第十三章-压杆稳定
- 格式:doc
- 大小:1.01 MB
- 文档页数:25
178第二十三章 压杆稳定一、 内容提要1、稳定的概念压杆的稳定性:压杆保持初始直线平衡状态的能力。
压杆的失稳:压杆丧失直线形状的平衡状态。
临界载荷:保持压杆稳定平衡时杆件所能承受的最大外力。
2、临界应力的计算大柔度杆( )中柔度杆( )小柔度杆( ) 说明:(1)压杆的临界应力在稳定问题中相当于强度问题中的极限应力,是确定稳定许用应力的依据。
(2)一种材料的极限应力是由材料本身的性质决定的。
压杆的临界应力除决定于材料外,还与杆的柔度有关,(3)根据 的值判断压杆的类别(大柔度杆、中柔度杆或小柔度杆),选用相应的计算临界力的公式。
3、压杆的稳定计算压杆的稳定性条件其中 安全系数法折减系数法说明(1)与强度问题类似,稳定计算也存在三方面的问题:稳定校核、截面设计、计算许可载荷。
(2)杆件丧失稳定是一种整体性行为,横截面的局部削弱对稳定的临界应力影响不大,因此在稳定计算时采用横截面的毛面积。
二、 基本要求1. 明确稳定平衡、不稳定平衡和临界载荷的概念,理解两端铰支压杆临界载荷公式的推导过程。
2. 理解长度系数的力学意义,熟练掌握四种常见的约束形式下细长压杆的临界载荷的计算。
p s λλλ≤≤p λλ>s λλ<22λπσE cr =λσb a cr -=scr σσ=λ[]crA N σσ≤=[]w crcr n σσ=[][]σϕσ=cr1793. 明确压杆柔度、临界应力和临界应力总图的概念,熟练掌握大柔度、中柔度和小柔度三类压杆的判别方法及其临界载荷的计算和稳定性的校核方法。
4. 了解根据压杆稳定性条件设计杆件截面的折减系数法。
5. 了解提高压杆稳定性的主要措施。
三、 典型例题分析例1 三根圆截面压杆直径均为 ,材料为 钢, MPa b 12.1=), , , , 两端均为铰支,长度分别为 且 , 试计算各杆的临界力。
解 (1)有关数据(2)计算各杆的临界力1杆 属大柔度杆2杆 属中柔度杆3杆属小柔度杆mm d 160=MPa E5102⨯=MPa p 200=σMPa s 240=σ,,,321l l l m l l l 542321===,304(MPa a =3A 2222210202.016.044mm d A -⨯==⨯==ππ45441022.316.06464md I -⨯=⨯==ππm d i 04.0416.04===1=μ10010200102611=⨯⨯==πσπλpp E5712.1240304=-=-=ba ss σλ10012504.05111=>=⨯==p il λμλKNl EIP cr 2540)(212==μπ5.6204.05.2122=⨯==il μλMPab a cr 2342=-=λσKNA P cr cr 46801021023426=⨯⨯⨯=⋅=-σ2.3104.025.1133=⨯==il μλ180例2 截面为 的矩形木柱,长 , 。
材料力学压杆稳定材料力学是研究物质在外力作用下的形变和破坏规律的学科。
在材料力学中,压杆是一种常见的结构元素,它能够承受压缩力,用来支撑、传递和稳定结构的荷载。
压杆的稳定性是指在外力作用下,压杆不会发生失稳或破坏。
稳定性的分析对于设计和使用压杆结构具有重要意义,可以保证结构的安全可靠性。
本文将从材料的稳定性理论出发,探讨压杆稳定的原理和影响因素。
压杆的稳定性主要受到两种力的影响:压缩力和弯曲力。
压缩力使得杆件在长轴方向上缩短,而弯曲力使得杆件发生侧向的弯曲变形。
这两种力的作用会引起杆件在截面上的应力分布,当这些应力达到一定的极限时,杆件就会发生失稳或破坏。
为了保证压杆的稳定性,需要考虑以下几个因素:1.杆件的形状和尺寸:杆件的形状和尺寸是影响压杆稳定性的重要因素。
