排队论的简单应用
- 格式:doc
- 大小:190.07 KB
- 文档页数:7
排队论在交通拥堵控制中的应用随着城市化进程的加速和人口的不断增长,交通拥堵问题日益严重,给人们的出行带来了极大的不便。
如何有效地控制交通拥堵,提高道路运输效率,一直是交通管理部门和学者们关注和探索的重要课题。
在这个问题上,排队论作为一种重要的数学工具和管理方法,被广泛应用于交通拥堵控制中,并取得了显著成效。
首先,我们来了解一下排队论。
排队论是研究顾客到达系统并等待服务过程中各种问题的数学方法。
在交通领域中,道路上车辆等待服务过程可以看作是一个排队系统。
通过对车辆到达率、服务速率、队列长度等参数进行建模和分析,可以得出一些关键指标,并提出相应的控制策略。
在实际应用中,我们可以将排队论运用于信号灯优化调度。
信号灯是城市道路上最常见、最直接影响道路运输效率和交通流畅度的设施之一。
通过对信号灯进行优化调度,并根据实际情况调整绿灯时间和红灯时间,可以有效地控制交通拥堵。
排队论可以帮助我们分析车辆到达率和服务速率,进而确定最佳的信号灯调度策略。
例如,在高峰期,车辆到达率较高,我们可以适当延长红灯时间,减少车辆排队等待时间,提高道路通行能力。
此外,在交通拥堵控制中,排队论还可以应用于路口交通信号配时优化。
通过对路口的车流量和服务能力进行建模和分析,我们可以确定最佳的信号配时方案。
例如,在某个路口的早晚高峰期间,通过调整不同方向道路的绿灯时间和红灯时间,并合理设置左转弯、直行、右转弯等不同行驶方向的优先权,在保证道路安全的前提下最大限度地提高交通流畅度。
此外,在公共交通系统中也可以应用排队论进行拥堵控制。
公共交通是城市出行中重要的组成部分,也是解决城市交通拥堵问题的重要手段之一。
通过对公共汽车站点进行建模和分析,并根据旅客到达率、服务速率等参数确定最佳调度策略,可以有效地提高公共交通系统的运行效率。
例如,在高峰期增加公交车班次,缩短乘客的等待时间,提高公交车运行的频率,减少乘客的拥堵感受。
除了以上几个方面,排队论在交通拥堵控制中还有很多其他应用。
排队系统的符号表述描述符号:①/②/③/④/⑤/⑥各符号的意义:①——表示顾客相继到达间隔时间分布,常用以下符号:M——表示到达的过程为泊松过程或负指数分布;D——表示定长输入;EK——表示K阶爱尔朗分布;G——表示一般相互独立的随机分布。
②——表示效劳时间分布,所用符号与表示顾客到达间隔时间分布一样。
③——表示效劳台(员)个数:“1〞表示单个效劳台,“s〞(s>1)表示多个效劳台。
④——表示系统中顾客容量限额,或称等待空间容量。
如系统有K个等待位子,那么,0<K<∞,当K=0时,说明系统不允许等待,即为损失制。
K=∞时为等待制系统,此时一般∞省略不写。
K为有限整数时,表示为混合制系统。
⑤——表示顾客源限额,分有限与无限两种,∞表示顾客源无限,一般∞也可省略不写。
⑥——表示效劳规那么,常用以下符号FCFS:表示先到先效劳的排队规那么;LCFS:表示后到先效劳的排队规那么;PR:表示优先权效劳的排队规那么。
二、排队系统的主要数量指标描述一个排队系统运行状况的主要数量指标有:1.队长和排队长(队列长)队长是指系统中的顾客数(排队等待的顾客数与正在承受效劳的顾客数之和);排队长是指系统中正在排队等待效劳的顾客数。
队长和排队长一般都是随机变量。
2.等待时间和逗留时间从顾客到达时刻起到他开场承受效劳止这段时间称为等待时间。
等待时间是个随机变量。
从顾客到达时刻起到他承受效劳完成止这段时间称为逗留时间,也是随机变量。
3. 忙期和闲期忙期是指从顾客到达空闲着的效劳机构起,到效劳机构再次成为空闲止的这段时间,即效劳机构连续忙的时间。
这是个随机变量,是效劳员最为关心的指标,因为它关系到效劳员的效劳强度。
与忙期相对的是闲期,即效劳机构连续保持空闲的时间。
