应变片的自补偿法
- 格式:ppt
- 大小:9.74 MB
- 文档页数:63
应变片测量温度补偿在工业生产和科学研究中,温度是一个非常重要的物理量。
准确地测量温度对于保证产品质量、实现工艺优化以及科学研究的准确性至关重要。
然而,由于环境和材料等因素的影响,传统的温度测量方法往往存在一定的误差。
为了减小这些误差,科学家们设计出了应变片测量温度补偿的方法。
应变片是一种能够感知物体形变的传感器,它可以通过测量物体的应变来间接地推断出温度。
应变片的原理非常简单,它利用了材料在受力下发生形变的特性。
当物体受到外力作用时,它会发生形变,而应变片可以感知到这种形变,并将其转化为电信号输出。
通过对应变片输出的电信号进行分析,我们就可以获得物体的应变情况,从而推断出物体的温度。
然而,应变片的测量结果并不总是准确的。
这是因为应变片的输出信号不仅受到温度的影响,还受到其他因素的干扰。
为了排除这些干扰因素对温度测量结果的影响,科学家们引入了温度补偿的概念。
温度补偿是一种通过测量其他参量来消除应变片输出信号中温度引起的误差的方法。
具体而言,科学家们通过同时测量物体的温度和其他参量(如应变、压力等),并建立起它们之间的数学模型。
通过分析这个数学模型,我们可以根据其他参量的测量结果来推断出物体的温度,从而实现温度补偿。
温度补偿的关键在于建立准确的数学模型。
这个数学模型需要考虑到应变片的特性、物体的材料参数以及其他参量的影响。
科学家们通过大量的实验和理论分析,不断改进和完善数学模型,以提高温度补偿的准确性和可靠性。
温度补偿在工业生产和科学研究中有着广泛的应用。
例如,在汽车制造中,应变片测量温度补偿可以用于发动机的温度监测,从而实现对发动机工作状态的准确控制。
在航天器的设计中,应变片测量温度补偿可以用于航天器表面温度的实时监测,以保证航天器的安全运行。
在材料科学研究中,应变片测量温度补偿可以用于材料的热膨胀系数的测量,从而帮助科学家们理解材料的热力学性质。
应变片测量温度补偿是一种有效提高温度测量准确性的方法。
第1章传感器基础理论思考题与习题答案1.1什么是传感器?(传感器定义)解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。
1.2传感器特性在检测系统中起到什么作用?解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。
通常把传感器的特性分为两种:静态特性和动态特性。
静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。
动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。
1.3传感器由哪几部分组成?说明各部分的作用。
解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。
其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。
1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择?解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。
衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。
意义略(见书中)。
动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。
1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。
解:其灵敏度333001060510UkX--∆⨯===∆⨯1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、S2=2.0V/mV、S3=5.0mm/V,求系统的总的灵敏度。
1.7某线性位移测量仪,当被测位移由4.5mm变到5.0mm时,位移测量仪的输出电压由3.5V减至2.5V,求该仪器的灵敏度。
应变片温度补偿
摘要:
1.应变片的概念与作用
2.应变片温度补偿的必要性
3.温度补偿的原理与方法
4.应变片温度补偿的实际应用
5.结论
正文:
一、应变片的概念与作用
应变片是一种用于测量应变的元件,主要由敏感栅等构成。
其工作原理是基于应变效应,即当导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化。
应变片广泛应用于各种测量应变的场合,如工程结构、机械设备等。
二、应变片温度补偿的必要性
由于应变片在使用过程中会受到温度的影响,导致电阻值的变化,从而影响测量结果的准确性。
因此,对应变片进行温度补偿是保证测量精度的重要手段。
三、温度补偿的原理与方法
温度补偿的原理是通过测量温度并根据材料的温度系数来计算出温度对电阻值的影响,从而在测量结果中消除这一影响。
常见的温度补偿方法有内置热敏电阻温度补偿、外部热敏电阻温度补偿和数字温度补偿等。
四、应变片温度补偿的实际应用
在实际应用中,应变片温度补偿技术的有效性得到了广泛验证。
例如,在某大型工程结构的应变测量中,通过采用温度补偿技术,成功提高了测量结果的准确性,保证了工程的安全与稳定。
五、结论
综上所述,应变片温度补偿技术对于保证应变测量结果的准确性具有重要意义。
1.什么是传感器?它由哪几个部分组成?分别起到什么作用?解:传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置,能完成检测任务;传感器由敏感元件,转换元件,转换电路组成。
敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。
