物理化学第十二章胶体化学
- 格式:ppt
- 大小:1.65 MB
- 文档页数:70
物理化学下册第五版天津大学出版社第十二章胶体化学习题答案12.1 如何定义胶体系统?总结交替的主要特征。
解:分散相粒子在某方向上的线度在1~100nm范围内的高度分散系统成为胶体系统。
胶体系统的主要特征是高度分散、多相性和热力学不稳定性。
12.2 丁铎尔效应的实质及其产生的条件?解:丁铎尔效应实质是光的散射作用引起的。
粒子的半径小于入射光的波长时才能观察到丁铎尔效应。
12.3 简述斯特恩双电层模型的要点指出热力学电势、斯特恩(stern)电势和ζ电势的区别?解:Stern 模型:固定层+扩散层、三个面、三个电势。
具体如下:1924年斯特恩提出扩散双电层:离子有一定的大小;部分反离子被牢固吸附,形成固定吸附层或斯特恩固体面;Stern面:Stern层中反离子电性中心所形成的假想面;滑动面:固液两相发生相对移动时界面。
热力学电势0:固体面—溶液本体;Stern电势:Stern面—溶液本体;电势:滑动面—溶液本体12.4 溶胶能在一定时间内稳定存在的主要原因?解:分散相粒子的带电、溶剂化作用以及布朗运动是溶胶系统相当长得时间范围内可以稳定存在的主要原因。
12.5 破坏胶体最有效的办法是什么?说明原因。
解:破坏胶体最有效的办法是在溶胶中加入过量的含有高价相反号离子的电解质。
这主要是因为电解质的浓度或价数增加时,都会压缩扩散层,是扩散层变薄,电势降低,斥力势能降低,当电解质的浓度足够大时就会使溶胶发生聚沉;若加入的反号离子发生吸附,斯特恩层内的反离子数目增加,使胶体粒子的带电量降低,而导致碰撞聚沉。
过量的电解质加入,还将使胶体粒子脱水,失水化外壳而聚沉。
12.6 K、Na等碱金属的皂类作为乳化剂时,易于形成O/W型的乳状液;Zn、Mg等高价金属的皂类作为乳化剂时,易于形成W/O 型的乳状液。
解:乳化剂分子具有一端亲水而另一端亲油的特性,其两端的横截面不等。
当它吸附在乳状液的界面面层时,常呈现“大头”朝外,“小头”向里的几何构型,就如同一个个的锲子密集的钉在圆球上。
第12章胶体化学一、选择题1.对于有过KI存在的AgI溶腔.电解质聚沉能力最强的是()。
[中国科学技术大学2010研]A.MgSO4B.FeCl3C.NaClD.K3[Fe(CN)6]【答案】B【解析】AgI溶胶中KI过量,KI过量时,AgI胶团的结构为{(AgI)m·nI-·(n-x)K+}x-·xK+,表面带了负电荷,,阳离子价数越高,聚沉能力越强。
2.向25cm3、浓度为0.02mol·dm-3的AgNO3溶液中滴入25cm3的0.01mol·dm-3KI 溶液制备AgI溶胶,该溶胶ζ电位( )。
[天津大学2008研]A.>OB.=0C.<OD.不确定【答案】A【解析】因AgNO3过量,故制备的AgI溶胶为正溶胶,溶胶的ζ电位>0。
.3.用相同体积0.01mol·dm-3KI和0.15mol·dm-3AgNO3溶液制备的AgI溶胶,分别加入相同浓度的下列电解质,聚沉能力最强的是:[中国石油大学(华东)2005年] A.NaClB.FeCl3C.MgSO4D.K3PO4【答案】D【解析】所制备的AgI溶胶为AgI的正溶胶,即胶粒带正点,起聚沉作用的主要是负离子。
比较选项中阴离子的价位可知,聚沉能力最强的是K3PO4。
4.憎液溶胶有如下性质:[中国石油大学(北京)2004年]A.是均相系统B.胶粒直径小于100nmC.胶粒可透过半透膜D.胶团带电【答案】B【解析】形成憎液溶胶的必要条件是:①分散相的溶解度要小;②必须有稳定剂的存在,否则胶粒易聚结而聚沉。
5.对于AgI的水溶胶,当以KI为稳定剂时胶团结构式为:、其中称为胶粒的是:(北京化工大学2001年)A.(AgI)mB.(AgI)m·nI-【答案】C6.导致Donnan平衡产生的根本原因是:(中国科学技术大学2006年)A.溶液浓度大,大离子迁移速度慢B.小离子浓度大,影响大离子通过半透膜C.大离子不能透过半透膜,且因静电作用使小离子在膜两边浓度不同D.大离子浓度大,妨碍小离子通过半透膜【答案】C7.有关DLVO理论,以下哪种说法不正确:(中国科学技术大学2006年)A.能够定量描述胶体稳定性与粒子之间相互排斥和吸引作用之间的关系B.能够在理论上解释Schulze-Hardy规则C.仅适合胶体粒子表面带有电荷的体系D.能够阐述ζ电势的物理意义【答案】D【解析】DLVO理论的基本观点:①胶粒之间存在着斥力势能和吸力势能;②系统总势能是斥力势能和吸力势能的加和;③总势能、斥力势能和吸力势能均随胶粒间距的改变而改变。