在排队系统中,忙期和闲期总是交替出现的。
4.数量指标的常用记号(1)主要数量指标L——平均队长,即稳态系统任一时刻的所有顾客数的期望值;L q——平均等待队长,即稳态系统任一时刻等待效劳的顾客数的期望值;W——平均逗留时间,即(在任意时刻)进入稳态系统的顾客逗留时间的期望值;W q——平均等待时间,即(在任意时刻)进入稳态系统的顾客等待时间的期望值。
排队论的应用排队是人们日常生活中常见的一种现象,它可以在各个领域中被发现。
排队有时看似简单,但实际上是一个涉及着许多细节和规则的复杂问题。
排队论是研究这种现象的一种数学方法,它可以帮助我们更好地理解和优化排队系统。
排队论的应用广泛而深入,涉及各个方面。
首先,排队论在运输领域得到了广泛应用。
例如,在公共交通系统中,排队论可以帮助优化乘客上下车的流程,减少等待和拥堵时间。
同时,在物流领域,排队论可以协助规划货物的运输路线和时程,提高运输效率。
其次,排队论在服务行业中也有重要的应用。
例如,在银行、医院和餐厅等场所,排队论可以帮助优化客户的等待时间,提高客户满意度。
通过合理安排服务窗口、分配服务资源以及优化服务流程,排队论可以帮助提供更高质量的服务体验。
此外,排队论还在制造业中发挥重要作用。
在生产线上,排队论可以帮助优化机器和工人的调度,提高生产效率。
通过合理调整工作流程、减少等待时间,排队论可以帮助企业提高生产线的整体效益。
不仅如此,排队论还在通信网络中得到了广泛应用。
在互联网时代,人们对于网络服务的需求越来越高,因此如何更好地管理网络流量成为了一个重要的问题。
通过排队论,可以帮助网络运营商合理分配带宽和资源,提高网络的可用性和稳定性。
另外,排队论还在金融行业中发挥着重要作用。
在股票交易所中,随着投资者数量的增加,交易系统的负荷也在不断增加。
排队论可以帮助交易所合理规划交易系统的容量和速度,提高交易效率和可靠性。
总体而言,排队论的应用范围非常广泛,几乎涉及到人们生活的方方面面。
通过排队论,我们可以更好地理解和优化排队系统,提高效率、降低成本。
然而,要注意的是,排队论只是一种方法论,具体的应用需要根据实际情况和需求来进行适当的调整和优化。
希望随着科技的发展和人们对服务质量的要求越来越高,排队论能够在更多领域中得到应用并取得更大的成就。
排队论在餐厅排队管理中的应用餐厅作为人们日常生活中非常重要的一部分,其经营管理的效率和质量直接关系到顾客的用餐体验和餐厅的经济效益。
然而,由于顾客数量众多和服务过程中存在一定的不确定性,餐厅排队管理一直是一个具有挑战性的问题。
为了提高顾客满意度和经营效益,越来越多的餐厅开始应用排队论来优化其排队管理。
本文将探讨排队论在餐厅排队管理中的应用,并分析其对提高服务质量和经营效益所起到的作用。
首先,我们来了解一下什么是排队论。
排队论是运筹学中研究顾客到达过程、服务过程以及系统性能指标等问题所使用的数学工具。
它通过对系统各个要素进行建模,并运用概率统计方法进行分析,从而得出关于系统性能指标(如平均等待时间、平均逗留时间等)以及资源利用率、吞吐量等方面有关问题答案。
在餐厅中,顾客到达过程是指顾客从进入餐厅到排队的过程。
排队过程是指顾客在餐厅内等待的过程。
服务过程是指顾客点餐、制作、上菜等环节。
在这个过程中,排队论可以帮助餐厅管理者更好地理解和优化顾客到达和服务的规律,从而提高整个排队系统的效率。
首先,排队论可以帮助餐厅管理者预测和优化顾客到达过程。
通过对历史数据的分析和概率统计方法的运用,可以建立到达模型,预测不同时间段内顾客到达的数量和间隔时间。
这对于餐厅来说非常重要,因为它可以帮助餐厅管理者合理安排人员和资源,并提前做好准备工作,以应对高峰期的突发情况。
其次,排队论可以帮助餐厅管理者优化服务过程。
通过对服务环节进行建模,并运用概率统计方法进行分析,可以得出不同服务环节所需时间以及不同菜品制作所需时间等数据。
