代入求值即可.【解答】解:因为|a+3|+(b﹣2)2=0,所以a+3=0,b﹣2=0,所以a=﹣3,b=2,所以(a+b)2022=(﹣3+2)2022=(﹣1)2022=1.故答案为:1.【点评】本题主要考查非负数的性质,涉及到有理数的乘方,解题的关键是掌握绝对值和平方的非负性.13.(2022秋•鼓楼区校级期末)已知|ab﹣2|+(b+1)2=0,则(a﹣b)2023=.【分析】根据绝对值和平方的非负性求出a,b,代入求值即可.【解答】解:因为|ab﹣2|+(b+1)2=0,所以ab﹣2=0,b+1=0,所以ab=2,b=﹣1,解得a=﹣2,b=﹣1,所以(a﹣b)2023=(﹣2+1)2023=(﹣1)2023=﹣1.故答案为:﹣1.【点评】本题主要考查代数式求值、有理数的乘方,解题的关键是掌握绝对值和平方的非负性.14.(2022秋•射阳县月考)已知(x﹣3)2+|2x﹣3y+6|=0,求x﹣y的值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可求解.【解答】解:∵(x﹣3)2+|2x﹣3y+6|=0,(x﹣3)2≥0,|2x﹣3y+6|≥0,∴x﹣3=0,2x﹣3y+6=0,解得x=3,y=4,∴x﹣y=3﹣4=﹣1.【点评】本题考查了绝对值和偶次方的非负性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.(2023春•东台市期中)若(x﹣1)2+|2y+1|=0,则x+y的值为()A.B.C.D.【分析】直接利用非负数的性质得出x,y的值,进而得出答案.【解答】解:∵(x﹣1)2+|2y+1|=0,∴x﹣1=0,2y+1=0,解得:x=1,y=﹣,则x+y的值为:1﹣=.故选:D.【点评】此题主要考查了非负数的性质,正确掌握相关定义是解题关键.16.(2022秋•仪征市期末)若|a﹣2|+(b+3)2=0,则b a=.【分析】根据绝对值和偶次方的非负性求出a、b的值即可得到答案.【解答】解:∵|a﹣2|+(b+3)2=0,|a﹣2|≥0,(b+3)2≥0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,∴ba=(﹣3)2=9,故答案为:9.【点评】本题主要考查了非负数的性质,代数式求值,熟知非负数的性质是解题的关键.17.(2023春•东台市期中)已知|x+2y+3|与(2x+y)2的值互为相反数,则x﹣y=.【分析】根据非负数的性质:几个非负数的和等于0,则每个数等于0,即可列出关于x和y的方程,求得x和y的值,进而求得代数式的值.【解答】解:根据题意得:,解得.则原式=1+2=3.故答案是3.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.18.(2022秋•江阴市期中)如果|a+2|+(b﹣1)2=0,那么代数式(a+b)2021的值是()A.1B.﹣1C.±1D.2021【分析】首先根据非负数的性质求出a、b的值,然后再代值求解.【解答】解:由题意,得:a+2=0,b﹣1=0,即a=﹣2,b=1;所以(a+b)2021=(﹣1)2021=﹣1.故选:B.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.三.科学记数法—表示较大的数(共4小题)19.(2023•苏州)在比例尺为1:8000000的地图上,量得A,B两地在地图上的距离为3.5厘米,即实际距离为28000000厘米.数据28000000用科学记数法可表示为.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:28000000=2.8×107,故答案为:2.8×107.【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.20.(2023•镇江一模)2023年2月15日春运结束,春运40天,全国发送旅客约15.95亿人次,比去年同期增长50.5%,其中,数据15.95亿用科学记数法可表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:15.95亿=15.95×108=1.595×109.故答案为:1.595×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.21.(2023春•吴江区校级期中)光在真空中的传播速度约是3×108m/s,光在真空中传播一年的距离称为光年.(1)1光年约是多少千米?(一年以3×107s计算)(2)银河系的直径达10万光年,约是多少千米?(3)如果一架飞机的飞行速度为1000km/h,那么光的速度是这架飞机速度的多少倍?(1m/s=3.6km/h)【分析】(1)根据题意列出算式,求出即可;(2)根据题意列出算式,求出即可;(3)先化单位,再根据题意列出算式,求出即可.【解答】解:(1)3×108×3×107=9×1015(米),9×1015米=9×1012千米.答:1光年约是9×1012千米;(2)10万=100000,100000×9×1012=9×1017(千米),.答:银河系的直径达10万光年,约是9×1017千米;(3)3×108m/s=1.08×109km/h,1.08×109÷1000=1.08×106,答:光的速度是这架飞机速度的1.08×106倍.