思考题:1.为什么加入与胶体粒子电荷异号离子能引起聚沉呢?2.在进行重量分析实验时,为了尽可能使沉淀完全,通常加入大量电解质,或将溶胶适当加热,为什么?试从胶体分散体系观点解释。
3.胶粒吸附稳定离子时有何规律?4.影响胶粒电泳速率的主要因素有哪些?电泳现象说明什么问题?5.什么是ζ-电势?如何确定ζ-电势的正、负号?选择题:1.溶胶与大分子溶液的相同点是(C)A.热力学稳定体系B.热力学不稳定体系C. 动力学稳定体系D. 动力学不稳定体系2.稀的砷酸溶液中通入H2S制备As2S3溶胶,H2S适当过量,则胶团结构为(B)A.[(As2S3)m·nH+,(n-x)HS—]x+·xHS—B.[(As2S3)m·nHS—,(n-x)H+]x-·xH+C. [(As2S3)m·nH+,(n-x)HS—]x-·xHS—D. [(As2S3)m·nHS—,(n-x)H+]x+·xHS-3.下列诸性质中,哪一个属于亲液溶胶(A)A.溶胶与凝胶作用可逆B.需要第三种物质作稳定剂C. 对电解质十分敏感D. 丁达尔效应很强4.关于ζ-电势,描述错误的是(C)A.是指胶粒的相对运动边界与液体内部的电位差B.其值随外加电解质而变化C. 其值一般高于热力学电势D. 有可能因外加电解质而改变符号5.有两种利用光学性质测定溶胶浓度的仪器:比色计和比浊计,它们分别观察胶体溶液的(B)A.透射光、折射光B.透射光、散射光C. 透射光、反射光D. 折射光、散射光6.大分子溶液分散质的粒子尺寸为(C)A.> 1μm B.< 1 nm C. 1 nm ~ 1μm D. > 1 mm7.下列分散系统中,丁达尔效应最强的是(D)A.空气B.蔗糖水溶液 C. 大分子溶液 D.硅胶溶胶8.向碘化银正溶胶中滴加过量的KI溶液,生成的新溶胶在外加直流电场中的移动方向为(A)A.向正极移动B.向负极移动 C. 不移动 D.无法确定9.用0.08mol·L-1的KI和0.1mol·L-1的AgNO3溶液等体积混合制成水溶胶,电解质CaCl2、Na2SO4、MgSO4对它的聚沉能力顺序为(C)A.Na2SO4 > CaCl2 > MgSO4B.MgSO4 > Na2SO4 > CaCl2C. Na2SO4 > MgSO4 > CaCl2D. CaCl2 > Na2SO4 > MgSO410.下面属于水包油型乳状液(O/W型)基本性质之一的是BA.易于分散在油中B.导电性强C. 导电性弱D. 乳化剂的特点是亲油性强11.将两滴K4[Fe(CN)6]水溶液滴入过量的CuCl2水溶液中形成亚铁氰化铜正溶胶,下列四种电解质聚沉值最大的是(A )A. KBrB.K2SO4C. K4[Fe(CN)6]D. NaCl12.在相同的温度及浓度下,同一高分子化合物在良性溶剂中与在不良性溶剂中其散射强度是 ( )A. 在良性溶剂中的散射强度大于在不良性溶剂中的散射强度B. 在良性溶剂中的散射强度小于在不良性溶剂中的散射强度C. 在良性溶剂中的散射强度等于在不良性溶剂中的散射强度D. 无法确定13. 下列属于溶胶光学性质的是( B )A .唐南平衡 B. 丁达尔效应C .电泳 D. 沉降平衡14. 在等电点上,两性电解质(如蛋白质、血浆等)和溶胶在电场中(C )A .向正极移动 B. 向负极移动C .不移动 D.无法确定15. 胶体系统产生丁达尔现象的实质是胶体粒子对光的 ( C )A .反射 B. 透射 C .散射 D. 衍射16. 若分散相固体微小粒子表面吸附负离子,则该胶体粒子的ζ-电势( B )A .大于零 B. 小于零 C .等于零 D. 等于外加电势差17. 对于以AgNO 3为稳定剂的AgCl 水溶胶胶团结构,被称为胶体粒子的是( D )A .m AgCl ][ B. -+--⋅x m Ag x n nNO AgCl })(]{[3C .-+-+⋅-⋅33})(]{[xNO NO x n nAg AgCl x m D. +-+-⋅x m NO x n nAg AgCl })(]{[318. 一定量以KI 为稳定剂的AgI 溶胶,分别加入浓度c 相同的下列电解质溶液,在一定时间范围内,聚沉值最小的是 ( A )A .La(NO 3)3 B. NaNO 3 C .KNO 3 D.Mg(NO 3)219. 作为乳化剂的表面活性剂分子大的一端亲水,小的一端亲油,则此乳化剂有利于形成( )型乳状液A .O/W B. O/W C .O/W 和O/W D. 不确定20. 使用明矾KAl(SO 4)2·12H 2O 来净水,主要是利用( A )A. 胶体的特性吸附B. 电解质的聚沉作用C. 溶胶之间的相互作用D. 高分子的絮凝作用判断题1. ζ-电势在数值上一定小于热力学电势。