这些数据对于合理安排人员、提高工作效率非常重要。
例如,在高峰期增加点单窗口或者增加制作人员数量等措施都是根据排队论的分析结果进行的决策。
最后,排队论可以帮助餐厅管理者优化排队策略。
通过对排队模型进行建模,并运用概率统计方法进行分析,可以得出最优的排队策略。
例如,可以根据顾客到达的规律和服务环节所需时间等因素,确定最佳的服务窗口数量和顾客受理规则等。
排队论在服务系统中的应用随着现代社会服务行业的不断发展,长时间的排队等待已经成为了服务系统中的一大难题。
而解决这个难题的重要方法之一就是排队论。
所谓排队论,是指对服务系统进行定量的分析和设计,通过数学模型来预测系统的性能,以优化服务体验。
本文将介绍排队论在服务系统中的应用,以及如何通过排队论来提升服务效率和用户满意度。
一、排队论的基本概念排队论的核心理论是排队模型,由五个元素构成:顾客到达(Arrivals)、服务设施(Service)、队列(Queue)、系统容量(Capacity)和服务策略(Discipline)。
其中,顾客到达是指有多少顾客到达系统,服务设施是指系统中有多少服务台,队列是指排队等待的顾客数目,系统容量是指服务台的总容纳量,服务策略则是指服务员如何安排服务顺序。
排队论的主要目的是优化顾客的等待时间和服务设施的利用率,从而提升顾客满意度。
通过排队模型,可以对服务系统进行分析和设计,找出并解决痛点,提升服务效率和质量。
二、排队论在服务系统中的应用排队论在服务系统中的应用非常广泛,几乎涉及到我们生活中的各个领域。
比如餐饮服务、医疗服务、公共交通等等,都可以使用排队论来优化服务流程。
(一)餐饮服务在餐厅中,大多数顾客都是在饭点时同时到达,如果服务不及时,则顾客就会出现长时间的等待排队。
为了减少等待时间,餐厅可以通过排队论来进行预测和控制,如何增加就餐的流水线,启用预定等服务。
(二)医疗服务医院就诊的排队也是服务行业中比较重要的一个环节。
通过排队论,医院可以对病人就诊流程进行合理规划设计,如通过加速检查和缩短检查时间来减少等待时间,或者设置呼叫系统来提高就医效率。
对于需要等待手术,就诊时间较长的病人,更可以加入就医者评价、服务员质量管理等个性服务的安排,优化就医体验。
(三)公共交通在公共交通领域中,排队论的应用也很广泛。
如公交车站、地铁站等等。
这些服务系统中许多时候会存在因等待时间过长而带来的等待焦虑、排队安全问题等相关问题。
排队论在供应链管理中的应用探究供应链管理是一个复杂的领域,它涉及到从原材料采购到产品销售的整个流程,需要考虑生产计划、库存管理、物流配送等多个方面的问题。
在这个过程中,排队论是一种非常有用的工具,它可以帮助企业优化生产流程,提高效率,减少浪费。
排队论是一种数学方法,它通过模拟排队现象的变化来预测排队等待时间、系统容量、利用率等指标。
在供应链管理中,排队论可以用来优化生产线的布局、产品的库存管理、订单的处理等方面。
下面就从这几个方面来探究排队论在供应链管理中的应用。
1、生产线布局的优化在生产流程中,如果每个工作站的加工时间不同,那么就会出现排队等待的情况。
如果每个工作站的产能都相等,那么就会出现浪费和瓶颈。
排队论可以帮助企业合理安排生产线的布局,减少排队等待的时间,提高生产效率。
排队论的核心是看待整个生产线为一个排队系统,包括到达队列、服务台和离开队列等多个部分。
通过模拟不同的生产线布局,可以计算出每个工作站的最优加工时间和订单的最大处理能力。
从而优化生产线的布局,提高生产效率。
2、库存管理的优化在供应链管理中,库存管理是非常重要的一环。
如果企业的库存过多,就会造成浪费和资金占用,如果库存过少,就容易出现缺货和延迟交货的情况。
排队论可以帮助企业优化库存管理,实现精准的库存控制。
首先,要理解库存的本质。
库存是为了满足未来的需求而提前储备的物料或者货品。