一般来说,杆件的截面形状应当是圆形或类圆形,这样能够均匀地分配应力,在承受压力时能够更好地抵抗失稳。
此外,杆件的直径或截面积也应当足够大,以提高材料的稳定性。
2.材料的性质:材料的性质对杆件的稳定性有着重要的影响。
一般来说,杆件所使用的材料应当具有足够的强度和刚度。
强度可以提供杆件抵抗失稳的能力,而刚度可以减小失稳时的弯曲变形。
此外,材料应当具有足够的韧性,以防止杆件发生断裂。
3.杆件的支撑条件:杆件的支撑条件也会对稳定性产生影响。
一般来说,杆件的两端应当进行良好的支撑,以减小弯曲变形和失稳的发生。
支撑条件可以通过适当的连接方式、支撑点的设置和钢结构的设计来实现。
4.外力的作用:外力的作用是导致杆件发生失稳的主要原因。
外力可以包括静力荷载、动力荷载和温度荷载等。
在设计和使用压杆结构时,需要对外力进行充分的分析和计算,确保结构在外力作用下能够稳定运行。
总之,压杆的稳定性是确保结构安全可靠性的重要因素。
在材料力学中,通过对压杆受力和形变规律的分析,可以找到保证压杆稳定的途径和措施。
合理选择杆件的形状和尺寸,使用适当的材料,提供良好的支撑条件,并进行准确的外力分析和计算,可以有效地提高压杆的稳定性,确保结构的安全运行。
第十三章 压杆稳定1 基本概念及知识要点1.1基本概念理想受压直杆、理想受压直杆稳定性 、屈曲、 临界压力。
1.2 临界压力细长压杆(大柔度杆)用欧拉公式计算临界压力(或应力);中柔度杆用经验公式计算临界压力(或应力);小柔度杆发生强度破坏。
1.3 稳定计算为了保证受压构件不发生稳定失效,需要建立如下稳定条件,进行稳定计算:st crn FF n ≥=-稳定条件2 重点与难点及解析方法2.1临界压力临界压力与压杆的材料、截面尺寸、约束、长度有关,即和压杆的柔度有关。
因此,计算临界压力之前应首先确定构件的柔度,由柔度值确定是用欧拉公式、经验公式还是强度公式计算临界压力。
2.2稳定计算压杆的稳定计算是材料力学中的重要内容,是本课程学习的重点。
利用稳定条件可进行稳定校核,设计压杆截面尺寸,确定许用外载荷。
稳定计算要求掌握安全系数法。
解析方法:稳定计算一般涉及两方面计算,即压杆临界压力计算和工作压力计算。
临界压力根据柔度由相应的公式计算,工作压力根据压杆受力分析,应用平衡方程获得。
3典型问题解析3.1 临界压力mm .hA I i min 551132===mm.aA I i 31632===例题13.1材料、受力和约束相同,截面形式不同的四压杆如图图13-1所示,面积均为3.2×103mm 2,截面尺寸分别为(1)、b=40mm 、(2)、a=56.5mm 、(3)、d=63.8mm 、(4)、D=89.3mm,d=62.5mm 。
若已知材料的E =200GPa ,σs =235MPa ,σcr =304-1.12λ,λp =100,λs =61.4,试计算各杆的临界荷载。
[解]压杆的临界压力,取决于压杆的柔度。
应根据各压杆的柔度,由相应的公式计算压杆的临界压力。
(1)、两端固定的矩形截面压杆,当b=40mm 时λ> λP 此压杆为大柔度杆,用欧拉公式计算其临界应力(2)、两端固定的正方形截面压杆,当a=56.5mm 时所以9.1291055.1135.031=⨯⨯==-i l μλkN 3752121=⋅=⋅=A EAF cr crλπσ922==ilμλ0.7d 图13-1kN63510321094121304363=⨯⨯⨯⨯-=⋅=-.).(A F cr cr σmm.d D A I i 2274122=+==kN6441023109200362=⨯⨯⨯=⋅=-..A F cr cr σλs <λ<λP 此压杆为中柔度杆,用经验公式计算其临界应力σcr2=304-1.12λ2=304-1.12×92=200.9MPa(3)、两端固定的实心圆形截面压杆,当d =63.8mm 时λs <λ<λP 此压杆为中柔度杆,用经验公式计算其临界应力(4)、两端固定的空心圆形截面压杆,当D =89.3mm ,d =62.5mm 时λ<λs 此压杆为短粗杆,压杆首先发生强度破坏,其临界应力解题指导:1.计算压杆的临界压力时,需要综合考虑压杆的材料、约束、长度、惯性半径,即需要首先计算压杆的柔度,根据柔度值,代入相应的公式计算压杆的临界压力。