2.传感器技术的发展动向表现在哪几个方面?解:(1)开发新的敏感、传感材料:在发现力、热、光、磁、气体等物理量都会使半导体硅材料的性能改变,从而制成力敏、热敏、光敏、磁敏和气敏等敏感元件后,寻找发现具有新原理、新效应的敏感元件和传感元件。
(2)开发研制新型传感器及组成新型测试系统① MEMS 技术要求研制微型传感器。
如用于微型侦察机的CCD 传感器、用于管道爬壁机器人的力敏、视觉传感器。
② 研制仿生传感器 ③ 研制海洋探测用传感器 ④ 研制成分分析用传感器 ⑤ 研制微弱信号检测传感器(3)研究新一代的智能化传感器及测试系统:如电子血压计,智能水、电、煤气、热量表。
它们的特点是传感器与微型计算机有机结合,构成智能传感器。
系统功能最大程度地用软件实现。
(4)传感器发展集成化:固体功能材料的进一步开发和集成技术的不断发展,为传感器集成化开辟了广阔的前景。
(5)多功能与多参数传感器的研究:如同时检测压力、温度和液位的传感器已逐步走向市场。
3. 时间常数为0.001秒的一阶装置对正弦信号进行测量,要求振幅误差在5%以内,求该装置能够测量的正弦信号的最高频率。
解:τ=0.001100/5])2(1[11)(1212=+-=-f f H πτ (7)f=52.3 (3)4.设时间常数为5s 的温度计,从C 20 的室温条件下突然输入C 80 的水中,经过15s 之后,温度计的指示值为多少度? (77℃) 5.传感器的静态指标有哪些?1、试说明金属应变片与半导体应变片的相同和不同之处。
思考题与习题参考答案第1章1-1 什么叫传感器?它由哪几部分组成?它们的相互作用及相互关系如何? 答:传感器是把被测量转换成电化学量的装置,由敏感元件和转换元件组成。
其中,敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。
由于传感器输出信号一般都很微弱,需要信号调理与转换电路进行放大、运算调制等,此外信号调理转换电路以及传感器的工作必须有辅助电源,因此信号调理转换电路以及所需的电源都应作为传感器组成的一部分。
1-2 什么是传感器的静态特性?它有哪些性能指标?分别说明这些指标的含义?答:传感器的静态特性是指被测量的值处于稳定状态时的输入与输出的关系。
衡量静态特性的重要指标是线性度、 灵敏度,迟滞和重复性等。
灵敏度是输入量∆y 与引起输入量增量∆y 的相应输入量增量∆x 之比。
传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。
迟滞是指传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象。
重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。
漂移是指在输入量不变的情况下,传感器输出量随时间变化的现象。
精度是用来评价系统的优良程度。
1-3 某线性位移测量仪,当被测位移X 由3.0mm 变到4.0mm 时,位移测量仪的输出电压V 由3.0V 减至2.0V ,求该仪器的灵敏度。
解:该仪器的灵敏度为10.30.40.30.2X V -=--=∆∆=S (V/mm ) 1-4 用测量范围为-50~150KPa 的压力传感器测量140KPa 压力时,传感器测得示值为142KPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。
解:绝对误差:X L ∆=-=142-140=2 相对误差100%L δ∆=⨯=2100% 1.4285%140⨯= 标称相对误差即%100⨯∆=x ξ=2100% 1.4084%142⨯= 引用误差100%-γ∆=⨯测量范围上限测量范围下限 =22100%1%150(50)200=⨯=--1-5 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。
C1 传感器基础1 什么是传感器?传感器的基本组成包括哪两个部分?这两个部分各起什么作用?答:传感器是一种能把特定被测量的信息按一定规律转换成某种可用信号并输出的器件或装置。
传感器由敏感元件和转换元件组成。
敏感元件能直接感受或响应被测量;转换元件是将敏感元件感受或响应的被测量转换成适于传输或测量的电信号。
2简述传感器在自动控制系统中的作用。
答:自动控制系统中传感器的主要作用是将被测非电量转换成与其成一定关系的电量,它是自动控制系统的“感官”、“触角”,自动控制系统通过传感器检测到的信息实现对系统的控制。
因此,传感器是自动控制系统中得首要部件,是实现现代化测量和自动控制(包括遥感、遥测、遥控)的主要环节,它对于决定自动控制系统的性能起着重要作用。
3传感器有哪些基本特性?答:传感器的基本特性通常可以分为静态特性和动态特性。
静态特性是指输入的被测量不随时间变化或随时间缓慢变化时表现的特性。
表征传感器静态特性的主要参数有线性度、灵敏度、分辨力和迟滞、重复性;动态特性是指传感器跟踪输入信号变化的特性,表征传感器动态特性的主要参数有响应速度、频率响应。
4简述传感器的发展方向答:1).新材料的开发与应用在原有的半导体、陶瓷材料等基础上,利用新的制造材料来提升传感器性能,提高传感器的产品质量,降低生产成本。
2).新制造技术的应用采用精密细微加工技术、蒸镀技术、扩散技术、光刻技术、静电封接技术、全固态封接技术,应用使传感器集成化、超小型化。
3).新型传感器的开发利用新的物理效应、化学效应、生物效应开发出相应的新型传感器,从而为提高传感器的性能,拓展传感器的应用范围提供了新的动力。
4).传感器的集成化利用集成技术,将敏感元件、测量电路、放大电路、补偿电路、运算电路等制作在同一芯片上,使传感器体积小、质量轻、生产自动化程度高、制造成本低、稳定性和可靠性高、电路设计简单、安装调试时间短。
5).传感器的智能化开发具有自补偿、自诊断、自校正及数据的自存储和分析等功能的智能传感器。