在排队论中,库存被认为是等待加工的空间,它会占用服务台的容量。
通过模拟不同的库存管理策略,可以计算出最优的库存水平和订单处理能力,从而实现库存控制和订单的优化。
3、订单的处理在供应链管理中,订单处理是一个非常重要的环节。
如果订单处理能力不足,就会出现延迟交货、顾客投诉等问题。
排队论可以帮助企业优化订单处理流程,实现高效的订单处理和交货。
对于订单处理,排队论的核心是分析订单到达的频率和订单的处理时间。
通过模拟不同的订单处理策略,可以计算出最优的处理能力和订单的最大处理量。
运筹学中的排队论分析与应用运筹学是一门研究如何最优化决策的学科。
在现代社会中,许多场景下都存在排队现象,例如银行、超市、机场等场所。
排队论作为运筹学的一个重要分支,专门研究如何通过合理的排队策略来优化服务效率与用户体验。
本文将介绍排队论的基本原理、应用场景以及如何利用排队论进行实际问题的分析与解决。
一、排队论的基本原理排队论是研究排队系统的理论与方法,其基本原理包括排队模型、排队规则以及排队指标。
1. 排队模型排队模型是对排队系统进行抽象和建模的过程,常用的排队模型有M/M/1、M/M/c、M/G/1等。
其中,M表示顾客到达过程符合泊松分布,而服务过程符合指数分布;1表示一个服务台,c表示多个服务台;G表示总体服从一般分布。
2. 排队规则排队规则是指在排队系统中,顾客到达和离开的规则。
常用的排队规则有先到先服务(First-Come-First-Serve,简称FCFS)、最短作业优先(Shortest Job First,简称SJF)、优先级法则等。
3. 排队指标排队指标是对排队系统性能的度量,常用的排队指标包括平均等待时间、平均逗留时间、系统繁忙度等。
这些指标可以帮助我们评估排队系统的效率,并进行比较和优化。
二、排队论的应用场景排队论的应用场景非常广泛,几乎可以涵盖各个行业。
下面以几个典型的应用场景为例,介绍排队论在其中的分析与应用。
1. 银行排队银行是排队论的典型应用场景之一。
通过排队论的分析,银行可以确定合理的柜台数量和工作人员配置,以减少客户的等待时间和提高服务效率。
此外,银行还可以考虑引入预约系统、自助服务等方式,进一步优化排队系统。
2. 售票窗口排队售票窗口也是一个常见的排队场景,如电影院、火车站等。
利用排队论,可以根据顾客到达的速率和服务时间的分布,预测等待时间,并提前安排足够的窗口进行服务,以提高售票效率和用户体验。
3. 交通信号灯优化交通信号灯的优化也可以借助排队论的方法。
通过对道路上车辆到达和通过的流量进行统计和分析,可以调整信号灯的信号周期和配时方案,以减少交通拥堵和减少等待时间。
第一章排队论问题的基本理论知识排队是日常生活中经常遇到的现象,本章将介绍排队论的一些基本知识和常见的排队论的模型,使我们对排队论有一个基本的认识。
1.1 预备知识下图是排队过程的一般模型:各个顾客由顾客源(总体)出发,到达服务机构(服务台、服务员)前排队等候接受服务,服务完成后离开。
我们说的排队系统就是图中虚线所包括的部分。
一般的排队系统都有三个基本组成部分:输入过程;排队规则;服务机构。
1.输入过程输入过程考察的是顾客到达服务系统的规律。
可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。
对于随机型的情形,要知道单位时间内的顾客到达数或到达的间隔时间的概率分布。
2.排队规则排队规则分为等待制、损失制和混合制三种。
当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。
在等待制中,为顾客进行服务的次序可以是先到先服务,或后到先服务,或是随机服务和有优先权服务。
如果顾客来到后看到服务机构没有空闲立即离去,则为损失制。
