数字信号处理第4章
- 格式:ppt
- 大小:532.50 KB
- 文档页数:32
·78· 第4章 模拟信号数字处理4.1 引 言模拟信号数字处理是采用数字信号处理的方法完成模拟信号要处理的问题,这样可以充分利用数字信号处理的优点,本章也是数字信号处理的重要内容。
4.2 本章学习要点(1) 模拟信号数字处理原理框图包括预滤波、模数转换、数字信号处理、数模转换以及平滑滤波;预滤波是为了防止频率混叠,模数转换和数模转换起信号类型匹配转换作用,数字信号处理则完成对信号的处理,平滑滤波完成对数模转换后的模拟信号的进一步平滑作用。
(2) 时域采样定理是模拟信号转换成数字信号的重要定理,它确定了对模拟信号进行采样的最低采样频率应是信号最高频率的两倍,否则会产生频谱混叠现象。
由采样得到的采样信号的频谱和原模拟信号频谱之间的关系式是模拟信号数字处理重要的公式。
对带通模拟信号进行采样,在一定条件下可以按照带宽两倍以上的频率进行采样。
(3) 数字信号转换成模拟信号有两种方法,一种是用理想滤波器进行的理想恢复,虽不能实现,但没有失真,可作为实际恢复的逼近方向。
另一种是用D/A 变换器,一般用的是零阶保持器,虽有误差,但简单实用。
(4) 如果一个时域离散信号是由模拟信号采样得来的,且采样满足采样定理,该时域离 散信号的数字频率和模拟信号的模拟频率之间的关系为T ωΩ=,或者s /F ωΩ=。
(5) 用数字网络从外部对连续系统进行模拟,数字网络的系统函数和连续系统传输函数 之间的关系为j a /(e )(j )T H H ωΩωΩ==,≤ωπ。
数字系统的单位脉冲响应和模拟系统的单位冲激响应关系应为 a a ()()()t nTh n h t h nT === (6) 用DFT (FFT )对模拟信号进行频谱分析(包括周期信号),应根据时域采样定理选择采样频率,按照要求的分辨率选择观测时间和采样点数。
要注意一般模拟信号(非周期)的频谱是连续谱,周期信号是离散谱。
用DFT (FFT )对模拟信号进行频谱分析是一种近似频谱分析,但在允许的误差范围内,仍是很重要也是常用的一种分析方法。
习题解答4.1 根据给定的模拟滤波器的幅度响应平方,确定模拟滤波器的系统函数 H(s)。
(1) 261|()|164H j Ω=+Ω(2) 2222216(25)|()|(49)(36)H j -ΩΩ=+Ω+Ω分析:在模拟滤波器设计中,由各种逼近方法确定了幅度响应,通过下列步骤求出滤波器的系统函数H(s)。
更进一步,通过脉冲响应不变法或双线性变换法,可以得到数字滤波器的传输函数 H(z)。
(1)考虑s j =Ω,将幅度响应表达式整理为s 为变量的表达式,求 ()()a a H s H s - 表达式的零极点;(2)为了系统稳定,选择左半平面的极点构成 H(s);(3)如果没有特殊要求,可以选择取 ()()a a H s H s -以虚轴为对称轴的对称零点的任意一半(应是共轭对)作为 H a (s) 的零点。
但如果要求是最小相位延时滤波器,则应取左半平面零点作为 H a (s) 的零点。
(4)对比()a H s 和()a H j Ω 的低频特性或高频特性,从而确定增益常数K 0。
解:(1)由于2)(Ωj H a 是非负有理函数,它在Ωj 轴上的零点是偶次的,所以满足幅度平方函数的条件,先求2321()()()164()22H s H s H j a a as s -=Ω=+-Ω=-其极点为0.50.250.4330.50.250.433j j --±±我们选出左半平面极点s=0.5和 0.250.433j -± 为)(s H a 的极点,并设增益常数为0K ,则得)(s H a 为:002()(0.5)(0.250.433)(0.250.433)(0.5)(0.50.25)K K H s a s s j s j s s s ==++-+++++ 按着()a H s 和()a H j Ω的低频特性或高频特性的对比可以确定增益常数。