【点评】本题考查了科学记数法的表示方法.解此题的关键是能根据题意列出算式.22.(2022春•仪征市校级月考)某银行去年新增加居民存款10亿元人民币.(结果用科学记数法表示)(1)经测量,100张面值为100元的新版人民币大约厚0.9厘米,如果将10亿元面值为100元的新版人民币摞起来,大约有多高?(2)一台激光点钞机的点钞速度是8×104张/时,按每天点钞5小时计算,如果让点钞机点一遍10亿元面值为100元的新版人民币,点钞机大约要点多少天?【分析】(1)先算出10亿元人民币的张数,然后再用张数乘以一张人民币的厚度即可;(2)用10亿元人民币的张数除以速度,再根据同底数幂相除,底数不变指数相减进行计算.【解答】解:(1)10亿=1 000 000 000=109,∴10亿元的总张数为109÷100=107张,107÷100×0.9=9×104(厘米);(2)107÷(5×8×104),=(1÷40)×(107÷104),=0.025×103=25=2.5×10(天).【点评】本题考查了同底数幂的除法与乘法运算、科学记数法,根据题意列出算式是解题的关键,需要注意先求出10亿元人民币的总张数.一、单选题【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:54700000用科学记数法表示为75.4710⨯;故选:C【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.【答案】A【分析】根据小于0的数是负数,对各选项计算后再计算负数的个数. 【详解】因为22−=,()2=2−−,()202311−=−所以负数有112−,()20231−,共计2个故选A【点睛】本题考查负数的概念,解题关键是利用了小于0的数是负数的概念.【答案】D【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式,求出x 、y 的值,代入计算即可. 【详解】解:∵()2510x x y −+−−=,∴50x −=,10x y −−=, ∴5x =,4y =,∴()()20232023514x y −=−=,故选:D .0,则其中的每一项都为0. 4.(2022秋·江苏盐城·七年级统考期中)下列计算结果相等为( ) A .43和34B .43−和4|3|−C .25−和2(5)−D .2022(1)−和 2024(1)−【答案】D【分析】根据乘方运算法则和绝对值的意义逐项进行计算即可.【详解】解:A .∵4381=,3464=,且8164≠,∴选项A 不符合题意;B .∵4381−=−,4|3|81−=,且8181−≠,∴选项B 不符合题意;C .∵2525−=−,2(5)25−=,且2525−≠,∴选项C 不符合题意;D .∵()202211−=,2024(1)1−=,且11=,∴选项D 符合题意.故选:D .【点睛】本题主要考查了有理数的乘方运算,绝对值的意义,解题的关键是熟练掌握有理数乘方运算法则和绝对值的意义,准确进行计算.5.(2022秋·江苏扬州·七年级校联考期中)()633...33⨯⨯⨯÷−个的结果为( )A .73B .73−C .53 D .53−【答案】D【分析】根据有理数的乘方与除法运算法则计算即可得到答案.【详解】解:原式633=−÷ 53=−.故选:D .【点睛】此题考查的是有理数的乘方与除法,正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.【答案】A【分析】根据有理数的乘方运算求出x 、y 即可解答. 【详解】解:∵x 、y 、z 是三个连续的正整数, ∴y=x+1,∵x2=44944=2122, ∴x=212, ∴y=213,∴y2=2132=45 369, 故选:A .【点睛】本题考查有理数的乘方,熟练掌握有理数的乘方运算是解答的关键.二、填空题7.(2022秋·江苏苏州·七年级校考期中)倒数等于本身的数是______,相反数等于本身的数是______, 平方等于它本身的数是______,立方等于它本身的数是______. 【答案】 1± 0 1和0 1±和0【分析】根据倒数的定义、相反数的定义、平方、立方的意义,即可得到答案. 【详解】解:倒数等于它本身的数是1±, 相反数等于它本身的数是0, 平方等于它本身的数是1和0, 立方等于它本身的数是1±和0, 故答案为:1±;0;1和0;1±和0.【点睛】本题考查了倒数、相反数、平方、立方,解题的关键是掌握所学的知识进行解题. 8.(2022秋·江苏淮安·七年级淮阴中学新城校区校考期末)数字1920000000用科学记数法表示为____________. 【答案】91.9210⨯【分析】利用科学记数法的定义解决.科学记数法的表示形式为10na ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:91920000000 1.9210=⨯. 故答案为:91.9210⨯.【点睛】此题考查科学记数法的定义,关键是理解运用科学记数法.9.(2022春·江苏宿迁·七年级统考期中)如果ab =c ,那么我们规定[a ,c ]=b .例如:因为23=8,所以[2,8]=3.