有些系统因留给顾客排队等待的空间有限,因此超过所能容纳人数的顾客必须离开系统,这种排队规则就是混合制。
3.服务机构可以是一个或多个服务台。
服务时间一般也分成确定型和随机型两种。
但大多数情形服务时间是随机型的。
对于随机型的服务时间,需要知道它的概率分布。
1.2 模型理论分析1.2.1 模型分类排队模型的表示:X/Y/Z/A/B/CX—顾客相继到达的间隔时间的分布;Y—服务时间的分布;M—负指数分布、D—确定型、Ek —k阶爱尔朗分布。
Z—服务台个数;A—系统容量限制(默认为∞);B—顾客源数目(默认为∞);C—服务规则(默认为先到先服务FCFS)。
1.2.2 模型求解一个实际问题作为排队问题求解时,只有顾客到达的间隔时间分布和服务时间的分布须要实测的数据来确定,其他的因素都是在问题提出时给定的。
并且必须确定用以判断系统运行优劣的基本数量指标,解排队问题就是首先求出这些数量指标的概率分布或特征值。
基于排队论的简单实际应用摘要:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。
本文根据排队论进行了一个简单的实际应用讨论。
根据该办公室的电话系统状况得知其服从排队论模型规律,用)(t Pn 表示在时刻t ,服务系统的状态为n (系统中顾客数为n )的概率。
通过输入过程,排队规则,和服务机构的具体情况建立关于)(t Pn 的微分差分方程求解。
令0)('=t P n 把微分方程变成差分方程,而不再含微分了,因此这样意味着把)(t Pn 当作与t 无关的稳态解。
关于标准的M/M/s 模型各种特征的规定于标准的M/M/1模型的规定相同。
另外规定各服务器工作是相互独立(不搞协作)且平均服务率相同.==...==s 21μμμμ于是整个服务机构的平均服务率为μs ;令,s =μλρ只有当1<s μλ时才不会排成无限的队列,成这个系统为服务强度,各顾客服务时间服从相同的负指数分布.关键词:泊松分布,指数分布,概率,期望,Little 公式一、基于排队论的简单介绍M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,//1前面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。
蒙特卡洛方法:蒙特卡洛法蒙特卡洛(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。
这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。
该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。
排队论研究的基本问题(1)排队系统的统计推断:即判断一个给定的排队系统符合于哪种模型,以便根据排队理论进行研究。
(2)系统性态问题:即研究各种排队系统的概率规律性,主要研究队长分布、等待时间分布和忙期分布等统计指标,包括了瞬态和稳态两种情形。
(3)最优化问题:即包括最优设计(静态优化),最优运营(动态优化)。
二、排队论在实际问题中的应用问题的陈述:办公室有三条电话线可以打进,也就是说在任意时刻最多能打进接待三通话者来访,打进的电话是随机的,其时间服从上午九点至下午五点的均匀分布,每次电话的持续时间是均值为6分钟的随机变量,经理关心由于占线而可能打不进来的人数。
他们当中有人稍后可能重拨电话,而其他人则可能放弃通话,一天中接通的电话平均数是70。
1、问题的提出:请仿真这个办公室的电话系统并给出如下估计:(1)无电话占线,有一条、两条占线和三条占线的时间百分比;(2)没有打进电话的人所占的百分比。
