第六章-常用微波元件幻灯片
- 格式:ppt
- 大小:2.84 MB
- 文档页数:10
第6章微波无源器件微波器件有源器件:无源器件:放大器、混频器、倍频器…基本元件(R、C、L)、阻抗变换器、定向耦合器、功率分配器、环行器…波导型同轴型微带型微波元件6.1 微波基本元件v6.1.1 微带基本元件一、集总参数元件(l <<λ)微带线1、电阻用钽(tan)、镍、铬合金材料蒸发在基片上,两端由微带引出2、电容6.1 微波基本元件v 6.1.1 微带基本元件一、集总参数元件(l <<λ)二、半集总参数元件(l 与λ接近) 6.1 微波基本元件v 6.1.2 波导基本元件≈b dY b B c g 2csc ln 4πλ1、膜片a 、电容膜片:b 、电感膜片−≈a d Y a B c g 22πλctg 谐振窗2、螺钉 6.1 微波基本元件v 6.1.2 波导基本元件3、终端负载(一) 匹配负载吸收入射波的全部功率。
使传输线工作于行波状态。
对匹配负载的基本要求是:(1)有较宽的工作频带,(2) 输入驻波比小和一定的功率容量。
Z L =Z c0==Γc in Z Z 作用: 6.1 微波基本元件v 6.1.2 波导基本元件3、终端负载(一) 匹配负载吸收入射波的全部功率。
使传输线工作于行波状态。
对匹配负载的基本要求是:(1)有较宽的工作频带,(2) 输入驻波比小和一定的功率容量。
Z L =Z c0==Γc in Z Z 作用:(二)短路负载作用:将电磁能量全部反射回去。
Z L =0l tg jZ Z c in β=6.1 微波基本元件v 6.1.2 波导基本元件3、终端负载抗流式(二)短路负载作用:将电磁能量全部反射回去。
Z L =0l tg jZ Z c in β=v 6.1.4 波型与极化变换器6.1 微波基本元件1.方-圆变换器2.线-圆极化变换器v 6.1.5 衰减器和相移器6.1 微波基本元件1、衰减器理想的衰减器应是只有衰减而无相移的二端口网络,其散射矩阵为[]S e e l l =−−00αα衰减器的衰减量表示为:oi A P PL log 10=截止式v 6.1.5 衰减器和相移器6.1 微波基本元件2、相移器移相器是对电磁波只产生一定的相移而不产生能量衰减的微波元件,它是一个无反射、无衰减的二端口网络。
第六章微波元件§6-1 引言在微波系统中,实现对微波信号的定向传输、衰减、隔离、滤波、相位控制、波型与极化变换、阻抗变换与调配等功能作用的,统称为微波元(器)件。
微波元件的型式和种类很多,其中有些与低频元件的作用相似。
如在波导横截面中插入金属膜片或销钉,起类似低频中的电感、电容的作用;沿波导轴线放置适当长度的吸收片,可以起消耗电磁能量的作用,相当于低频中的衰减器;在E面或H面使波导分支,可以起类似于低频中的串联、并联作用,等等。
将若干微导元件组合起来,可以得到各种重要组件。
如在波导中将膜片或销钉放在适当位置,可以构成谐振腔;由适当组合的谐振腔,可以得到不同要求的微波滤波器等等。
但是,有不少微波元件在低频电路中是没有的。
如滤除寄生波的滤除器,波型变换器,极化变换器等。
由于微波属于分布参数系统,因此绝大多数现波元件的分析和设计问题,严格地讲是一个过错整流器的电磁场边值问题。
由于边界条件比较复杂,利用场的方法进行分析,涉及到复杂的电磁理论和应用数学问题,因此是十分繁难的。
只有少数几何形状比较简单的元件才能利用该方法进行严格的求解。
目前,最切实际的方法是以场的物理概念作指导,采用网络的方法(即等效电路法),场、路结合进行分析和综合,最后将所得结果用场结构元件去模拟。
所以,等效电路法是研究微波元件的基本方法。
微波系统是由许多元件和均匀传输线组成的,应力求做到在连接外没有反射,亦即处于阻抗匹配状态。
由于微波元件种类繁多,本章不可能全部涉及,只能选择其中最主要的,作以较详细的论述。
§6-2 终端负载终端我载是一种单口元件。
常用的终端负载有两类,一类是匹配负载,一类是可变短路器。
这些终端装置广泛地用于实验室,以测量微波元件的阻抗和散射参量。
匹配负载是用来全部吸收入射波功率,保证传输系统的终端不产生反射的终端装置,它相当于终接特性阻抗的线。
可变短路器是一种可调整的电抗性负载,是用来把入射波功率全部反射的终端装置。