若[3,5]=n ,[9,m ]=n ;则[3,m +2]=_______. 【答案】3【分析】根据规定可得3n =5,9n =m ,从而得到m =25,然后设[3,m+2]=x ,则3x =m+2=27,再由33=27,即可求解.【详解】解:∵[3,5]=n ,[9,m]=n , ∴3n =5,9n =m , ∴9n =(3n )2=52=25, ∴m =25,即m+2=27,设[3,m+2]=x ,则3x =m+2=27,∴33=27, ∴[3,m+2]=3, 故答案为:3【点睛】本题主要考查了乘方的逆运算的应用,理解新规定是解题的关键.10.(2022秋·江苏南京·七年级统考期中)下列情景描述的结果与52相符的是________(填写所有正确选项的序号)①把一张报纸沿同一方向连续对折5次得到的后折痕条数;②把一团和好的面,揉搓成一根长条后,连续拉扣5次得到的面条根数③细胞分裂时,由1个分裂成2个,由2个分裂成4个,以此类推,一个这样的细胞分裂5次形成的细胞个数.【答案】②③/③②【分析】根据题干叙述分别计算找出对折的次数与折痕的条数,拉扣的次数和面条的根数,分裂的次数和细胞个数的规律,判断是否符合规律即可.【详解】①把一张报纸沿同一方向对折,对折一次有1条折痕,对折两次是3条折痕,以此类推,对折5次后有12481631++++=条折痕,不符合题意.②把一团和好的面,揉搓成一根长条后,拉扣一次时有两根面条,两次有4根面条,以此类推,拉扣5次有52根面条,符合题意.③由题意可得,一个这样的细胞分裂5次形成细胞个数为52个,符合题意. 故答案为②③.【点睛】本题主要考查幂的应用,清楚理解幂的含义是解决本题的关键.11.(2023春·江苏宿迁·七年级统考期中)根据全国第七次人口普查数据显示,截至2020年11月1日零时,泗阳总人口约1063000人,数据1063000用科学记数法表示____. 【答案】61.06310⨯【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10na ⨯的形式即可. 【详解】∵61.010*******=10⨯, 故答案为:61.06310⨯.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【答案】3【分析】根据非负数的性质列式求出m 、n 的值,再相减即可求出答案. 【详解】根据题意得,10m −=,20n +=, 解得,1m =,2n =−, 所以1(2)3m n −=−−=, 故答案为3.【点睛】本题主要考查了非负数的性质,有限个非负数的和为零,那么每一个加数必为零,熟练掌握非负数的性质是解题的关键.【答案】1−【分析】利用非负数的性质得出x y ,的值,代入计算得出答案. 【详解】解:()2130x y ++−=,10x ∴+=,30y −=,解得:=1x −,3y =, 3(1)1y x ∴=−=−,故答案为:1−.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.14.(2021秋·江苏无锡·七年级无锡市东林中学校考期中)若|2|a −与()21b +互为相反数,则a b −=___________.【答案】3【分析】由题意得知:|a-2|+(b+1)2=0,根据非负数的性质得出a 、b 的值,代入计算即可. 【详解】解:根据题意得:|a-2|+(b+1)2=0, ∵|a-2|≥0,(b+1)2≥0, ∴a-2=0,b+1=0, ∴a=2,b=-1,∴2(1)3a b −=−−=, 故答案为:3.【点睛】本题主要考查了非负数的性质.解题的关键是掌握相反数定义,利用只有符号不同的两个数互为相反数得出a 、b 的值是解题的关键.三、解答题15.(2023春·江苏泰州·七年级姜堰区实验初中校考阶段练习)记(1)2M =−,(2)(2)(2)M =−⨯−,(3)(2)(2)(2)M =−⨯−⨯−,……()2(2)(2)(2)n n M −=−⨯−⨯−个相乘,(其中n 为正整数)(1)计算:(5)(6)M M +; (2)求(2022)(2023)2M M +的值; (3)说明()2n M 与(1)n M +互为相反数. 【答案】(1)32 (2)0 (3)见解析【分析】(1(2)根据已知条件及乘方的运算,再利用同底数幂的乘法法则即可得到正确结果; (3)根据已知条件及乘方的运算,再利用同底数幂的乘法法则即可得到结论. 【详解】(1)解:∵(1)2M =−,(2)(2)(2)M =−⨯−,(3)(2)(2)(2)M =−⨯−⨯−,∴()()552M =−,()662M =−,∴(5)(6)M M +()()5622=−−+()()5212⎡⎤=−−⎣⎦+()()521=−−32=;(2)解:∵()2(2)(2)(2)n n M −=−⨯−⨯−个相乘,∴()()202220232M M +()()20222023222=−−+()()2022222=−−⎡⎤⎣⎦+0=;(3)解:∵()2(2)(2)(2)n n M −=−⨯−⨯−个相乘,∴()12n n M M ++()()1222nn =−−++()()222n=−−⎡⎤⎣⎦+0=,∴()2n M 与(1)n M +互为相反数.【点睛】本题考查了乘方的意义及同底数幂的乘法法则,理解乘方的意义是解题的关键.