(3)若办公室再新装一部电话,你怎样修改模型?改进这一模型还需要其他什么信息?2、问题的分析:这是一个多服务台混合制模型M/M/s/K,顾客的相继到达时间服从参数为λ的负指数分布(即顾客的到达过程为Poisson流),服务台的个数为s,每个服务台的服务时间相互独立,且服从参数为μ的负指数分布,系统的空间为K 。
3、背景的分析:在办公室三部电话系统的前提下,研究其工作情况,无电话占线、有一个、有两个、三个都占线所占的时间百分比,为保证顾客源不致过多的流失,能够接通更多的电话,比较研究是否应该新增加一台电话。
4、建立的模型:①假设:顾客的相继到达时间服从参数为λ的负指数分布,服务时间服从参数μ的负指数分布,)(t Pn 表示在时刻t ,服务系统的状态为n (系统中顾客数为n )的概率,平稳状态队长N 即系统中的顾客数其期望值S L ,平稳状态排队长P N ,指系统中排队等待服务的顾客数其期望值为q L ,逗留时间T 指平稳状态顾客在系统中的停留时间,记它的期望值为S W ,等待时间p T 指平稳状态顾客在系统中排队等待的时间,期望值记作q W ,n λ表示当系统处于n 时新来顾客的平均到达率,n μ表示当系统处于n 时,整个系统的平均服务率,s 是系统中并行服务的台数,μλρ/=s 为系统的服务强度。
Little 公式为:,λLW =μλ1-==W L W qq ,顾客拨打这三部电话是等可能性的。
②模型形式:为求平稳分布,考虑系统处的任一状态n 。
假设记录了一段时间内系统进入状态n 和离开状态n 的次数,则因为“进入”和“离开”是交替发生的,所以这两个数要么相等要么相差1。
但就这两件事件平均发生率来说,可以认为是相等的。
即当系统运行相当时间而达到平衡状态后,对任一状态n 来说,单位时间内进入该状态的平均次数和单位时间内离开该状态的平均次数应该相等,这就是系统在统计平衡下的“流入=流出”原理。
根据这一原理,可得到任一状态下的平衡方程如下: 0 0011p p λ=μ 1 1112200p )(p p μ+λ=μ+λ 2 2223311p )(p p μ+λ=μ+λ n-1 1n 1n 1n n n 2n 2n p )(p p -----μ+λ=μ+λ n n n n 1n 1n 1n 1n p )(p p μ+λ=μ+λ++--由上述平衡方程,可求得 0: 011p p μλ=1: 01201121001121212p p )p p (1p p μμλλ=μλ=λ-μμ+μλ=2: 0123012232112232323p p )p p (1p p μμμλλλ=μλ=λ-μμ+μλ=n : 01101111111)(1p p p p p p n n n n n n n n n n n n n n n n μμμλλλμλλμμμλ +-+--+++==-+=记11021μμμλλλ ---=n n n n n C n=1,2,…则平稳状态的分布为:0p C p n n = n=1,2,…由概率分布的要求10=∑∞=n np有1101=⎥⎦⎤⎢⎣⎡+∑∞=p C n n 于是∑∞=+1011n NC p上式只有当分母级数收敛时才有意义,即当〈∞∑∞=1n n C 时,才能由上述公式得到平稳状态的概率分布。
由上面推导知本电话系统模型中有:=n λ⎩⎨⎧≥-=K n K n 01,2,1 λ⎩⎨⎧≤≤μ≤≤μ=μKn s s s n 0n n于是⎪⎪⎩⎪⎪⎨⎧≤≤ρ<≤ρ=-Kn s p s!s s n 0p !n p 0s n 0n n其中⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=ρ⎪⎪⎭⎫ ⎝⎛+-ρ+ρ=-≠ρ⎪⎪⎪⎪⎭⎫ ⎝⎛ρ-+-ρ-ρ+ρ=-=--∑∑1)1s K (!s !n 0n 1s 1)1(!s )s 1s K 1(!n 0n 1s p s 1s n s 1s sn由平稳分布n ρ,n=0,1,2,…,K,可得平均排队长为:⎪⎪⎩⎪⎪⎨⎧=ρ+--ρ≠ρ-ρ+-ρ--+-ρ-ρ-ρρ=-=∑=1!s 