当 λ> λP 时 压杆为大柔度杆,用欧拉公式计算其临界应力; λs <λ<λP 时 压杆为中柔度杆,用经验公式计算其临界应力;mm d i 95.1541==943==ilμλ1.554==i l μλkN752103210235364=⨯⨯⨯=⋅=-.A P s cr σλ<λs 时 压杆为短粗杆,压杆将首先发生强度破坏。
2.由此例题可见,惯性半径越大,柔度越小,承载能力越强。
例题13.2矩形截面杆如图13-2所示,杆两端用销钉连接,在正视图中,连接处允许压杆绕销钉在铅垂面转动,两端约束可简化为两端铰支。
在俯视图中,连接处不允许压杆在水平面内发生转动,两端约束视为两端固定。
已知杆长L =2.3m 截面尺寸b =40mm h =60mm 材料的E =205GPa λP =132 λs =61,试求此杆的临界压力F cr 。
[解]1.若在正视图内失稳(铅垂方向):μ=1 , 32h i z =6.132==zz i lμλ2.若在俯视图内失稳(水平面内):μ=0.5 , 32b i y =5.99==yy i lμλ图13-202Z Z I I =z y λλ< 所以,压杆在正视图失稳。
3.计算压杆的临界压力F cr16132λλ>=.z 用欧拉公式计算其临界应力()kN 227622.l EI F cr ==μπ 解题指导:对于这类问题,需首先计算两个方向的柔度,判断压杆首先沿哪个方向失稳。
例题13.3图13-3所示立柱长L =6m ,由两根10号槽钢组成,试问a 多大时立柱的临界荷载F cr 最大,并求其值。
已知: 材料E=200GPa ,σP =200MPa 。
[解]1.惯性矩查型钢表可知,由两根10号槽钢组成的组合截面对形心主惯性轴的惯性矩分别为:当a 值较小时,I y < I z ,λy >λz ,压杆失稳时,以y 轴为中性轴弯曲;])2([2200A az I I Y Y ++=图13-33.106105.3967.03=⨯⨯==-ilμλY Z λλ=当a 值较大时,I z <I y ,λz >λy ,压杆失稳时,以z 轴为中性轴弯曲;2.当立柱的临界荷载最高,压杆对z 轴和y 轴应有相等的稳定性。
即: 即3.最大临界荷载F cr 压杆的柔度i y =i z =i由于所以,λ>λP 压杆为大柔度杆用欧拉公式计算临界压力例题13.4所示工字钢直杆在温度t 1 = 20℃时安装,此时杆不受力,已知杆长l = 6m ,材料的λP =132 , E = 200GPa ,线膨胀系数α=12.5×10-6 /℃。
试问当温度升高到多少度时杆将失稳。
3.992==PP E σπλkN 44422==)(l EIF cr μπY Z I I =2.37)2(0=+az mma 44)2.155.37(2=-=F BF A⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++=A a z I I Y z 20002225.14112.26005.0=⨯==ilμλ[解]随着温度的升高,直杆在杆端受到压力F A =F B ,当两端压力达到压杆的临界压力即:F A =F B =F cr 时,压杆将失稳。
1. 杆的工作压力由静不定结构的变形协调条件t F l l ∆=∆tl EAlF A ∆=α tEA F A ∆=α2.压杆的临界压力λ>λP 压杆为大柔度杆。