【答案】数轴表示见解析,()()21301232−−<<−<<−−【分析】先把各数化简,然后再数轴上表示出来,即可求解. 【详解】解:33−−=−,()211−=,()33−−=,各数在数轴上表示出来,如下:按从小到大的顺序用“<”号连接起来为()()21301232−−<<−<<−−.【点睛】本题考查了有理数的乘方、绝对值的意义、有理数的大小比较.能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.,一般地,把c aa a a a÷÷÷÷个(a ≠0Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣【答案】(1)3,﹣27;(2)C ;(3)Ⅰ.9;(5 )4;28;Ⅱ.a ⓝ=(a )n ﹣2;Ⅲ.131−.【分析】(1)根据新定义运算的法则进行运算即可;(2)根据新定义运算对每个选项逐一分析判断,即可得到答案;(3)Ⅰ.根据新定义的运算法则进行计算即可;Ⅱ.结合前面的具体计算进行归纳总结可得答案;Ⅲ.根据新定义运算,逐一先计算除方,再转化为有理数的乘除乘方运算,再计算即可. 【详解】解:概念学习:(1)由新定义运算可得:3③=3÷3÷3=13,(13−)⑤=(13−)÷(13−)÷(13−)÷(13−)÷(13−)=﹣27. 故答案为:13,﹣27;(2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1;所以选项A 正确; B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1;所以选项B 正确;C 、3④=3÷3÷3÷3=19,4③=4÷4÷4=14,则 3④≠4③;所以选项C 错误;D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确; 本题选择说法错误的,故选C ; 深入思考:(3)Ⅰ.(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3) ()1113333æöæöæöç÷ç÷ç÷=-´-´-´-ç÷ç÷ç÷èøèøèø=21319−=⎛⎫⎪⎝⎭; 5⑥=5÷5÷5÷5÷5÷511111=555555´´´´´ =(15)4; 同理得:(12−)⑩=28;故答案为:19;(15)4;28;Ⅱ:由新定义运算及(1)(2)归纳总结可得: a ⓝ=21n a −⎛⎫ ⎪⎝⎭;故答案为:a ⓝ=21n a −⎛⎫ ⎪⎝⎭Ⅲ.2112()3÷−④(2)÷−⑤1()3−−⑥33÷ =()()324311443332æöç÷¸-¸---¸ç÷èø()1144881279=´´--¸1283131=--=-故答案为:131−【点睛】本题考查的是新定义运算,有理数的除法运算,有理数的乘方运算,理解新定义运算的运算法则,并利用新定义进行计算是解题的关键.【答案】(1)351−,,(2)①122x x −−,;②2BD PC =,理由见解析【分析】(1)根据非负数的性质求出a b 、的值,再根据数轴沿点C 折叠,点A 和点B 重合即点C 为AB 的中点进行求解即可;(2)①根据数轴上两点距离公式即可求出PC ,再求出点D 表示的数即可求出BD ;②分别表示出PC 和BD 即可得到结论. 【详解】(1)解:∵()2350a b ++−=,()23050a b +≥−≥,,∴()2350a b +=−=,∴3050a b +=−=,, ∴35a b =−=,,∵数轴沿点C 折叠,点A 和点B 重合, ∴点C 为AB 的中点, ∴12a bc +==,故答案为:351−,,;(2)解:①由题意得1PC x =−,∵将数轴沿点P 折叠,数轴上与点A 重合的点记为D , ∴点P 是AD 的中点,∴点D 表示的数为()323x x x +−−=+⎡⎤⎣⎦, ∴2352222BD x x x=+−=−=−, 故答案为:122x x −−,; ②2BD PC =,理由如下:同①得1PC x =−,2221BD x x =−=−,∴2BD PC =;【点睛】本题主要考查了数轴上两点的距离,数轴上两点中点公式,非负数的性质,熟知数轴上两点距离公式是解题的关键. 19.(2022秋·江苏南京·七年级统考期中)某公司培养绿藻细胞制作绿藻粉,该公司制作1克的绿藻粉需要60亿个绿藻细胞.(1)在光照充沛的环境下,1个绿藻细胞每20小时可分裂成4个绿藻细胞,且分裂后的细胞继续分裂.现从1个绿藻细胞开始培养,经过15天后,共分裂成4k 个绿藻细胞,求k 的值.(2)已知210=1024,请判断(1)问中的4k 个绿藻细胞是否足够制作10克的绿藻粉,并说明理由.【答案】(1)18;(2)足够,理由见解析【分析】(1)由1个绿藻细胞每20小时可分裂成4个绿藻细胞,可知经过15天,即360小时,分裂成184个绿藻细胞,故k 之值为18;(2)根据每1克的绿藻粉需要60亿个绿藻细胞, 60亿介于322与332之间,可得制作10克的绿藻粉需要600亿个绿藻细胞,且352<600亿362<,又()1818236422==,即得184个绿藻细胞足够制作10克的绿藻粉. 【详解】(1)解∶15天1524=⨯小时360=小时,∴3602018÷=,根据题意得,1844k =,∴18k =;(2)解:(1)问中的4k个绿藻细胞是否足够制作10克的绿藻粉.