研究生-第六章 常见局部腐蚀形态..
- 格式:ppt
- 大小:4.47 MB
- 文档页数:43
局部腐蚀的几种形式腐蚀定义为材料由于与其所处环境介质的反应而造成的破坏。
对于含镍材料来说,腐蚀有两种主要形式:一种是均匀腐蚀,另一种是局部腐蚀。
在海洋大气中的铁锈就是一种一般或均匀腐蚀的典型例子。
此处金属在其整个表面上均匀地被腐蚀。
在这种情况下,钢表面形成疏松层,这层腐蚀产物很容易去除。
另一方面,像合金400 这种耐腐蚀性较好的金属,它们在海洋大气中表现出良好的均匀抗腐蚀性。
这是由于合金400 可形成一种非常薄而坚韧的保护膜。
均匀腐蚀是一种最容易处理的腐蚀形式,因为工程师可以定量地确定金属的腐蚀率并可精确地预测金属的使用寿命。
由局部腐蚀而引起的破坏是很难预测的。
因而,设备的寿命也不能精确地预计。
这里给出几种局部腐蚀的例子。
1. 电化学腐蚀当两种或多种不同的金属在某种导电液(电解液)存在条件下接触和连接时,电化学腐蚀就发生了。
此时,两种金属间建立了势能差,同时电流将流动。
电流会从抗腐蚀能力较差的金属(即阳极)流向抗腐蚀能力较强的金属(即阴极)。
腐蚀由阴级上的反应情况而控制,如氢气的生成或氧气的还原。
如果某一大的阴极面与某一小的阳极面相连接时,阳极和阴极之间即会产生大的电流流动。
这种情况必须避免。
另一方面,当我们将情况颠倒一下,即让某一大的阳极面与小的阴极面相连接时,两种金属之间则会产生小的电流流动。
这种情况是我们所期望的。
在实用指南中,我们将位于某一容器或槽中的焊接金属接点设计为阴极。
紧固件装置是这样设计的,即将阴极紧固件(小面积)与阳极件(大面积)连接在一起。
此概念的例子是将钢板用铜铆钉铆接在一起并暴露在流动速度低的海水中。
铜质固定件为小的阴极面,而钢板为大的阳极面。
这种设计是非常便利的,而且可产生良好的相容性。
另一方面,如果相反进行连接,即用钢铆钉来固定铜板,则在钢铆钉上会产生非常快的腐蚀。
此时,铜板则由于钢的腐蚀而被阴极保护。
有趣的是在这种情况下,铜离子的释放被停止,铜板将被海水中的有机物缠结。
常见的局部腐蚀常见的局部腐蚀一、电偶腐蚀1、不同金属的接触腐蚀(接触腐蚀、双金属腐蚀)。
2、M M n+ + ne 2H+ + 2e H23、异种金属接触产生腐蚀电位差异,金属界面附近产生电偶电流,电位较低的金属M为阳极,溶解速度增大。
4、两者电位差较大,腐蚀倾向较大5、阴极与阳极面积比值(S K/S A)增加,阳极金属腐蚀速度增加,即增大阴极面积,阴极析氢反应加速,阳极溶解速度增大。
6、阳极腐蚀主要集中在接合处附近,超过一定的距离(有效距离)就几乎不存在电偶效应。
7、热电偶腐蚀控制(1)选择相容性材料:尽量避免异种金属或合金接触,尽量选取相容材料,在电偶序位于同组或位置较近的金属或合金。
(2)合理的结构设计:①避免小阳极—大阴极结构,大阳极—小阴极结构相对安全,因为阳极面积大,溶解速度相对减小。
②不同腐蚀电位金属材料接触时,将其绝缘。
③插入第三种金属,当绝缘设计困难时,可在其中插入能降低两者电位差的一种材料。
④将阳极部分设计成易于更换的部件。
二、小孔腐蚀1、金属局部位置出现腐蚀小孔,并向深处发展,其余区域不腐蚀或腐蚀很轻微。