52第十二章胶体化学12-1 如何定义胶体系统?总结胶体系统的主要特征。
答:(1) 胶体定义:胶体系统的主要研究对象是粒子直径d至少在某个方向上在1-100nm之间的分散系统。
(2) 胶体系统的主要特征:溶胶系统中的胶粒有布朗运动,胶粒多数带电,具有高度分散性,溶胶具有明显的丁达尔效应。
胶体粒子不能透过半透膜。
[注] 溶胶系统中的胶粒的布朗运动不是粒子的热运动,且只有溶胶才具有明显的丁达尔效应。
12-2 丁铎尔效应的实质及产生的条件是什么?答:丁铎尔现象的实质是光的散射作用。
丁铎尔效应产生的条件是分散相粒子的直径小于入射光波长、分散相与分散介质的直射率相差较大。
12-3 简述斯特恩双电层模型的要点,指出热力学电势、斯特恩(Stern)电势和 电势的区别。
答:斯特恩认为离子是有一定大小的,而且离子与质点表面除了静电作用外还有范德华力。
(1) 在靠近质点表面1~2个分子厚的区域内,反离子受到强烈地吸引而牢固地结合在质点表面,形成一个紧密地吸附层-斯特恩层,(2) 在斯特恩层,非离子的电性中心将形成一假想面-斯特恩面。
在斯特恩面内电势呈直线下降的变化趋势,即由质点表面的 0直线下降至处的 s, s称为斯特恩电势;(3) 其余的反离子扩散地分布在溶液中,构成双电层的扩散层部分。
在扩散层中,电势由 s降至零。
因此斯特恩双电层由斯特恩层和扩散层构成;(4) 当固、液两相发生相对运动时,紧密层中吸附在质点表面的反离子、溶剂分子与质点作为一个整体一起运动,滑动面与溶液本体之间的电势差,称为 电势。
热力学电势 0是质点表面与液体内部的总的电位差,即固液两相之间双电层的总电势。
它与电极∕溶液界面的双电层总电势相似,为系统的热力学性质,在定温定压下,至于质点吸附的(或电离产生的)离子在溶液中活度有关,而与其它离子的存在与否无关。
斯特恩电势 s是斯特恩面与容液本体的电势差,其值与集中在斯特恩层里的正负离子的电荷总数有关,即与双电层的结构状态有关。
第12章胶体化学12.1 复习笔记分散系统:把一种或几种物质分散在一种介质中构成的系统称为分散系统,包括分散相和分散介质。
分散相:被分散的物质。
分散介质:分散系统中呈连续分布的物质。
根据分散相粒子的大小,将分散系统分为三类:①真溶液(被分散物质以分子、原子或离子即质点直径d<1nm形式均匀分散,不存在相界面);②胶体系统(分散相粒子直径d 介于1~1000nm之间);③粗分散系统(分散相粒子直径d>1000nm,包括悬浮液、乳状液等,存在明显的相界面)。
一、胶体系统分散相粒子粒径d在1~1000nm范围之间的高度分散系统称为胶体系统。
可分溶胶(分散相为由许多原子或分子组成的有界面的粒子,热力学不稳定系统)、高分子溶液(分散相是没有相界面的大分子,均相热力学稳定系统)和缔合胶体(分散相是由表面活性剂缔合形成的胶束)。
特点:可发生光散射;胶体粒扩散速率慢;不能透过半透膜;具有较高的渗透压;高度分散性。
二、溶胶的光学性质 在暗室中当将点光源发出的一束经聚集的光照射到胶体系统时,在垂直于入射光的方向上可观察到一个发亮的光锥,此现象称为丁铎尔效应。
丁铎尔效应是胶体粒子粒径小于可见光的波长而发生光的散射的结果。
单位体积液溶胶的散射光强度I 可由瑞利公式计算()2222200422209π1cos 2λ2V C n n I αI l n n ⎛⎫-=+ ⎪+⎝⎭式中:I 0及λ表示入射光的强度与波长;n 及n 0分别为分散相及分散介质的折射率;α为散射角,即观察方向与入射光之间的夹角;V 为单个分散相粒子的体积;C 为分散相的数浓度即单位体积中的粒子数;l 为观察者与散射中心的距离。
此式适用于粒子尺寸远小于入射光波长时,可将粒子看成点光源;粒子不导电;粒子相距较远,不考虑各粒子散射光之间的相互干涉。
由公式可知:(1)单位体积的散射光强度与每个粒子体积的平方成正比;(2)散射光强度与入射光波长的4次方成反比,即波长愈短其散射光愈强;(3)分散相与介质的折射率相差愈大,散射光愈强;(4)散射光强度与粒子的数浓度成正比。