理由如下∶∵每1克的绿藻粉需要60亿个绿藻细胞,∴制作10克的绿藻粉需要6010600⨯=亿个绿藻细胞,∵352<600亿362<,而()1818236422==,∵600亿184<,∴184个绿藻细胞足够制作10克的绿藻粉.【点睛】本题考查有理数的乘方,解题的关键是读懂题意,根据已知找到规律求出k 的值.一.选择题1.下列各组数中,相等的是( )A .(﹣3)2与﹣32B .|﹣3|2与﹣32C .(﹣3)3与﹣33D .|﹣3|3与﹣33【分析】根据有理数的乘方的定义对各选项分析判断利用排除法求解.【解答】解:A 、(﹣3)2=9,﹣32=﹣9,9≠﹣9,故本选项错误;B 、|﹣3|2=9,﹣32=﹣9,9≠﹣9,故本选项错误;C 、(﹣3)3=﹣27,﹣33=﹣27,故本选项正确;D 、|﹣3|3=27,﹣33=﹣27,27≠﹣27,故本选项错误.故选:C .【点评】本题考查了有理数的乘方,要注意(﹣3)2与﹣32的区别.2.党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.中央财政累计投入“全面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金169200000000元,将169200000000用科学记数法表示应为( )A .0.1692×1012B .1.692×1011C .1.692×1012D .16.92×1010【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a|<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.【解答】解:169200000000=1.692×1011.故选:B .【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.3.在数学中为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,如记=1+2+3+…+(n﹣1)+n,(x+k)=(x+3)+(x+4)+…+(x+n);已知([x(x+k)]=9x2+mx,则m的值是()A.45B.63C.54D.不确定【分析】根据条件和新定义列出方程,化简即可得出答案.【解答】解:根据题意得:x(x+3)+x(x+4)+…+x(x+n)=x(9x+m),∴x(x+3+x+4+…+x+n)=x(9x+m),∴x[(n﹣3+1)x+]=x(9x+m),∴n﹣2=9,m=,∴n=11,m=54.故选:C.【点评】本题考查了新定义,根据条件和新定义列出方程是解题的关键.二.填空题4.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为550055 000 000用科学记数法表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:55000000=5.5×107.故答案为:5.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.计算:﹣(﹣)3=.【分析】根据有理数的乘方解决此题.【解答】解:﹣(﹣)3=.故答案为:.【点评】本题主要考查有理数的乘方,熟练掌握有理数的乘方是解决本题的关键.6.计算:(﹣5)2=.【分析】根据幂的意义求解即可.【解答】解:(﹣5)2=(﹣5)×(﹣5)=25,故答案为:25.【点评】本题考查了有理数的乘方,解题的关键是知道(﹣5)2表示2个(﹣5)相乘.7.若有理数x,y满足x2=64,|y|=10,且|x﹣y|=x﹣y,则x+y的值为.【分析】根据绝对值、有理数的乘方、有理数的加法法则解决本题.【解答】解:∵x2=64,|y|=10,∴x=±8,y=±10.又∵|x﹣y|=x﹣y,∴x﹣y≥0.∴x≥y.∴当x=8时,y=﹣10,此时x+y=8+(﹣10)=﹣2;当x=﹣8时,y=﹣10,此时x+y=﹣8+(﹣10)=﹣18.综上:x+y=﹣2或﹣18.故答案为:﹣2或﹣18.【点评】本题主要考查绝对值、有理数的乘方、有理数的加法,熟练掌握绝对值、有理数的乘方、有理数的加法法则是解决本题的关键.8.1根1米长的木棒,第一次截去一半,第二次截去剩下的一半,…,如此截下去,则第8次剩下的木棒的长为米.【分析】根据有理数的乘方的定义解答即可.【解答】解:第一次截去一半,剩下,第二次截去剩下的一半,剩下×=()2,如此下去,第8次后剩下的长度是()8=.故答案为:.【点评】本题考查的是有理数的乘方,是基础题,理解乘方的定义是解题的关键.三.解答题9.(2020秋•滕州市期末)如果x n=y,那么我们记为:(x,y)=n.例如32=9,则(3,9)=2.(1)根据上述规定,填空:(2,8)=,(2,)=;(2)若(4,a)=2,(b,8)=3,求(b,a)的值.【分析】(1)这个定义括号内第一个数为底数,第二个数为幂,结果为指数,根据有理数的乘方及负整数指数幂的计算即可;(2)根据定义先求出a,b的值,再求(b,a)的值.【解答】解:(1)因为23=8,所以(2,8)=3;因为2﹣2=,所以(2,)=﹣2.故答案为:3,﹣2;(2)根据题意得a=42=16,b3=8,所以b=2,所以(b,a)=(2,16),因为24=16,所以(2,16)=4.答:(b,a)的值为4.【点评】本题主要考查了有理数的乘方,负整数指数幂,考核学生的运算能力,熟悉乘方运算是解题的关键.10.若|a+1|+(b﹣2)2=0.(1)求a2﹣b2的值;(2)求a b的值.【分析】(1)根据绝对值、偶次方的非负性求得a=﹣1,b=2,再代入a2﹣b2求值.(2)由(1)得a=﹣1,b=2,根据乘方的定义,代入求值.【解答】解:(1)∵|a+1|≥0,(b﹣2)2≥0,∴当|a+1|+(b﹣2)2=0时,a+1=0,b﹣2=0.∴a=﹣1,b=2.。