用欧拉公式计算临界压力3.压杆失稳时,需要升高的温度值 由 F A =F B =F cr22)(l EItEA μπα=∆图13-422)(l EIF cr μπ=3.2 稳定计算例题13-5: 钢杆AB 如图13-5所示,已知的杆的长度l AB =80cm, 100=P λ 57=s λ,经验公式λσ121304.cr -=,n st =2,试校核AB 杆。
[解]1.杆AB 的工作压力:分析梁CBD 的受力,据其平衡方程可得F AB =159kN2.杆AB 的临界压力:压杆的柔度8044801===⨯ilμλ s P λλλ>> 用经验公式计算压杆的临界应力:MPa 421480121304..cr =⨯=-σ压杆的临界压力F cr =σcr A =270kN3.计算压杆的工作安全系数,进行稳定校核 由压杆的稳定条件269.1159270=≤===st cr n P P n 所以,AB 杆不安全。
图13-5解题指导:请读者思考:若校核整个结构,如何求解?若由AB 杆确定整个结构的许用外载荷,如何求解?例题13.6:材料相同的钢杆AB 、AC ,直径均为d=80cm, 98=P λ 57=s λ,经验公式λσ121304.cr -=,n st =5,E=210GPa ,试求许用外载荷[F P ]。
[解]1.确定杆AB 、AC 的工作压力: 由节点A 的受力及平衡方程可得F AB =0.5 F P F AC =0.866 F P2.计算由AB 杆稳定条件确定的许用外载荷: AB 杆的柔度17340803041 0==.cos il ABAB ⨯=μλP AB λλ> 用欧拉公式计算压杆的临界应力:()kN 34822==AB crAB l EIF μπ 由压杆稳定条件550348≥==PAB crAB F .F F n 则许用外载荷F P ≤139.2kN3.计算由AC 杆稳定条件确定的许用外载荷 AB 杆的柔度100408.030sin 41 0==⨯=il ACAC μλP AB λλ> 用欧拉公式计算压杆的临界应力:()kN 8104122.l EIF AC crAC ==μπ 由压杆稳定条件5866081041≥==PAC crAC F ..F F n 则许用外载荷F P ≤240.6kN4.确定整个结构的许用载荷由稳定计算结果可知,结构的许用载荷为[F P ]=139.2kN解题指导:对于这类题目,所确定的载荷要确保整个结构所有受压杆件匀不失稳。
由于杆AB 、AC 所受压力和柔度均不相同,需要首先分别求出由两杆确定的各自许用外荷载,然后取其中较小的一个,做为整个结构的许用外载荷。
例题13.7:两端为球铰的压杆,由两根等边角钢铆接而成,型钢的外形尺如图13-7所示。
已知铆钉孔直径为23mm ,压杆长度l =2.4m ,所受外力F P =800kN ,n st =1.48,98=P λ 60=s λ,经验公式λσ121304.cr -=,材料的许用应力[σ]=160MPa ,试校核压杆是否安全。
[解]图13-7所示压杆有两种可能的失效形式:失稳:整个压杆由直线形式的平衡变为曲线形式的平衡,局部截面尺寸变化对弯曲变形影响很小,个别截面上铆钉开孔对整个压杆的稳定性影响可忽略不计。
因此,在压杆稳定计算中,采用未开铆钉孔时的压杆横截面尺寸(相应的面积称为“毛面积”,用A 表示);强度失效,在铆钉开孔截面,截面尺寸的削弱,会导致截面上的正应力增大,超过材料的许用应力。
因此需要校核铆钉开孔处横截面上的正应力强度。
在计算中要用开孔后的截面尺寸(其面积称为“净面积”,用A 0表示)。
综上所述,需要首先分别校核压杆的整体稳定和铆钉开孔处正应力强度,才能判断出压杆是否安全。
1.稳定校核压杆失稳时,二等边角钢将作为一整体发生屈曲,并绕组合截面惯性矩最小的形心主轴(z 轴)转动其中I z1、i z1和A 1分别为单根角钢对z 轴的惯性矩、惯性半径和横截面面积,可由型钢表中查得。