孔蚀或点蚀2、蚀孔径小,只有数十微米,孔深,深度大于孔径。
孔口多有覆盖物。
3、从开始到暴露要经历几个月或1~2年的诱导期.4、蚀孔通常沿着重力或横向发展,很少在朝下的表面发生孔蚀5、通常发生在有钝化膜或保护膜的金属表面,如不锈钢、钛、铝合金等。
由于金属表面存在缺陷(表面位错、非金属杂质等)和活性离子(Cl-),金属钝化膜局部被破坏,成为阳极,未被破坏的地方为阴极,形成钝化—活化电池,生成小蚀坑(孔径多在20~30微米)。
孔外金属表面受到阴极保护,维持钝态。
6、Fe Fe2+ + 2e Cr Cr3+ + 3e Ni Ni2+ + 2e7、随着氯离子不断迁入,使孔内形成金属氯化物(如FeCl2)的浓溶液,继续水解生成盐酸,孔内pH值降低,在介质重力影响下,孔蚀向深处发展。
8、自催化酸化作用:在腐蚀过程中,孔口的pH值逐渐升高,可溶性的盐如Ca(HCO3)2转化为CaCO3沉淀物,沉积在孔口,形成闭塞电池,孔内氯化物积聚、水解,酸度进一步增高,可使pH接近于0。
常见的局部腐蚀一、电偶腐蚀1、不同金属的接触腐蚀(接触腐蚀、双金属腐蚀)。
2、M M n+ + ne 2H+ + 2e H23、异种金属接触产生腐蚀电位差异,金属界面附近产生电偶电流,电位较低的金属M为阳极,溶解速度增大。
4、两者电位差较大,腐蚀倾向较大5、阴极与阳极面积比值(S K/S A)增加,阳极金属腐蚀速度增加,即增大阴极面积,阴极析氢反应加速,阳极溶解速度增大。
6、阳极腐蚀主要集中在接合处附近,超过一定的距离(有效距离)就几乎不存在电偶效应。
7、热电偶腐蚀控制(1)选择相容性材料:尽量避免异种金属或合金接触,尽量选取相容材料,在电偶序位于同组或位置较近的金属或合金。
(2)合理的结构设计:①避免小阳极—大阴极结构,大阳极—小阴极结构相对安全,因为阳极面积大,溶解速度相对减小。
②不同腐蚀电位金属材料接触时,将其绝缘。
③插入第三种金属,当绝缘设计困难时,可在其中插入能降低两者电位差的一种材料。
④将阳极部分设计成易于更换的部件。
二、小孔腐蚀1、金属局部位置出现腐蚀小孔,并向深处发展,其余区域不腐蚀或腐蚀很轻微。
孔蚀或点蚀2、蚀孔径小,只有数十微米,孔深,深度大于孔径。
孔口多有覆盖物。
3、从开始到暴露要经历几个月或1~2年的诱导期.4、蚀孔通常沿着重力或横向发展,很少在朝下的表面发生孔蚀5、通常发生在有钝化膜或保护膜的金属表面,如不锈钢、钛、铝合金等。
由于金属表面存在缺陷(表面位错、非金属杂质等)和活性离子(Cl-),金属钝化膜局部被破坏,成为阳极,未被破坏的地方为阴极,形成钝化—活化电池,生成小蚀坑(孔径多在20~30微米)。
孔外金属表面受到阴极保护,维持钝态。
6、Fe Fe2+ + 2e Cr Cr3+ + 3e Ni Ni2+ + 2e7、随着氯离子不断迁入,使孔内形成金属氯化物(如FeCl2)的浓溶液,继续水解生成盐酸,孔内pH值降低,在介质重力影响下,孔蚀向深处发展。
8、自催化酸化作用:在腐蚀过程中,孔口的pH值逐渐升高,可溶性的盐如Ca(HCO3)2转化为CaCO3沉淀物,沉积在孔口,形成闭塞电池,孔内氯化物积聚、水解,酸度进一步增高,可使pH接近于0。