第2章有理数2.7 有理数的乘方课程标准课标解读1.理解有理数乘方的定义;2. 掌握有理数乘方运算的符号法则,并能熟练进行乘方运算;1、有理数乘方的运算和正确运用科学记数法表示较大的数.2、有理数乘方运算的符号法则和正确掌握10的幂指数特征.知识点01 有理数的乘方定义:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).即有:na a a an⋅⋅⋅=个.在n a中,a叫做底数, n叫做指数.【微点拨】(1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果.(2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写.【即学即练1】1.计算()23-的结果是()A.9-B.9C.6-D.6【答案】B【分析】目标导航知识精讲根据乘方的法则即可求解.【详解】解:(-3)2=9.故选:B.知识点02 乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,如n a≥0.【微点拨】(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数.【即学即练2】2.下列运算中错误的是()A.4(2)16-=B .328327=C.3(3)27-=-D.104(1)1-=【答案】B【分析】利用乘方的意义对各选项进行判断.【详解】解:A、(-2)4=16,正确,故选项不符合;B、323=83,错误,故选项符合;C、(-3)3=-27,正确,故选项不符合;D、(-1)104=1,正确,故选项不符合;故选:B.考法01 有理数的乘方运算1.求n个相同因数的积的运算叫做乘方。
能力拓展2. 乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数。
七年级数学有理数的乘方、有理数的混合运算、用计算器计算湘教版【本讲教育信息】一. 教学内容:有理数的乘方、有理数的混合运算、用计算器计算二. 重点、难点:1. 重点:有理数的乘方,科学记数法,有理数的混合运算法则,运用计算器进行有理数运算。
2. 难点:有理数乘方意义的理解,科学记数法的逆应用,掌握有理数混合运算的规律,选择正确途径进行准确熟练地运算。
三. 教学知识要点:1. 乘方的概念乘方是指求n个相同因数的积的运算,一般地a·a·……·a=a n(n为自然数),a叫底数,n叫指数。
它可表示求n个a的积的运算,读作“a的n次方”,也可表示乘方运算的结果,读作“a的n次幂”,如:35可读作“3的5次方”或“3的5次幂”。
2. 乘方运算因为a n的意义就是n个相同因数a的相乘,所以可以用有理数乘法法则来进行有理数的乘方运算,有理数乘法运算分两步进行:(1)根据法则确定符号。
(2)根据乘法运算计算幂的绝对值。
3. 科学记数法科学记数法是把一个绝对值大于10的数记作“a×10n”的形式,其中(1≤|a|<10)n为整数,即a的整数数位只有一位数,10的幂指数比原数的整数位数少1。
例如:60305=×104……4. 有理数混合运算的顺序先乘方(第三级运算),再乘除(第二级运算),最后加减(第一级运算)。
有括号情况下,先算括号里的式子,一般先算小括号,再算中括号,最后算大括号。
说明:(1)如果式中既含分数,又含有小数,究竟是将分数化成小数,还是将小数化成分数,要根据具体情况确定,以方便于计算为准则。
(2)出现括号的算式,要切实分清这些括号各自控制了哪些数及符号。
(3)要合理使用各种运算律,使运算简捷、方便、准确。
5. 计算器的使用方法使用计算器,先按 ON/C 键,然后按照算式的书写顺序输入数据,最后按 = ,停止使用时,按 OFF 关机。
注意:(1)负数的输入方法有两种,先输入绝对值,然后按 +/- 键,或先按 - 键,再输绝对值。
七年级有理数的乘方知识点有理数的乘方是初中数学中的一大难点,需要同学们认真掌握,下面我们来一起学习一下有理数的乘方知识点。
一、乘方的定义乘方是指同一个数连乘若干次,表示为数的基数和指数的乘积,如aⁿ。
其中,a 叫做底数,n 叫做指数。
二、有理数的乘方1. 正数的乘方当底数 a 为正数且指数为正整数 n 时,aⁿ 的意义是把 a 乘 n 次,如 2³=2×2×2=8,3²=3×3=9。
当底数 a 为正数且指数为 0 时,a⁰的值为 1。
如 2⁰=1,100⁰=1。
2. 负数的乘方当底数 a 为负数且指数为正整数 n 时,aⁿ 的意义是把 |a| 乘 n 次并乘上一个负号,如(-2)³=-2×-2×-2= -8, (-3)²=3×3=9。
