ac<bc
(5)乘方:a>b>0⇒_a_n_>_b_n,n∈N*,且n≥2. (6)开方:a>b>0⇒_________,n∈N*,且n≥2.
na nb
2.基本不等式
(1)定理1:如果a,b∈R,那么a2+b2≥____(当且仅当a=b 2ab
时,等号成立).
(2)定理2:如果a,b>0,那么 ≥____(当且仅当a=b
【解析】(1)当a=1时,不等式f(x)≤g(x), 即|2x-1|+|2x+1|≤x+2,
等价于
x
1 2
,
①
4x x 2
或
1 2Βιβλιοθήκη x1 2,
②
2 x 2
或
x
1 2
,
③
4x x 2
解①求得x无解,解②求得0≤x< 1 , 2
解③求得 1 x 2 , 综上,不等式2的解集3 为
1,
x
1 2
,
3x
1,
1 2
x
0,
故xh(1x,)xmin0,=
,故可得到实数a的范围为
h( 1) 1 22
[ 1, ). 2
第一课 不等式和绝对值不等式
【网络体系】
【核心速填】
1.不等式的基本性质
(1)对称性:a>b⇔____. b<a
(2)传递性:a>b,b>c⇒____. (3)加(减):a>b⇒_____a_>_c_. (4)乘(除):a>b,c>a0+⇒c>_b_+_c___;a>b,c<0⇒______.