2)1s K )(s K (p 1]s s K )1s K )(1(s 1s K 1[)1(!s p p )s n (L s s0s s2s ss 0n K s n q为求平均队长,由∑∑∑===-=-=Ksn nK sn n Ks n nP p s np p s n L )(⎪⎭⎫⎝⎛---=∑∑∑-=-==101001s n n s n n K n n p s np np s p )s n (L 1s 0n n ---=∑-=得到∑-=ρ-++=1s 0n n 0P !n )s n (p s L L由系统的空间的有限性,必须考虑顾客的有效到达率e λ。
对多服务台系统有e λ=)p 1(K -λ再利用Little 公式为:,LW eλ=μλ1-==W L W e q q 平均被占用的服务台数(也就是正在接受服务的顾客的平均数)为:因此,又有)p 1(L s L L K q q -ρ+=+=③模型求解:题中该办公室系统可看成M/M/3/3排队模型,其中 平均到达率:λ= ==⨯-48760)917(700.146人/分钟;平均服务率:μ=167.061=人/分钟 服务强度:=ρμλ=167.1146.1=0.982 于是可得空闲(无电话占线)的概率1320!3!21p -⎥⎦⎤⎢⎣⎡ρ+ρ+ρ+==0.381=38.1% 有一条占线的概率 01p p ρ==0.982⨯0.381=0.375=37.5%有两条占线的概率 !2)982.0(p !2p 2022=ρ=0p =0.184=18.4% )p 1(p s !s 1s !s s !s s !n p s !s s )!1n (p s !s s !n n p p s np s K 0s K K1s 0n K s n s K K s n n n 01s 1n Ks n 1s n 1n 1n 01s 0n Ks n s n n n 0Ksn n1s 0n n -ρ=⎪⎪⎭⎫ ⎝⎛ρ-ρ=⎥⎦⎤⎢⎣⎡ρ-ρ+ρρ=⎥⎦⎤⎢⎣⎡ρ+-ρρ=⎥⎦⎤⎢⎣⎡ρ+ρ=+=--==---==-----==-=-=∑∑∑∑∑∑∑∑有三条占线率的概率 =⨯=ρ=381.0!3)982.0(p !3p 30330.158=0.06=6.0%系统的顾客损失率为3p =0.06,即有6%的呼叫不能接通,即没有打进电话的人占6%。
系统的相对通过能力Q=1-3p =0.94,即有94%的呼叫可以接通。
系统的绝对通过能力A=λQ=0.146⨯0.94=0.137,即每分钟可接通0.137次(每小时8.23次)呼叫。
被占用的中继线的平均数为:Q p s ρρ=-=)1(3=0.982×0.94=0.923(条)通道利用率:s s =η=3923.0=0.308=30.8%4、结果分析:工作时间内,接通电话的总时间(三部电话)为:6×70=420(分钟),由于三部电话相互独立,打进的电话是随机的,其时间服从上午九点至下午五点的均匀分布则知三部电话的空闲率直观上看其和为:p=)8607061(⨯⨯-×3=3/8=0.375与模拟的结果0.381相差不大。
5、讨论模型的优缺点:优点在于能巧妙的利用排队论的理论及概率学里边的函数分布规律(泊松分布、指数分布等)将一个看似离散随机的电话系统赋予数学的推导,得出一套基本可行方案,对实际问题的研究和解决提供参考依据。
缺点在于实际问题中顾客往往会选择拨打三部电话当中的第一部,当第一部占线时才会去拨第二部或第三部,这样第一部电话的忙时的概率相对另外两部来说要高很多,还有顾客打来电话很有可能在一段时间内会很多,这样的时间也许会延续很长因而模型估计的三条都占线的概率可能偏小导致与实际情况相差很大,即在忙的时间内可能还有很多的顾客打来电话。
这些电话因占线接不到而流失,模型的相对理想化忽略了这些情况。