当底数 a 为负数且指数为偶数(即 n 为偶数)时,aⁿ 的值为正数,如 (-2)⁴=2×2×2×2=16;当底数 a 为负数且指数为奇数(即 n 为奇数)时,aⁿ 的值为负数,如 (-2)³=-8。
3. 0 的乘方当底数 a 为 0 且指数为正整数 n 时,aⁿ 的值为 0,如 0⁴=0×0×0×0=0。
当底数 a 为 0 且指数为 0 时,a⁰的值为 1。
如 0⁰=1。
当底数 a 不为 0 且指数为 0 时,a⁰的值为 1。
如 5⁰=1。
三、有理数乘方的性质1. 乘方与乘法有理数的乘方满足基本的乘法分配律和结合律,如(ab)ⁿ=aⁿbⁿ。
2. 乘方的运算法则乘方运算遵循如下法则:aⁿ×aᵐ=aⁿ⁺ᵐ(aⁿ)ᵐ=aⁿᵐ(a×b)ⁿ=aⁿ×bⁿ(a÷b)ⁿ=aⁿ÷bⁿ其中,n,m 为整数,a,b 为有理数(b≠0)。
四、习题1. (-3)⁴的值是多少?解:(-3)⁴=3×3×3×3=812. (-8)³的值是多少?解:(-8)³=-8×-8×-8=-5123. 5²+(-3)²的值是多少?解:5²+(-3)²=25+9=344. (7×(-2))⁴÷(-4)³的值是多少?解:(7×(-2))⁴÷(-4)³=(-14)⁴÷(-64)=38416÷(-64)=-601总结:本节课主要讲解了有理数的乘方知识点,包括乘方的定义、有理数的乘方(正数、负数、0)及有理数乘方的性质。
七年级《有理数的乘方》教学设计一、教学内容本节课的教学内容选自人教版七年级数学上册第六章第三节《有理数的乘方》。
该章节主要介绍了有理数的乘方概念、性质及运算法则,旨在让学生掌握有理数乘方的基本概念,理解乘方的性质,能够熟练运用乘方法则进行计算。
二、教学目标1. 理解有理数乘方的概念,掌握有理数乘方的性质。
2. 能够运用有理数乘方法则进行计算,解决实际问题。
3. 培养学生的逻辑思维能力,提高学生分析问题、解决问题的能力。
三、教学难点与重点重点:有理数乘方的概念、性质及运算法则。
难点:理解有理数乘方的性质,熟练运用乘方法则进行计算。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:教材、练习本、文具。
五、教学过程1. 情景引入利用多媒体展示生活中的实际问题,如:“一个正方形的边长为2米,求它的面积。
”引导学生思考如何用数学知识解决此类问题。
2. 知识讲解(1)介绍有理数乘方的概念:求n个相同因数积的运算,称为乘方。
(2)讲解有理数乘方的性质:同号得正,异号得负;绝对值相等。
3. 例题讲解出示例题:计算(2)^3 + (3)^2 + 2^0。
引导学生按照乘方法则进行计算,解答过程中强调负数的奇数次幂为负数,偶数次幂为正数;任何非零数的零次幂为1。
4. 随堂练习出示随堂练习题:计算(5)^4 (2)^2 + 3^0。
学生独立完成,教师巡回指导,及时纠正错误。
5. 课堂小结六、板书设计板书内容:有理数乘方的概念:求n个相同因数积的运算。
有理数乘方的性质:同号得正,异号得负;绝对值相等。
乘方法则:负数的奇数次幂为负数,偶数次幂为正数;任何非零数的零次幂为1。
七、作业设计作业题目:1. 计算下列各题:(1)(3)^5 (2)^3 + 4^2(2)5^0 (1)^4 + 2^3答案:(1)243 (8) + 16 = 229(2)1 1 + 8 = 8八、课后反思及拓展延伸拓展延伸:引导学生思考有理数乘方在实际生活中的应用,如计算利息、折现等问题。
七年级数学《有理数的乘方》教案设计有理数的乘法是继有理数的加减法之后的又一种基本运算。
有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。
接下来是小编为大家整理的七年级数学《有理数的乘方》教案设计,希望大家喜欢!七年级数学《有理数的乘方》教案设计一教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an 中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.说明:(1)举例94来说明概念及读法.(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.(4)乘方是一种运算,幂是乘方运算的结果.(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值.(2)注意(-2)4与-24的区别.根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)()3; (2)(-)3;(3)(-)4; (4)-;(5)-22×(-3)2; (6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-an 及()n与的区别和联系.(五)课堂跟踪反馈1.课本P42练习第1、2题.2.补充练习(1)在(-2)6中,指数为,底数为.?(2)在-26中,指数为,底数为.?(3)若a2=16,则a= .?(4)平方等于本身的数是,立方等于本身的数是.?(5)下列说法中正确的是( )A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数(6)下列各组数中,不相等的是( )A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.