在这里我们采用低频特性,即由00()|()|a s a H s H j =Ω==Ω的条件可得增益常数0K 为:018K =最后得到)(s H a 为:21()8(0.5)(0.50.25)H s a s s s =+++(2)由于2)(Ωj H a 是非负有理函数,它在Ωj 轴上的零点是偶次的,所以满足幅度平方函数的条件,得)36)(49()25(16222)()()(222s s s s j aH s a H s a H --+=-=ΩΩ=- 其极点为:6,7±=±=s s其零点为:5j s ±=(皆为二阶,位于虚轴上)j Ω虚轴上的零点或极点一定是二阶的,其中一半(应为共轭对)属于 H a (s)。
数字信号处理讲义--第4章z变换第4章 z 变换[教学⽬的]1.了解Z 变换的概念,能求常⽤函数的Z 变换,能确定Z 变换的收敛域。
2.掌握各种求解Z 逆变换的⽅法,特别是利⽤围线积分求Z 反变换。
[教学重点与难点] 重点:1.Z 变换的概念,常⽤函数的Z 变换求解,Z 变换的收敛域; 2.各种求解Z 逆变换的⽅法,特别是利⽤围线积分求Z 反变换;难点:本章主要内容基本在信号与系统中学过,基本⽆难点,但如学⽣基础较差,还是要从以上三个重点内容去复习。
8.了解离散时间随机信号的概念。
[教学重点与难点] 重点:1.掌握线性时不变系统的概念与性质; 2.离散时间信号与系统的频域表⽰;难点:离散信号系统的性质如线性性,时不变性,因果性,稳定性的判定是本章的⼀个难点。
4.1 Z 变换(1) Z 变换的定义⼀个离散序列x (n )的Z 变换定义为式中,z 是⼀个复变量,它所在的复平⾯称为Z 平⾯。
我们常⽤Z [x (n )]表⽰对序列x (n )进⾏Z 变换,也即这种变换也称为双边Z 变换,与此相应的单边Z 变换的定义如下:∑∞-∞=-=n nz n x z X )()()()]([z X n x Z =∑∞=-=0)()(n nz n x z X这种单边Z 变换的求和限是从零到⽆穷,因此对于因果序列,⽤两种Z 变换定义计算出的结果是⼀样的。
单边Z 变换只有在少数⼏种情况下与双边Z 变换有所区别。
⽐如,需要考虑序列的起始条件,其他特性则都和双边Z 变换相同。
本书中如不另外说明,均⽤双边Z变换对信号进⾏分析和变换。
(2)Z 变换与傅⽴叶变换的关系:单位圆上的Z 变换是和模拟信号的频谱相联系的,因⽽常称单位圆上序列的Z 变换为序列的傅⾥叶变换,也称为数字序列的频谱。
数字频谱是其被采样的连续信号频谱周期延拓后再对采样频率的归⼀化。
单位圆上序列的Z 变换为序列的傅⾥叶变换,根据式(1-54)Z 变换的定义,⽤ej ω代替z ,从⽽就可以得到序列傅⾥叶变换的定义为可得其反变换:(3)Z 变换存在的条件: 正变换与反变换:存在的⼀个充分条件是:∑∞-∞==Ω=??-=Ω==k a Taj e z T k j X T j X e X z X j πωωωω21)(?)()(/nj n j en x e X n x F ωω-∞-∞=∑==)()()]([ωππωππωωd e eX dz z z X j e X F n x n j j n z j ??--=-===)(21)(21)]([)(11||1∑∞-∞=-==n nj j en x e X n x F ωω)()()]([ωπωωππωd e e X n x e X F n j j j )(21)()]([1?--==即:绝对可加性是傅⾥叶变换表⽰存在的⼀个充分条件。