应变片的自补偿法ppt课件
- 格式:ppt
- 大小:8.26 MB
- 文档页数:63
应变片温度补偿摘要:1.应变片的定义与作用2.应变片温度补偿的必要性3.温度补偿的原理与方法4.应变片温度补偿的实际应用5.结论正文:一、应变片的定义与作用应变片是一种由敏感栅等构成的元件,用于测量应变。
其工作原理是基于应变效应,即当导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化。
应变片广泛应用于各种测量应变的场景,如力学试验、结构健康监测等。
二、应变片温度补偿的必要性应变片在使用过程中,其电阻值会受到温度的影响而发生改变。
当温度发生变化时,应变片的电阻值也会随之发生变化,这会对应变测量结果产生误差。
为了确保应变测量的准确性,需要对应变片进行温度补偿。
三、温度补偿的原理与方法温度补偿的原理是通过测量温度并根据应变片的温度特性来调整电阻值,从而消除温度对电阻值的影响。
温度补偿的方法主要有两种:1.线性温度补偿:通过设置一个线性的温度- 电阻关系,实现对应变片的温度补偿。
这种方法简单易行,但补偿效果受到温度范围的限制。
2.二次多项式温度补偿:通过设置一个二次多项式的温度- 电阻关系,实现对应变片的温度补偿。
这种方法的补偿效果较好,但计算复杂度较高。
四、应变片温度补偿的实际应用在实际应用中,应变片温度补偿技术的作用至关重要。
例如,在某些结构健康监测系统中,应变片用于测量结构的应变变化,而温度变化会对应变片的电阻值产生影响。
通过采用温度补偿技术,可以有效地消除这种影响,从而提高应变测量的准确性。
五、结论综上所述,应变片温度补偿技术对于确保应变测量的准确性具有重要意义。
应变片得温度误差及补偿1、应变片得温度误差由于测量现场环境温度得改变而给测量带来得附加误差, 称为应变片得温度误差. 产生应变片温度误差得主要因素有:1)电阻温度系数得影响敏感栅得电阻丝阻值随温度变化得关系可用下式表示:Rt=R0 (1+α 0 Δ t ) (3 - 14)式中: Rt——温度为t℃时得电阻值;R0——温度为t0℃时得电阻值;α 0-—金属丝得电阻温度系数;Δ t——温度变化值,Δ t=t —t0。
当温度变化Δt时,电阻丝电阻得变化值为Δ Rt=Rt—R0= R0 α 0Δ t ( 3 - 15)2)试件材料与电阻丝材料得线膨胀系数得影响当试件与电阻丝材料得线膨胀系数相同时,不论环境温度如何变化,电阻丝得变形仍与自由状态一样,不会产生附加变形。
当试件与电阻丝线膨胀系数不同时,由于环境温度得变化, 电阻丝会产生附加变形,从而产生附加电阻.设电阻丝与试件在温度为0℃时得长度均为L0 ,它们得线膨胀系数分别为β s与βg, 若两者不粘贴, 则它们得长度分别为Ls= L0(1+β s Δ t)(3 — 16 )Lg= L0 (1+βgΔ t) ( 3—17 )当二者粘贴在一起时,电阻丝产生得附加变形Δ L,附加应变εβ与附加电阻变化Δ Rβ分别为Δ L= Lg - Ls=(β g—βs ) L0 Δ t(3-18)εβ = Δ LL0= (βg- βs )Δ t(3-19)Δ R β =K0R0εβ =K0 R0(β g—β s)Δt(3 -20)由式(3 - 15)与式(3-20) ,可得由于温度变化而引起应变片总电阻相对变化量为折合成附加应变量或虚假得应变ε t, 有由式( 3-21 )与式( 3 - 22 )可知,因环境温度变化而引起得附加电阻得相对变化量,除了与环境温度有关外,还与应变片自身得性能参数(K 0,α 0 ,β s)以及被测试件线膨胀系数β g 有关。
2、电阻应变片得温度补偿方法电阻应变片得温度补偿方法通常有线路补偿法与应变片自补偿两大类。
应变片温度误差的概念产生原因及补偿方法
应变片温度误差指的是由于应变片与被测物体的温度不一致而引起的测量误差。
通常情况下,应变片的灵敏度会随着温度的变化而发生变化,从而导致测量误差的发生。
应变片温度误差产生原因主要有以下几点:
1. 应变片与被测物体温度不一致。
由于被测物体的温度不是恒定的,因此应变片与物体的温度也会发生变化,从而引起测量误差。
2. 应变片材料的温度系数不同。
不同的材料在温度变化时,其应变系数也会发生变化,从而影响应变片的灵敏度。
3. 应变片与电缆的温度不一致。
由于应变片和电缆连接处的温度不一致,其电阻值也会发生变化,从而影响测量精度。
针对应变片温度误差,可以采取以下补偿方法:
1. 温度补偿法。
该方法是通过测量应变片和被测物体的温度,计算出应变片的灵敏度变化,从而进行温度误差的补偿。
2. 电桥平衡法。
该方法是通过调节电桥电阻,使电桥相互平衡,从而消除温度
误差。
3. 自动温度补偿技术。
该技术是将温度传感器集成到应变片中,通过对温度进行实时监测和补偿加以消除温度误差。
以上方法可以有效地解决应变片温度误差的问题,从而提高测量的精度和准确性。