|2|3与|-23|(7)下列各式中计算不正确的是( )A.(-1)2003=-1B.-12002=1C.(-1)2n=1(n为正整数)D.(-1)2n+1=-1(n为正整数)(8)下列各数表示正数的是( )A.|a+1|B.(a-1)2C.-(-a)D.||第2课时有理数的混合运算教学目标:1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算.教学难点:有理数的混合运算.教学过程:一、有理数的混合运算顺序:1.先乘方,再乘除,最后加减.2.同级运算,从左到右进行.3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【例1】计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(2)1-×[3×(-)2-(-1)4]+÷(-)3.强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.【例2】观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.二、课堂练习1.计算:(1)|-|2+(-1)101-×(0.5-)÷;(2)1÷(1)×(-)÷(-12);(3)(-2)3+3×(-1)2-(-1)4;(4)[2-(-)3]-(-)+(-)×(-1)2;(5)5÷[-(2-2)]×6.2.若|x+2|+(y-3)2=0,求的值.3.已知A=a+a2+a3+…+a2004,若a=1,则A等于多少?若a=-1,则A等于多少?三、课时小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.七年级数学《有理数的乘方》教案设计二【教学目标】(1)正确理解乘方、幂、指数、底数等概念.(2)会进行有理数乘方的运算.(3)培养探索精神,体验小组交流、合作学习的重要性.【教学方法】讲授法、讨论法。
初一数学有理数的乘方知识点初一数学有理数的乘方知识点在我们平凡无奇的学生时代,大家最熟悉的就是知识点吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
相信很多人都在为知识点发愁,下面是店铺为大家整理的初一数学有理数的乘方知识点,欢迎大家借鉴与参考,希望对大家有所帮助。
1.5.1乘方求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数混合运算的运算顺序:⑴先乘方,再乘除,最后加减;⑵同级运算,从左到右进行;⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行1.5.2科学记数法把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
用科学记数法表示一个n位整数,其中10的指数是n-1。
1.5.3近似数和有效数字接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。
一、代数初步知识。
1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.二、几个重要的代数式(m、n表示整数)。
七年级数学有理数的乘方答案七年级数学有理数的乘方是数学中一个重要的概念,它在我们日常生活中有着广泛的应用。
在数学中,有理数是包含整数、正数、负数和零的所有数的集合。
有理数的乘方也是指将一个有理数连乘多次的运算。
一、有理数的乘方的定义:有理数的乘方就是将一个有理数连乘多次的简称,使用符号a的n次方表示,其中a为底数,n为指数,n为正整数时,a的n次方表示n个a的积,为a的n倍;当n=0时,a的n次方等于1;当n为负整数时,a的n次方等于1/a的n次方。
例如,当a=-2,n=3时,a的n次方=(-2)的3次方= -8;当a=3,n=0时,a的n次方=3的0次方=1;当a=2,n=-2时,a的n次方=2的-2次方=1/2的2次方=1/4。
二、有理数的乘方的性质:1.同底数幂的乘法:a的m次方×a的n次方=a的m+n次方,其中a为任意有理数,m和n为任意整数。
例如,当a=2,m=3,n=4时,2的3次方 × 2的4次方 = 2的(3+4)次方=2的7次方=128。
2.幂的乘方:(a的m次方)的n次方=a的m×n次方,其中a为任意有理数,m和n为任意整数。
例如,当a=2,m=3,n=2时,(2的3次方)的2次方=2的3×2次方=2的6次方=64。
3.幂的倒数:(1/a)的n次方=1/a的n次方,其中a为任意有理数,n为任意正整数。
例如,当a=3,n=3时,(1/3)的3次方=1/3的3次方=1/27。
三、有理数的乘方的应用:1.计算面积和体积:在数学中,乘方也常常用于计算面积和体积。
例如,正方形的面积就是边长的平方,球的体积就是半径的三次方。
2.科学计数法:科学计数法是在有理数的乘方基础上发展起来的一种数学表示方法。
在科学领域中,有许多非常庞大或非常微小的数字需要用科学计数法表示。
3.财务计算:在财务和商业计算中,乘方也有广泛的应用。
例如,在计算利率、复利和投资回报时,乘方就是非常重要的工具。